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Abstract: Transportation planning has been established as a key topic in the literature and social
production practices. An increasing number of researchers are studying vehicle routing problems
(VRPs) and their variants considering real-life applications and scenarios. Furthermore, with the
rapid growth in the processing speed and memory capacity of computers, various algorithms can be
used to solve increasingly complex instances of VRPs. In this study, we analyzed recent literature
published between 2019 and August of 2021 using a taxonomic framework. We reviewed recent
research according to models and solutions, and divided models into three categories of customer-
related, vehicle-related, and depot-related models. We classified solution algorithms into exact,
heuristic, and meta-heuristic algorithms. The main contribution of our study is a classification table
that is available online as Appendix A. This classification table should enable future researchers to
find relevant literature easily and provide readers with recent trends and solution methodologies in
the field of VRPs and some well-known variants.

Keywords: vehicle routing problem; taxonomy; literature review; exact methods; heuristics; meta-
heuristics

1. Introduction

Problems related to the distribution of goods between warehouses and customers are
generally considered as vehicle routing problems (VRPs). The VRP was first proposed by
Dantzig and Ramser [1] in 1959 to model how a fleet of homogeneous trucks could serve
the demand for oil from a number of gas stations from a central hub with a minimum travel
distance. Five years later, Clarke and Wright [2] added more practical restrictions to VRPs
in which the delivery of goods to each customer must occur within a set of bounds. This
type of problem model became known as the VRP with time windows (VRPTW), which is
one of the most widely studied topics in the field of operations research [3].

However, current VRP models differ significantly from those introduced by Dantzig and
Ramser [1] and Clarke and Wright [2], because they aim to incorporate real-world complexities.
Because VRPs are some of the most critical challenges faced by logistics companies, an
increasing amount of research is focusing on VRPs. Several surveys and taxonomies for
VRPs can be found in [3–6] ((Eksioglu et al. (2009); Braekers et al. (2016); Elshaer and Awad
(2020); Konstantakopoulos et al. (2020)) and in many other books or book chapters [7–10]
((Cordeau et al. (2007); Golden et al. (2008); Toth and Vigo (2014)); Nalepa (2019)).

Solving VRPs is computationally expensive and categorized as NP-hard [11], because real-
world problems involve complex constraints such as time windows, time-dependent travel
times (reflecting traffic congestion), multiple depots, and heterogeneous fleets. These features
introduce significant complexity and have dramatically evolved the VRP research landscape.

The processing speed and memory capacity of computers has grown rapidly, enabling
the processing of increasingly complex instances of VRPs and widespread application
of logistics distribution scenarios. The number of VRP solution methods introduced
in the academic literature has grown rapidly over the past few decades. According to
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Eksioglu et al. [4], the VRP represents an evolving field of operations research that has
been growing exponentially at a rate of 6% per year, which makes it difficult to keep track
of developments in the field and obtain a clear overview of which variants and solution
methods are relatively novel.

The VRP family can be considered as two combinatorial senses: (1) the number of
possible solutions, which grow exponentially with computer science and algorithm design;
and (2) the number of conceivable problem variants, which also grow exponentially with a
variety of problem attributes [12]. This survey classifies the academic literature on VRPs
from the perspective of solution methodologies, as well as the detailed characteristics of
VRPs. Because we base our classification on the taxonomy presented in [4], we restrict
our analysis to articles published between 2019 and August of 2021. Therefore, we do not
intend to provide an exhaustive overview of VRP literature. To the best of our knowledge,
this article provides the first structured classification of recent VRP literature based on
solution and problem attributes.

The main contribution of our paper is a classification table that is available online
as Appendix A. This classification table should enable future researchers to find relevant
literature easily by eliminating or selecting characteristics in the taxonomy, leaving only
articles tailored to their interests. The main objective of this work is to provide readers
with recent trends and solution methodologies in the field of VRPs and some well-known
variants. This survey is expected to help future researchers identify a problem domain and
promising topics for research.

Section 2 defines the scope of this survey and Section 3 introduces the VRP and its
variants. A comprehensive survey of state-of-the-art strategies currently used for solving
VRPs is presented in Section 4. Section 5 summarizes our observations and conclusions.

2. Scope of the Survey

We analyzed recent literature published between 2019 and August of 2021 using a
taxonomic framework. Classification is followed by a survey that uses the taxonomy to
evaluate trends in the field and identify which articles contribute to these trends. We
restricted the reviewed literature to the following features: only relevant articles published
in English-language journals were considered, meaning books, conference proceedings,
and dissertations were excluded.

To extract the most relevant literature and keep the number of articles manageable, the
following search strategy was applied. First, only articles containing “vehicle routing” as title
words or keywords were selected. Second, the search was limited to articles that were extended
by highly cited articles published in any ranked journal (Google Scholar top 20), excluding
review papers. For papers published in 2021, which are too recent to have cite ranking, we
selected the top five pages from Google Scholar, each of which had 10 cited articles, as well as
two review papers written by Moghdani et al. [13] and Asghari and Al-e (2021). Third, the
abstracts of selected articles were read to determine their relevance to the subject.

This search strategy resulted in a final set of 88 articles. Although this selection is not
exhaustive, it contains the majority of recent articles on VRPs and can be considered as
representative of the field.

3. VRP and Its Variants
3.1. VRP

In addition to the classical VRP, several variants have also been studied. Capacitated
VRP (CVRP), VRPTW, VRP with heterogeneous fleets (HFVRP), time-dependent VRP (TD-
VRP), and multi-depot VRP (MDVRP) are some of these variants. The classical VRP can
be described as follows. Let G = (V, A) be a graph, where V = {v0, v1, v2, . . . , vN},
where {v1, v2, . . . , vN} is the node set representing customers to be served and v0 is the
depot. Each customer is characterized by a demand Di. A =

{(
vi, vj

)
: vi, vj ∈ V

}
is

the arc set (subscript indicates sequence) linking nodes i and j with a distance dij. Let
Mm = {m1, m2, m3, . . . , mm} denote the vehicle set, where each vehicle has a maximum load
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capacity capm, meaning the total load of vehicle m cannot exceed the maximum load capacity
capm. To reflect a real distribution scenario accurately, different features are considered ac-
cording to the settings of heterogeneous models. The goal of the VRP is to derive optimal
vehicle routes such that each customer is visited exactly once by one vehicle and each vehicle
starts and ends its route at the depot. The following assumptions are adopted:

1. The depot has a demand equal to zero.
2. Each customer location is serviced by only one vehicle.
3. Each customer’s demand is indivisible.
4. Each vehicle shall not exceed its maximum load capacity capm.
5. Each vehicle starts and ends its route at the depot.
6. Customer demand, distribution distances between customers, and delivery costs

are known.

The notations used for problem definition are summarized as Tables 1–3.

Table 1. Sets and indices of VRP.

V Node set, where v0 is the depot and {v1, v2, . . . , vN} are customers

i,j Subscripts of the customer nodes, i, j = 1, 2, . . . N

A A =
{(

vi, vj

)
: vi, vj ∈ V

}
is arcs set linking nodes i and j

Mm The set of vehicles with m types

Table 2. Parameters of VRP.

Di Demand of customer i

dij Distance between nodes i and j

vehm Maximum available number of each vehicle type

capm Maximum load capacity of vehicle type m

fcm Fixed cost of vehicle type m

vcm Variable cost of vehicle type m

Dmij,m Amount carried using vehicle type m from i to j

Table 3. Decision variable of VRP.

Xij,m Value of one if vehicle type m travels from node i to j. Otherwise, value of zero

Traditional logistics models focus on minimizing the total cost of a network. This is
where the concept of the VRP is best applied. We follow this concept and add the fixed
cost f cm of a vehicle, which represents rent cost or operating costs, to the total cost to
minimize the total number of vehicles. We also include the variable cost vcm of delivery
using each type of vehicle to optimize vehicle scheduling. Additional constraints appear in
the target calculation in the form of penalty functions to enforce vehicle limit constraints.
The objective of minimizing the total cost is defined as follows:

Minimize
M

∑
m=1

N

∑
i=0

N

∑
j=0

Xij,m f cm +
M

∑
m=1

N

∑
i=0

N

∑
j=0

dijDmij,mvcm (1)

subject to the following constraints:
Routing:

N

∑
i=1

Xi0,m = 1 ∀ m ∈ Mm (2)
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M

∑
m=1

N

∑
i=1

N

∑
j=1

Xij,m = 1 ∀ (i, j) ∈ A ∀ m ∈ Mm (3)

M

∑
m=1

N

∑
i=1

Xip,m =
M

∑
m=1

N

∑
i=1

Xpi,m ∀ p ∈ V (4)

Demand and capacities:
N

∑
i=1

N

∑
j=1

Xij,mDj = Dmij,m ∀ (i, j) ∈ A ∀ m ∈ Mm (5)

N

∑
i=1

Dm0i,m ≤ capm ∀ m ∈ Mm (6)

M

∑
m=1

Xij,m ≤ vehm ∀ m ∈ Mm (7)

The objective function in Equation (1) is the total cost, which includes the fixed cost
and variable cost. Constraint (2) states that each vehicle should return to the depot, where
the subscript is zero. Constraint (3) ensures that each node can only be visited once in a
route. Constraint (4) states that, if a vehicle arrives at a node, it must leave that node, thereby
ensuring route continuity. Constraints (5) and (6) impose restrictions on the amounts of
demand and capacity. Constraint (7) defines the maximum number of available vehicles vehm.

3.2. VRP Variants

Practical requirements and new challenges require extensive definitions and formu-
lations of the VRP. For example, distance, driver working hours, time windows, traffic
conditions, and so on can all arise in real-world VRPs and enrich the definition and applica-
tions of VRPs. This chapter provides an overview of recent research on different models for
vehicle routing. The main goal of this chapter is to present an overview of vehicle routing
and scheduling areas while discussing several real-world applications.

Some features of VRPs are summarized in Table 4 based on the research by Ek-
sioglu et al. [4]. Other variants have also been studied beyond the classical VRP. These
variants include the influence of time factors, time windows of customers, maximum
operating time of vehicles, differing delivery times caused by varying traffic conditions,
varying characteristics of vehicles, varying capacities, varying speeds, and new types of
electric vehicles. By referring to the taxonomy of [4], we divided models into three main
categories: customer-related, vehicle-related, and depot-related models, which is the most
important issue to represent the difference in real delivery problems. These categories have
representative model features that are sorted in the tables below according to the year as
shown in Tables 5–7.

Table 4. Taxonomy of VRP literature (adapted from [4]).

1. Type of Study 3.4. Number of Points of Origin

1.1. theory 3.4.1 single origin

1.2. applied methods 3.4.2 multiple origins

1.2.1 exact methods 3.5. number of points of loading/unloading facilities (depot)

1.2.2 heuristics 3.5.1 single depot

1.2.3 simulation 3.5.2 multiple depots

1.2.4 real-time solution methods 3.6. time window type

1.3. implementation documented 3.6.1 restriction on customers

1.4. survey, review of meta-research 3.6.2 restriction on roads

2. scenario characteristics 3.6.3 restriction on depot/hubs

2.1. number of stops on rout 3.6.4 restriction on drivers/vehicle
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Table 4. Cont.

1. Type of Study 3.4. Number of Points of Origin

2.1.1 known (deterministic) 3.7. number of vehicles

2.1.2 partially known, partially probabilistic 3.7.1 exactly n vehicles

2.2. load splitting constraint 3.7.2 up to n vehicles

2.2.1 splitting allowed 3.7.3 restriction on drivers/vehicle

2.2.2 splitting not allowed 3.8. capacity consideration

2.3. customer service demand quantity 3.8.1 limited capacity

2.3.1 deterministic 3.8.2 unlimited capacity

2.3.2 stochastic 3.9. vehicle homogeneity (capacity)

2.3.3 unknown 3.9.1 similar vehicles

2.4. request times of new customers 3.9.2 load-specific vehicles

2.4.1 deterministic 3.9.3 heterogeneous vehicles

2.4.2 stochastic 3.9.4 customer-specific vehicles

2.4.3 unknown 3.10. travel time

2.5. on-site service/waiting times 3.10.1 deterministic

2.5.1 deterministic 3.10.2 function dependent

2.5.2 time dependent 3.10.3 stochastic

2.5.3 vehicle type dependent 3.10.4 unknown

2.5.4 stochastic 3.11. transportation cost

2.5.5 unknown 3.11.1 travel time dependent

2.6. time window structure 3.11.2 distance dependent

2.6.1 soft time windows 3.11.3 vehicle dependent

2.6.2 strict time windows 3.11.4 operation dependent

2.6.3 mixture of both 3.11.5 function of lateness

2.7. time horizon 3.11.6 implied hazard/risk related

2.7.1 single period 4. information characteristics

2.7.2 multiple periods 4.1. evolution of information

2.8. backhauls 4.1.1 static

2.8.1. nodes request simultaneous pickups and deliveries 4.1.2 partially dynamic

2.8.2. nodes request either linehaul or backhaul service, but not both 4.2 quality of information

2.9. node/arc covering constraints 4.2.1 known (deterministic)

2.9.1 precedence and coupling constraints 4.2.2 stochastic

2.9.2 subset covering constraints 4.2.3 forecasted

2.9.3 recourse allowed 4.2.4 unknown (real-time)

3. problem physical characteristics 4.3. availability of information

3.1. transportation network design 4.3.1 local

3.1.1 directed network 4.3.2 global

3.1.2 undirected network 4.4. processing of information

3.2 locations of addresses (customers) 4.4.1 centralized

3.2.1 customers on nodes 4.4.2 decentralized

3.2.2 arc routing instances 5. data characteristics

3.3 geographical locations of customers 5.1 data used

3.3.1 urban (scattered with a pattern) 5.1.1 real-world data

3.3.2 rural (randomly scattered) 5.1.2 synthetic data

3.3.3 mixed 5.1.3 both real and synthetic data

5.2 no data used
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Table 5. Model categories of VRPs published in 2021.

No. Authors
Model Features

Customer-Related Aspects Vehicle-Related Aspects Depot-Related Aspects

1 (Mojtahedi, Fathollahi-Fard,
Tavakkoli-Moghaddam, & Newton [14]) time windows heterogeneous vehicles single depot

2 (Nguyen, Dang, & Tran [15]) classical truck and drone single depot

3 (Basso, Kulcsár, & Sanchez-Diaz [16]) classical electric vehicles single depot

4 (Pan, Zhang, & Lim [17]) time windows homogeneous vehicles loading at the depot
simultaneously

5 (Keskin, Çatay, & Laporte [18]) time window electric vehicles time window

6 (Wang, Liu, & Wang [19]) time window heterogeneous vehicles single depot

7 (Behnke, Kirschstein, & Bierwirth [20]) time window heterogeneous vehicles single depot

8 (Anderluh, Nolz, Hemmelmayr, &
Crainic [21]) “grey zone” customers vehicle synchronization single depot

9 (Dewi & Utama [22]) classical green vehicle single depot

10 (Martins, Hirsch, & Juan [23]) classical homogeneous vehicles single depot

11 (Gmira, Gendreau, Lodi, & Potvin [24]) time windows
travel speeds are associated

with road segments in the road
network

single depot

12 (Archetti, Guerriero, & Macrina [25]) static and online customers heterogeneous vehicles single depot

13 (Abdirad, Krishnan, & Gupta [26])

time windows, dynamic,
demands from customers at

different locations that arrive
in the system at different times

heterogeneous vehicles single depot

14 (Latorre-Biel, Ferone, Juan, & Faulin [27])
customer demands are not

only stochastic, but also
correlated

heterogeneous vehicles single depot

15 (Srivastava, Singh, & Mallipeddi [28]) soft time windows heterogeneous vehicles single depot

16 (Altabeeb, Mohsen, Abualigah, &
Ghallab [29]) time windows heterogeneous vehicles single depot

17 (Sadati & Çatay [30]) classical homogenous vehicles multiple depots

18 (İLHAN [31]) classical homogenous vehicles single depot

19 (Euchi & Sadok [32]) classical homogenous vehicles single depot

20 (Florio, Hartl, Minner, &
Salazar-González [33]) time window, stochastic homogenous vehicles single depot

21 (Chaabane, Montecinos, Ouhimmou, &
Khabou [34]) time window end-of-life vehicles single depot

22 (Park, Son, Koo, & Jeong [35]) time windows heterogeneous vehicles single depot

23 (Chen, Demir, & Huang [36]) time windows

after the emergence of delivery
assistants, each van can be

equipped with several
delivery robots while

performing last-mile parcel
delivery tasks in populated

areas

single depot

24 (Abdullahi, Reyes-Rubiano, Ouelhadj,
Faulin, & Juan [37]) time windows green vehicle single depot

25 (Pan, Zhang, & Lim [38]) time windows,
time-dependent heterogeneous vehicles single depot

26 (Lee [39]) time window electric vehicles single depot

27 (Li, Wang, Chen, & Bai [40]) time windows with satellite
bi-synchronization single depot

28 (Fan, Zhang, Tian, Lv, & Fan [41]) time windows green vehicle multiple depots

29 (Quirion-Blais & Chen [42]) time windows heterogeneous vehicles single depot
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Table 5. Cont.

No. Authors
Model Features

Customer-Related Aspects Vehicle-Related Aspects Depot-Related Aspects

30 (Mühlbauer & Fontaine [43]) classical
cross-docking from vans to
cargo bicycles at so-called

satellites
single depot

31 (Lin, Ghaddar, & Nathwani [44]) time windows electric vehicle single depot

32 (Wang, Xu, & Wang [45]) time windows heterogeneous vehicles multi-depot

33 (Mendes, Lush, Wanner, Martins, Sarubbi,
& Deb [46])

passengers are transported
from their origin to their

destination sharing the same
vehicle

heterogeneous vehicles single depot

34 (Aerts, Cornelissens, & Sörensen [47]) classical heterogeneous vehicles single depot

35 (Niu, Wen, Cao, & Xiao [48]) stochastic demandtime
window heterogeneous vehicles single depot

36 (Jia, Mei, & Zhang [49]) classical homogeneous electric
vehicle single depot

37 (Sitek, Wikarek, Rutczyńska-Wdowiak,
Bocewicz, & Banaszak [50]) time windows homogenous vehicles single depot

38 (Niu, Cao, Gao, Xiao, Song, & Zhang [51]) time windows, stochastic
demands heterogeneous vehicles single depot

39 (Casazza, Ceselli, & Wolfler Calvo [52]) time windows heterogeneous vehicles single depot

40 (Grabenschweiger, Doerner, Hartl, &
Savelsbergh [53]) classical heterogeneous vehicles single depot

41 (Afsar, Afsar, & Palacios [54])
accept the service if the zone
prices are below individual

thresholds
homogenous vehicles single depot

42 (Olgun, Koç, & Altıparmak [55]) classical green vehicle
vehicles departing from

a certain depot must
return to the same depot

43 (Stellingwerf, Groeneveld, Laporte,
Kanellopoulos, Bloemhof, & Behdani [56])

time and temperature
dependent heterogeneous vehicles single depot

44 (Wang, Liao, Li, Yan, & Chen. [57]) time window heterogeneous vehicles single depot

45 (Zhang, Li, Sun, & Hou [58])

the probability that
customers are served before
their (uncertain) deadlines

must be higher than a
predetermined target

heterogeneous vehicles single depot

46 (Haixiang, Fang, Wenwen, & Mingyun [59])

an unknown number of
customer requests that

dynamically appear during
route execution

heterogeneous vehicles single depot

47 (Dalmeijer & Desaulniers [60]) time window heterogeneous vehicles single depot

48 (Guo, Huang, & Huang [61]) time window heterogeneous vehicles single depot
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Table 6. Model categories of VRPs published in 2020.

No. Authors
Model Features

Customer-Related Aspects Vehicle-Related Aspects Depot-Related Aspects

1 (Pasha, Dulebenets, Kavoosi, Abioye,
Wang, & Guo [62]) time window

two vehicles are expected to
serve one customer each,

while one vehicle is expected
to serve two customers after
visiting the required supplier

and manufacturer nodes

after completing the
service for the last

customer, each vehicle
returns to the dummy

depot, travel costs from
each customer location to

the dummy depot are
assumed to be zero

2 (Abbasi, Rafiee, Khosravi, Jolfaei,
Menon, & Koushyar [63]) classical homogenous vehicles single depot

3 (Kitjacharoenchai, Min, & Lee [64]) classical drone truck

multiple drones are not
allowed to be launched or
retrieved at the same node

at any given time

4 (Raeesi & Zografos [65]) time windows
electric commercial vehicles
(ECVs), battery-swapping

vans (BSVs)

ECVs and BSVs in the fleet
to operate routes that start

and finish at the depot

5 (Zhang, Chen, Zhang, & Zhuang [66]) time windows electric vehicle single depot

6 (Song, Li, Han, Han, Liu, & Sun [67])
time windows, adopt a rating
method to determine customer

satisfaction

vehicles with different energy
consumption indexes are

considered
single depot

7 (Giallanza & Puma [68]) classical green vehicle with a defined
capacity single depot

8 (Zhang, Chen, Zhang, Wang, Yang,
& Cai [69]) classical homogenous vehicles shared carriers and depots

(multiple depots)

9 (Brandão [70]) classical homogenous vehicles

multiple depots, vehicles
do not return to the depot
after delivering goods to

customers

10 (Eshtehadi, Demir, & Huang [71]) time windows multi-compartment vehicles single depot

11 (Zhen, Ma, Wang, Xiao, & Zhang [72]) time windows and release
dates multi-trip vehicle multiple depots

12 (Kancharla & Ramadurai [73]) classical electric vehicle
allow multiple visits to a
charging station without

duplicating nodes

13 (Molina, Salmeron, Eguia et al. [74]) time windows heterogeneous vehicle single depot

14 (Mao, Shi, Zhou, & Zhang [75]) time windows homogeneous electric vehicles single depot

15 (Lu, Chen, Hao, & He [76]) time windows homogeneous fleet of k electric
vehicles single depot

16 (Fachini & Armentano [77]) time windows heterogeneous fixed fleet single depot

17 (Shi, Zhou, Ye, & Zhao [78]) time windows classical single depot

18 (Trachanatzi, Rigakis, Marinaki, &
Marinakis [79]) classical homogenous vehicles single depot

19 (Li, Wang, Chen, & Bai [80]) time windows mobile satellites single depot

20 (Sethanan & Jamrus [81]) classical heterogeneous fixed fleet single depot
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Table 7. Model categories of VRPs published in 2019.

No. Authors
Model Features

Customer-Related Aspects Vehicle-Related Aspects Depot-Related Aspects

1 (Wang & Sheu [82]) arc-based with drones single depot

2 (Pelletier, Jabali, & Laporte [83]) classical electric freight vehicles single depot

3 (Schermer, Moeini, & Wendt [84]) classical homogenous vehicles single depot

4 (Bruglieri, Mancini, Pezzella, & Pisacane [85]) classical green vehicle single depot

5 (Li, Soleimani, & Zohal [86]) classical green vehicle multiple depots

6 (Basso, Kulcsár, Egardt, Lindroth, &
Sanchez-Diaz [87]) classical electric commercial vehicles single depot

7 (Breunig, Baldacci, Hartl, & Vidal [88]) classical electric two-echelon vehicle single depot

8 (Zhen, Li, Laporte, & Wang [89]) classical unmanned aerial vehicles single depot

9 (Stavropoulou, Repoussis, & Tarantilis [90]) classical consistent vehicle single depot

10 (Keskin, Laporte, & Çatay [91]) time windows electric vehicle single depot

11 (Huang, Blazquez, Huang, Paredes-Belmar, &
Latorre-Nuñez [92]) classical feed vehicle single depot

12 (Arnold & Sörensen [93]) classical homogenous vehicles single depot

13 (Long et al. [94]) classical prize-collecting vehicle single depot

14 (Sacramento, Pisinger, & Ropke [95]) classical unmanned aerial vehicles single depot

15 (Schermer, Moeini, & Wendt [96]) classical homogenous vehicles single depot

16 (Zhao, Luo, & Han [97]) time window homogenous vehicles single depot

17 (Froger, Mendoza, Jabali, & Laporte [98]) classical electric vehicle single depot

18 (Yu, Wang, Wang, & Huang [99]) time window homogenous vehicles single depot

19 (Marinakis, Marinaki, & Migdalas [100]) time window homogenous vehicles single depot

20 (Altabeeb, Mohsen, & Ghallab [101]) classical homogenous vehicles single depot

The objectives of VRPs can also be diversified according to different stakeholder
requirements. The traditional objective of the standard VRP is to minimize a cost function,
which is considered to be the total distance traveled by all vehicles. However, recent
studies have focused on various negative externalities of transportation, including carbon
emissions and duration. For an objective discussion, we classified single and multiple
objectives according to the diversity of objectives and then listed the objectives used in
different studies. The papers with the same numbers as those in Tables 2–4 are listed in
Tables 8–10. Additionally, we discussed the test instances used in different studies.

Table 8. Model objectives of VRPs published in 2021.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

1 cost, green emissions self-generation 72

2 minimize the
operational cost self-generation 400

driving and flight times
of trucks and drones are

assumed to be
deterministic

3 energy consumption real data map

4 minimize the total
travel distance

based on the TDVRPTW instances
proposed in [102] 100

multiple trips per vehicle,
time-dependent travel

times

5 tune constant waiting
times

100 customer EVRPTW-SP instances
from [103] 108 stochastic waiting times

at recharging stations

6

minimize costs, service
waiting times, and

number of vehicles in
multiple service periods

VRPTW-SP instances from [103] 41
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Table 8. Cont.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

7 reduce greenhouse
gas (GHG) emissions

instances for emission-oriented
vehicle routing on a multigraph

(uni-halle.de)
100 different vehicle–load

combinations

8 minimize cost consisting
of total GHG emissions

adapted Solomon instances
introduced in [104] 100

9
time-related and

distance-related variable
costs

adapted Solomon instances
introduced in [104] 100

10
minimize the total

duration of delivery
routes (cost)

test instances proposed in [105] 150

11 minimize the total
duration of routes

exact branch-and-price (BP) method
reported in [106] 200

12 minimize the
distribution cost

from the well-known Solomon
VRPTW instances presented in [107]

and described in [108]
200

13 minimize
transportation cost self-generation 100

14
stochastic and

correlated customer
demands

instance A-n32-k5 (available from
https://bit.ly/3eGxGx9 accessed on

31 August 2020)
31

15

minimize number of
vehicles, total travel

distance, makespan, total
waiting time, and total
delay time incurred by

late arrivals

same testing datasets used in
[109,110] 250

16 minimize the total
distance

02 instances from seven standard
benchmarks in [111–114] 200

17 minimize the total
distance GVRP instances generated in [115] 483

18 minimize the total
distance

benchmarks instances proposed in
[111] 199

19
minimize the total

travel time of
vehicles and drones

benchmarks instances from [95] 200

20

VRPSD-PDC (reduce
traveling costs and the

number of required
vehicles)

self-generation 60 optimal restocking

21 minimize the total
cost self-generation 20

22 minimize the total
distance self-generation 20

23
minimize the sum of

route completion
times

https:
//data.mendeley.com/datasets/

kxfcwkwdb9/draft?a=edb5ce79-b4
c7-4121-93ca-317e82328b1c
accessed on 23 January 2020

200 delivery robots

24

minimize distance,
economic dimension cost,

and environmental
dimension cost

five instances from [116] 43

25 duration minimizing test instances adopted from [102]
and newly generated instances 100

26 total travel and charging
time adapted Solomon instances 36

https://bit.ly/3eGxGx9
https://data.mendeley.com/datasets/kxfcwkwdb9/draft?a=edb5ce79-b4c7-4121-93ca-317e82328b1c
https://data.mendeley.com/datasets/kxfcwkwdb9/draft?a=edb5ce79-b4c7-4121-93ca-317e82328b1c
https://data.mendeley.com/datasets/kxfcwkwdb9/draft?a=edb5ce79-b4c7-4121-93ca-317e82328b1c
https://data.mendeley.com/datasets/kxfcwkwdb9/draft?a=edb5ce79-b4c7-4121-93ca-317e82328b1c


Appl. Sci. 2021, 11, 10295 11 of 28

Table 8. Cont.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

27 minimize the total
cost test instances adopted from [116] 120

28 reduce distribution
costs self-generation 144 time-varying road

network

29

maximize the number of
lengthy historical

customer chains in the
solution and minimize

the total cost

random generated instances 105

30 minimize the total
cost self-generation 300

31 minimize the total
distance self-generation 100

32 minimize logistics
operating costs real data 180

33 reduce operating and
riding costs

https://doi.org/10.1016/j.eswa.20
20.114467 accessed on

16 August 2020
250

34
minimize the order

picking travel
distance

Henn & Wäscher [117] originally
included 5760 instances 100

35
minimize travel distance,

drivers, remuneration,
and number of vehicles

self-generation 200

36 minimize total
traveling distance

EEE WCCI2020 competition on EC
for the EVRP is adopted [118] 1000

37

minimize the
distances travelled by

vehicles and the
penalties for

delivering items
(shipments) to

alternative points

self-generation 6 alternative delivery and
pickup

38 minimize total cost and
customer dissatisfaction self-generation 120

39 minimize the total
cost test instances adopted from [119] 30

40 minimize the total
cost available instance set from [120] 75 heterogeneous locker

boxes

41 maximize the total
profit classical CVRP instances from [121] 50

42 minimize fuel
consumption costs generated randomly from [122] 199

43
minimize product decay,
CO2 emissions, cost, and

maximum decay

real data obtained from seven
supermarket chains 80

44

minimize the total route
distance and total

customer waiting time for
the improvement of

customer satisfaction

test instances adopted from [123] 30

45 minimize the total
cost self-generation -

46 minimize the total
cost self-generation 60

https://doi.org/10.1016/j.eswa.2020.114467
https://doi.org/10.1016/j.eswa.2020.114467
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Table 8. Cont.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

47
minimize the

expected cost of
distribution

instances for the TWAVRP
introduced in [124] and extended

in [125]; these instances are
available in the VRP repository

VRP-REP [126]

50

48 minimize the total
cost

P-n-k” instances are from [111],
“RY” instances are from the “RY

ATT48” in [127], and “Tai” instances
are from [128] with the number of

nodes ranging from 75 to 150.

150

Table 9. Model objectives of VRPs published in 2020.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

1 minimize the total
supply chain cost self-generation 75

factory will be assembled
at each customer location
to meet existing demand

2 minimize the
total cost self-generation -

3
minimize the total

truck arrival time of
trucks at the depot

benchmarks from [111] (sets A, B,
and P) and [112] 75

multiple drones are not
allowed to be launched or

retrieved at the same
node at any given time,
meaning the times of

both trucks and drones at
customer locations must

be adjusted to be
the same

4 minimize the total
cost VRPTW instances proposed in [129] 100

battery swapping service
begins before or after

customer service

5
minimize the total

travel distances of all
EVs

fuzzy optimization model for
EVRPTW and recharging stations
(https://figshare.com accessed on

25 June 2019) [66]

200
recharging stations

studied in an uncertain
environment

6 minimize the total
cost test instances adopted from [107] 100 cold chain logistic system

7 total costs and carbon
emissions are minimized test instances adopted from [130] based on

dataset

8

operating quality,
operating reliability,

operating cost, operating
time

test instances adopted from [131] (depots) 30

9 minimize the
distance travelled

test instances adopted from
[121,132–134] 288

10 minimize fixed and
variable vehicle costs self-generation 200

each compartment
requires energy to

maintain the temperature
for the total number of
delivery crates inside a

compartment

11
minimize the total

traveling time of all
vehicles

test instances adopted from [107] 200

12
minimize the total
time (travel times

plus charging times)
test instances adopted from [135] 320

the number of such
duplications is not known

a priori and the size of
the problem increases

https://figshare.com
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Table 9. Cont.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

13

maximize the total
number of served

customers and minimize
the total travel cost

test instances adopted
from [136,137]

based on
dataset

limited number of
resources

14 minimize the
total cost test instances adopted from [129] 100

15 minimize the
total cost self-generation 200

16 minimize fixed and
variable vehicle costs

test instances adopted
from [107,138–140] 100

17 minimize the
total cost test instances adopted from [141] based on

dataset

18 minimize the
total cost test instances adopted from [107] 200

19 minimize the
total cost test instances adopted from [107] 100

one DC in which a
homogeneous fleet of

van–UAV combinations
are available

20 minimize the
total cost

test instances adopted
from [138,142] 100

Table 10. Model objectives of VRPs published in 2019.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

1 minimize total cost self-generation 13 1

2 minimize total cost test instances adopted from [135] 320 2

3 minimize the makespan
through constraints test instances adopted from [143] 100 3

4 minimize the total
travel distance

test instances adopted
from [115,144] 100 4

5
revenue maximization, and
travel time, emission, and

cost minimization
self-generation 35 5

6
stage one: path minimization;
stage two: route minimization
for total energy consumption

self-generation 20 6

7 minimize total cost

sets two and three from [145], set
five from [146], and set six

from [147]; charging stations
follow the guidelines from [129]

(instances of the electric VRP with
time windows and recharging

stations) and [103]

200 7

8
minimize the total time

required to complete
monitoring tasks

self-generation 724 8

9 maximize the net acquired
profit

from the traditional VRP
instances in [112] 199 9

10 minimize total cost VRPTW instances presented by
Schneider et al. [129] 100 10

11 minimize total cost self-generation 200 11

12 minimize the number of
routes

instance set from [148], MDVRP
experiments using the benchmark

set from [134]
1000 12
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Table 10. Cont.

No. Multi-Object Single-Object Dataset Max Nodes Other Settings

13
minimize the total traveling

cost, maximize the prizes
collected by all vehicles

http://www.coin-or.org/
SYMPHONY/branchandcut/

VRP/data/index.htm.old
accessed on 14 June 2018

32 13

14 minimize the operational cost
when visiting customers self-generation 200 14

15 minimize the makespan test instances adopted from [105] 50 15

16 minimize transportation and
time cost test instances adopted from [107] 100 16

17 minimize total driving and
charging time

Montoya et al.’s [139] testbed
(publicly available at

http://vrp-rep.org accessed on
18 June 2018).

20 17

18 minimize carbon emission test instances adopted from [107] 100 18

19 minimize the number of
vehicles

test instances adopted from [107],
includes 56 instances divided into
six sets with 100 nodes; includes
300 instances of different sizes

from [108]

1000 19

20 minimize the total distance
travelled by vehicles self-generation 80 20

As shown in the tables above, there are different main model objectives for different
years. The results are summarized in Figure 1.
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Figure 1. Different model objectives in different years.

One can see that the time window still occupies a large proportion of model objectives
and is the mainstream of current research on the VRP and its variants. This trend is
closely related to the concept of the “to C” distribution, where customers focus on service
satisfaction. There have been various extensions of the VRP, including the VRPTW and
time-dependent problems such as those discussed in [17,24,41,75,89]. Additional research
has focused on heterogeneous vehicle problems that are closely related to real-life vehicle
applications. With the increasing focus on environmental protection, electric vehicle
distribution has also gradually become a mainstream research topic. Relevant research
can be found in [49,72,81,89,116]. Single-objective models still occupy a certain research
space, where the objective value setting is still largely based on cost metrics (e.g., cost,
distance, and CO2 emission). However, unlike cost metrics in past research, the costs in the

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm.old
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm.old
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/index.htm.old
http://vrp-rep.org
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current single-objective problem research tend to be compound costs representing actual
delivery costs.

4. Solutions for VRPs

Because real-world problems involve complex constraints, advanced algorithms are
required to solve VRPs in complicated and constantly changing environments. The number
of customers and vehicle types is increasing and the use of optimization algorithms is
a key component of effective customer service and efficient operations. A large variety
of VRP solution strategies have been presented in the literature. These strategies range
from exact methods to heuristics and meta-heuristics. Exact methods provide optimal
solutions, whereas heuristics and meta-heuristics generally yield near-optimal solutions.
Exact methods are typically only suitable for small-scale problems (up to 200 customers).
Because the VRP and its variants are known to have NP-hard complexity, solving larger
instances optimally is very time-consuming. However, there are no bounds on problem
size when solving problems using heuristics and meta-heuristics that can efficiently handle
large numbers of constraints and still output near-optimal solutions. Figure 2 presents
various approaches to solving the VRPs and was adapted from content in [6,149].
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Exact methods include a variety of approaches, mainly branch and X (X: cut, bound,
price, and so on) approaches, as well as dynamic programming and column genera-
tion methods. In recent years, significant advances in the exact solution of VRPs have
been achieved. A major milestone was the branch-and-price algorithm proposed by
Pecin et al. [150]. The branch-and-bound (BB) method was developed to explore solu-
tion spaces implicitly. Because the performance of BB algorithms depends on the quality
of bounds obtained throughout a tree, BB algorithms can be combined with the gener-
ation of cutting planes, forming so-called branch-and-cut algorithms, or with column
generation, resulting in BAP algorithms [151]. Branch and X remain the dominant VRP
approaches [150,152]. While branch and X approaches treat VRPs as integer linear program-
ming (ILP) or mixed ILP (MILP), dynamic programming breaks complex problems into
a number of simpler sub-problems. Constraint programming is a model that interrelates
different variables using constraints. When the search space is reduced, relatively simple
problems can be solved by various search algorithms [149].
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Approximate methods called heuristics are designed to solve specific problems.
Heuristics focus on systematically finding an acceptable solution within a limited number
of iterations. A heuristic yields solutions faster than an exact method. A meta-heuristic may
be referred to as an intelligent strategy combining subordinate heuristics for exploration
and exploitation.

For solution discussion, we classified exact methods, heuristic algorithms, and meta-
heuristic algorithms in papers with the same numbers as those in Tables 11–13. The results
are presented in the tables below.

Table 11. Solutions to VRPs published in 2021.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

1 Simulated annealing (SA) /

2 Slack induction through string
and sweep removals

C++ compiled with GCC 9.3.0. Use
CPLEX 12.10 to solve MILPs. All
tests run on a desktop operating

Xubuntu 20.04 with an AMD Ryzen
3700X @4.0 GHz CPU, 16 GB RAM.

3 Paths first, routes second /

4
Hybrid ALNS–variable

neighborhood descent (VND)
algorithm

Java and the MIP model is solved by
IBM ILOG CPLEX 12.8.0 (IBM

CPLEX, 2017). All experiments run
on an Ubuntu 18.04.3 LTS server
with an Intel(R) Xeon(R) Silver

4216 CPU of 2.10 GHz

5

Deterministic greedy insertion,
probabilistic greedy insertion,
probabilistic greedy insertion

with confidence

Coded in Java programming
language and all experiments

conducted on an Intel Core i7-8700
CPU 3.2 GHz processor with

16 GB RAM

6

Hybrid heuristic
algorithm with

three-dimensional
k-means clustering

/

7

1. Solve the shortest-path
problem using a backward

labelling algorithm, 2. Use the
column generation technique
to set up a fast heuristic and a

branch-and-price (BAP)
algorithm

C++ with Visual Studio 2017, single
core of an Intel i7-2600 CPU with

8 GB RAM

8 Large neighborhood search
(LNS)

C/C++ and tested under Linux
Ubuntu 16.04 LTS running on a

virtual machine (using two
processors and 2 GB RAM) on a host

Intel(R) Core(TM) i5-3320 M CPU
@2.60 GHz and 4 GB RAM

9
HWOA algorithm based

on the whale optimization
algorithm

Linux Ubuntu 16.04 LTS running on
a virtual machine

10
Agile optimization (refers to
the massive parallelization of

BR algorithms)

p2 GB RAM with a host Intel(R)
Core(TM) i5 CPU

11

The initial solution is
generated by a greedy

insertion heuristic and the
neighborhood of the current
solution is generated using

CROSS exchanges

3320 M CPU @2.60 GHz with
4 GB RAM
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Table 11. Cont.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

12

Using an iterative insertion
algorithm to construct an

initial solution and
re-optimize using the 2-O
re-optimization algorithm

Coded in Java, while the offline
problem was solved using Cplex 12.5.

All experiments run on an Intel(R)
Core(TM) i7-16700HQ CPU with two

cores operating @2.60 GHz with
16 GB RAM.

13

Construction algorithms: path
cheapest arc, savings, and

global cheapest arc are applied
to the construction phase of a

route

Algorithm was implemented in
Python. Experiments performed on a
personal PC with an Intel® Core™ i7-

4790S CPU @3.20 GHz with four
cores and 8 GB RAM

14 Petri net predictor

15
Non-dominated sorting

genetic algorithm II
(NSGA-II)

C language and Linux based.
2.50 GHz Intel Core i7 CPU system

with 8 GB RAM

16 Firefly algorithm (FA)
Coded in Java and executed on an
Intel i5 CPU @3.2 GHz with 4 GB
RAM on a 32-bit Windows 7 OS

17
General variable

neighborhood search method
(GVNS) with tabu search (TS)

Intel Core i7-8700 @3.2 GHzand
32 GB RAM

18 SA algorithm with a
crossover operator

Intel Core i7 @2.40 GHz and
8 GB RAM

19

modified hybrid genetic
algorithm

(nearest-neighbor heuristic
and modified savings

heuristic)

Visual Studio C++ application,
64 bits (win64), Intel® Core ™

i5-2450M @ 2.5 GHz and 4 GB RAM

20 novel BAP algorithm

Single thread of an Intel® CoreTM
i7-4790 @3.60 GHz 32 GB RAM.

Linear programs were solved using
IBM® CPLEX® version 12.6.1

21

first phase focuses on “routes’
construction using dealers”

characteristics, second phase
of “routes’ assignment”

assigns the most interesting
routes to internal carrier
trucks, and the cheapest
carrier brokers get the

remaining dealers

Computational experiments were
conducted on a workstation with an
Intel Core i7-2600 @3.4 GHz, 16 GB
RAM, and Windows 7 Enterprise

2009 (64 bits). For VRP mathematical
model validation, the LINGO solver

V.15. For heuristic development,
Python 2.7.13 with CPXOPT

was used

22 genetic algorithm (GA) /

23 adaptive large neighborhood
search (ALNS) algorithm

MS Windows with MATLAB R2020a
(Math Works, 2020) on a laptop

computer with an Intel i5-3610QM
CPU @2.30 GHZ with 4 GB RAM.

The mathematical model was solved
using the IBM CPLEX 12.10.0 solver

(IBM, 2019)

24

BRIG-LS generic framework
combining a

biased-randomized technique
with an iterative greedy

technique

Java application on an Intel
QuadCore i5 CPU @3.2 GHz with

4 GB RAM

25 ALNS with TS algorithm /

26 BAP 3.2 GHz Intel Xeon W CPU with
32 GBof RAM
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Table 11. Cont.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

27 CPLEX 12.4, a modified ALNS
heuristic /

28 hybrid GA with VNS
MATLAB2018b on the Windows 10
OS, 4 GB RAM, Intel(R) Core(TM)

i7-7700 @3.60 GHz

29 Case base reasoning (CBR)

30 Greedy insertion, repack
insertion, regret insertion

C++11 compiled with GCC version
5.1.0. All runs were performed on a
computer with 8 GB RAM and an

Intel i5-6200 CPU @2.40 GHz

31 policy gradient algorithm

Macbook Pro (2018) running Mac OS
10.13.6 with 4 CPU processors @2.3

GHZ and 16 GB RAM. The RL model
was realized using Tensorflow 2.2.0.

The code was implemented
in Python

32 hybrid GA with TS /

33 cluster algorithm /

34 Adapted Hausdorff-based
batching heuristic

C++ Visual Studio 17. All
experiments carried out on an
Intel(R) Core i7-6820HQ CPU
@2.7 GHz with 16 GB RAM

35 chromosome representation,
decision tree

Python 3 on a machine with an Intel
Core i5-8600K

36
Bi-level ant colony

optimization (ACO)
algorithm

C++ and executed on an Intel i7-6700
@3.40 GHz on the Arch Linux system

37 Construction heuristic (nearest
neighbor)

Intel(R) Celeron(R) CPU 1005 M 2
@1.90 GHz, 8 GB RAM, Windows 10

64-bit

38 CLP and MP, CLP and GA Python, Windows 10 with an AMD
Rayzen7 1700x processor

39

check which integrality
constraints are not satisfied

and enforce them by exploring
a search tree through

branching rules

C++ using the SCIP framework
version 4.0.0. LP sub-problems were
solved using the simplex algorithm

implemented in CPLEX 12.6 (CPLEX
development team, 2011)

40 ALNS, iterative first-fit
decreasing algorithm

C++ programming language. CPLEX
12.9 used for solving exact models
(MIP). Multithreading deactivated.
All programs run on an Intel Xeon
Processor E5-2670 v2 (25 MB Cache,

2.50 GHz) with 3 GB RAM. The
operating system was Linux

41 BAP /

42

develop an HH-ILS algorithm
based on ILS and VND

heuristics, nearest
neighborhood search heuristic

for initial solution

Intel Core i7-4720HQ CPU @2.6 GHz
computer with Windows 10 OS and

16 GB RAM. Metaheuristic was
implemented in C++. Code
compiled in Visual Studio

Professional 16.7.1 with MSC
compiler version 1927 with default
settings. Commercial solver IBM

ILOG CPLEX 10.2.0 with its default
settings used as an optimizer to

solve the MIP formulation
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Table 11. Cont.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

43 new two-index-based
mathematical formulation /

44

NSGA-II as a static
optimizer when the

environment does not
change

16 GB RAM, Intel Core i7-10700
@2.9 GHz.

45

First is the difficulty of
obtaining exact moment

measures for the ambiguity set
Pi and second is when the

distribution function is
continuous

/

46 improved differential
evolution (DE) algorithm MATLAB R2014a, Windows 7 (x32)

47 heuristic dynamic
programming

Coded in C and C++, IntelXeon
E3-1226 v3 @3.30 GHz and

16 GB RAM

48
MCWS-LS heuristic,

S-ALNS algorithm with
SA

Coded in JAVA, computations
executed on a Dell XPS PC with a

2.80 GHz Intel Xeon CPU
(E5-2680-V2) and 32 GB RAM

Table 12. Solutions to VRPs published in 2020.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

1 Evolutionary algorithm MATLAB (2016a), Intel(R) CoreTMi7-7700K CPU
and 32 GB RAM, Windows 10 OS

2 GA

Intel (R) Core i5-7600 @3.50 GHz with 8 GB RAM
equipped with an NVIDIA GeForce GTX 1060

graphics card. This GPU has 1280 cores and its base
and boost clocks are 1506 MHz and 1708 MHz,

respectively, C++ CUDA 8.0 (V8.0.61)

3 DTRC, LNS

4
Dynamic programming
algorithm and integer

program, ILNS algorithm

Intel CoreTM i5 @3.40 GHz CPU with 8 GB RAM.
The branch-and-bound solver of CPLEXTM 12.9.0

was used as the exact solver and all other
algorithms were coded in MATLAB. When

necessary, CPLEXTM is called from MATLAB.

5 ALNS algorithm, VND
algorithm

3.60 GHz AMD Ryzen 7 3700X CPU with 32 GB
RAM, Windows 10 OS

6
Improved artificial fish swarm

algorithm, push forward
insertion heuristic (PFIH)

/

7 NSGA-II /

8 Proposed EVNS algorithm /

9 Nearest-neighbor heuristic,
insertion heuristic

C language, desktop PC with an Intel Core i7-3820
CPU @3.6 GHz and 32 GB RAM

10 ALNS algorithm

11 Particle swarm
optimization (PSO), GA

Intel Core i7 @2.80 GHz, 8 GB RAM, model
implemented in CPLEX (version 12.6.2) with

C# (VS2015)
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Table 12. Cont.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

12 ALNS algorithm

Coded in GAMS 23.9 and solved using the Gurobi
7.5 solver hosted on the NEOS server. The server

runs on an Intel XeonE5-2430 @2.2 GHz with 3 GB
RAM. ALNS algorithm coded in Python and tested
on a PC running a 3.6 GHz Intel Core-i7-7700 CPU

with 16 GB RAM

13 VND tabu search algorithm
with holding list

Algorithm coded in C++ and run on a 3.30 GHz
Intel® Core(TM) i5-2400 CPU

14
improved ant colony
optimization (ACO)

algorithm

Coded in Visual C++ and implemented on an Intel
Core i5 CPU @3 GHz with 8 GB RAM

15 IVNS algorithm, VND
procedure

Coded in C++ and run on a Linux cluster system
with an AMD Opteron 4184 CPU (2.8 GHz and

2 GB RAM) running Ubuntu 12.04. For the general
CPLEX solver, the latest version of 12.6 was used

16
constructive heuristic

based on LNS
meta-heuristic

Programmed in C# and run on an Intel® Core™
i7-6500U CPU @2.5 GHz with 16 GB RAM

17 PFIH method, neighborhood
search, tabu search

18 FA based on coordinates
Gurobi 4.5.1 with Python 3.0 on an Intel(R)
Core(TM) i7-7700HQ CPU @2.80GHz with

8 GB RAM.

19 ALNS algorithm

CPLEX 12.9, coded in C++. The code for the
heuristic and exact method was executed on a

Windows 8 computer configured with an Intel(R)
Core(TM) 3.2 GHz CPU with 8 GB RAM

20 GA MatLab on a 2.10 GHz PC, with 8 GBytes of RAM

Table 13. Solutions to VRPs published in 2019.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

1 BAP
C# on a computer with an Intel I7 CPU @2.69 GHz

and 16 GB RAM. Gurobi 8.0.0 chosen as an
MIP solver

2 LNS with cutting-plane
method

C++, executed on a cluster of 27 machines, each
with two Intel(R) Xeon(R) X5675 CPUs @3.07 GHz
with 96 GB RAM running on Linux. Each machine
had 12 cores and each instance was executed using

a single thread

3 DASP
Intel® Xeon® Gold 6126 CPUs and 16 GB RAM,

algorithms in Java SE 8 and Gurobi Optimizer 8.1.0
for solving MILPs

4 Path-based exact
solution

Intel i7-5500U @2.4 GHz with 16 GB RAM,
coded in Java

5 improved ACO algorithm /

6 Bellman–Ford algorithm /

7 LNS

Coded in Fortran 77 and run on a single thread of a
3.6 GHz Intel i7-4790 CPU with 32 GB RAM. Relies

on CPLEX 12.5.1 for the resolution of linear
programs and some integer sub-problems.

Metaheuristic was coded in Java (JRE 1.8.0-151),
and run on a single thread of a 3.4 GHz Intel

i7-3770 CPU
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Table 13. Cont.

No.
Solution

Operating Environment
Exact Methods Heuristic Algorithms Meta-Heuristic

Algorithms

8 tabu search metaheuristic

IBM ILOG CPLEX Optimization Studio 12.6.1
(Visual Studio 2015, C#) on a DELL Precision 7600

workstation with two Xeon E5-2643 V3 CPUs
(24 cores) @3.4 GHz with 128 GB RAM

9 Adaptive tabu search
C++ and all computational experiments were

performed on a 3.30 GHz Intel Core i5 CPU on a
single thread

10 ALNS algorithm Intel Xeon E5 2.10 GHz CPU virtual machine with
16 GB RAM

11 ACO algorithm
JAVA computer language, executed using a

computer with an Intel (R) Core (TM) i7 CPU
@3.40 GHz and 4 GB RAM

12 Knowledge-guided local
search

AMD Ryzen 3 1300X CPU @3.5 GHz on
Windows 10

13 Genetic local search algorithm

C++ language and all 120 instances run
independently five times on a PC with two Intel
i7-7820 CPUs @2.9 GHz and 32 GB RAM on the

Windows 10 OS (64-bit)

14 ALNS algorithm Java, run on a Huawei XH620 V3 computer with an
Intel Xeon 2660v3 CPU @2.60 GHz

15 Hybrid VNS/tabu search
algorithm

Intel® Xeon® Gold 6126 cluster, where each node
operated at 2.6 GHz with 16 GB RAM

(hyper-threading disabled). Algorithms
implemented in Java SE 8 and Gurobi Optimizer

8.1.0 used for solving MILPs (Gurobi
Optimization, 2018).

16 NSGA-II MATLAB R2017a

17 Exact heuristic algorithm
Gurobi 7.5.0, 12 GB RAM and on a cluster of

27 computers, each with 12 cores and two Intel(R)
Xeon X5675 @3.07 GHz CPUs

18 Improved BAP
algorithm

C# and CPLEX with a 3.10 GHz Intel Core TM
i5-2400 CPU using the Microsoft Windows 7 OS

with 8 GB RAM

19 Multi-adaptive PSO
algorithm

Intel Core i5 2430M @2.40 GHz with 4 GB RAM on
the Windows 7 Home Premium 64-bit OS

20 improved hybrid FA
Coded in Java and run on 12 computers with Intel

i-5 @3.2 GHz CPUs and 4 GB RAM with 32-bit
Windows 7

As shown in the tables above. Heuristic algorithms and meta-heuristic algorithms
are still the mainstream solution methods, although branch and X methods will continue
to increase in popularity in 2021. As mentioned previously, with the rapid growth in the
processing speed and memory capacity of computers (i.e., operating environments), more
complex instances of the VRP can be solved.

5. Observations and Conclusions

Based on the practical importance of VRPs in real life, such problems have attracted
significant research attention in recent years. Most work has been devoted to classical cost
objectives such as total cost, total travel distance, and CO2 emission. Some studies have
considered multiple objectives. In order to solve the problem of greenhouse gas emission,
the discussion of trolley distribution has become a research trend. Time windows still
account for a large proportion of modern papers and are mainstream in current research
on the VRP and its variants. Time windows are closely related to the current mode of “to
C” distribution, where customers focus on service satisfaction.
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Regarding datasets, different studies make various adjustments to data and many use
generated datasets in addition to real data, which makes it difficult to compare algorithms
using a unified standard. There is still scope for significant further work in the field.
Therefore, researchers should be motivated to develop publicly available datasets, and
effective and efficient methods for dealing with VRPs. The gaps in the available literature
mentioned above may motivate further work in these directions for researchers in this field.

For solving algorithms, with the development of the processing speed and memory
capacity of computers, using the exact way such as branch and X to solve VRPs is rapid
growth. However, heuristic algorithms and meta-heuristic algorithms are still the main-
stream solution methods, such as SA [14], GA [35,41,45], NSG [28,47], SSO [153], and so on.
It is hoped that more exact algorithms can be applied to solve VRPs in the future, and the
number of nodes in the dataset that can be solved can be increased as much as possible.

Our research protocol was well defined because it aims at an efficient and thorough
review of multiple VRP variants. The main goal of this study was to identify the trends
of VRP variants and the algorithms applied to solve them. Additionally, papers that are
considered to represent pioneering efforts from the research community were presented.
The papers with the most citations were considered to be the most significant and they
were discussed in detail in this review.
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Appendix A

Table A1. List of abbreviations for vehicle routing problems and its variants.

Abbreviations Definition Abbreviations Definition

VRP Vehicle routing problem GVRP Green VRP

VRPTW VRP with time windows HFVRP VRP with heterogeneous fleets

CVRP Capacitated VRP MDVRP Multi-depot VRP

EV Electric vehicle TDVRP Time-dependent VRP

ECV Electric commercial vehicle TDVRPTW Time-dependent VRP with
time widows

EVRP Electric VRP TWAVRP Time window assignment VRP

EVRPTW Electric VRP with time widows VRPSD-PDC VRP with stochastic demands and
probabilistic duration constraints

EVRPTW-SP
EVRPTW at most a single (S)

recharge per route, and partial (P)
battery recharges are possible

VRP-REP VRP repository
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Table A2. List of abbreviations for solution of VRP and its variants.

Abbreviations Definition Abbreviations Definition

ACO Ant colony optimization HH-ILS Hyper-heuristic algorithm based on ILS and
VND heuristics

ALNS Adaptive large neighborhood
search HWOA Hybrid whale optimization algorithm

BAP/BP Branch and price ILNS Iterated large neighborhood search

BB Branch and bound LNS Large neighborhood search

BC Branch and cut MCWS-LS
Modified Clarke–Wright saving algorithm

(MCWS), and solution improvement by local
search (LS)

BRIG-LS Biased-randomized iterated
greedy with local search MP Mathematical programming

CBR Case base reasoning NSGA-II Non-dominated sorting genetic algorithm II

CLP Constraint logic programming PFIH Push forward insertion heuristic

DE Differential evolution
algorithm PSO Particle swarm optimization

DTRC Drone truck route
construction SA Simulated annealing

EVNS Extended variable
neighborhood search method S-ALNS Simulated annealing (SA), and adaptive

large neighborhood search (ALNS)

FA Firefly algorithm SSO Simplified swarm optimization

GA Genetic algorithm TS Tabu search

GVNS General variable
neighborhood search method VND Variable neighborhood descent
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