State-of-the-Art Modification of Plastic Aggregates Using Gamma Irradiation and Its Optimization for Application to Cementitious Composites
Abstract
:1. Introduction
1.1. Aggregates of Industrial Byproducts Used as Lightweight Concrete
1.2. Plastic as an Additive in Cement-Based Materials
1.3. Modification of Plastic Materials Using Gamma Irradiation
1.4. Cement-Based Material Containing Plastic Particles: The Effects of Gamma Irradiation
2. Experimental
2.1. Materials
2.2. Gamma Irradiation Procedure
2.3. Characterization of Plastic Aggregates before and after Irradiation
2.4. Preparation of Cement Composite Specimens
2.5. Physical and Mechanical Tests
3. Results and Discussion
3.1. Morphological Characterization by SEM Analysis
3.2. Chemical Characterization by FT-IR Analysis
3.3. Unit Weight Analysis
3.4. Compressive Strength Analysis
4. Conclusions
Future Work for a Clearer Portrayal of the Mechanism
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priyanka, M.; Karthikeyan, M.; Chand, M.S.R. Development of mix proportions of geopolymer lightweight aggregate concrete with LECA. In Proceedings of the First International Conference on Advanced Light-Weight Materials and Structures (ICALMS 2020), Hyderabad, India, 6 March 2020; pp. 958–962. [Google Scholar] [CrossRef]
- Chin, C.O.; Yang, X.; Kong, S.Y.; Paul, S.C.; Susilawati; Wong, L.S. Mechanical and thermal properties of lightweight concrete incorporated with activated carbon as coarse aggregate. J. Build. Eng. 2020, 31, 101347. [Google Scholar] [CrossRef]
- Wei, R.; Sakai, Y. Experimental investigation on bending strength of compacted plastic-concrete. Resour. Conserv. Recycl. 2021, 169, 105521. [Google Scholar] [CrossRef]
- Coppola, B.; Courard, L.; Michel, F.; Incarnato, L.; Maio, L.D. Investigation on the use of foamed plastic waste as natural aggregates replacement in lightweight mortar. Compos. Part B Eng. 2016, 99, 75–83. [Google Scholar] [CrossRef]
- Sokołowska, J.J.; Piotrowski, T.; Garbacz, A.; Kowalik, P. Effect of introducing recycled polymer aggregate on the properties of C-PC composites. Adv. Mat. Res. 2013, 687, 520–526. [Google Scholar] [CrossRef]
- Castillo, E.R.; Almesfer, N.; Saggi, O.; Ingham, J.M. Light-weight concrete with artificial aggregate manufactured from plastic waste. Constr. Build. Mater. 2020, 265, 120199. [Google Scholar] [CrossRef]
- Belmokaddem, M.; Mahi, A.; Senhadji, Y.; Pekmezci, B.Y. Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Constr. Build. Mater. 2020, 257, 119559. [Google Scholar] [CrossRef]
- Li, N.; Long, G.; Ma, C.; Qiang, F.; Zeng, X.; Ma, K.; Xie, Y.; Luo, B. Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study. J. Clean. Prod. 2019, 236, 117707. [Google Scholar] [CrossRef]
- Silva, A.M.; Brito, J.; Veiga, R. Incorporation of fine plastic aggregates in rendering mortars. Constr. Build. Mater. 2014, 71, 226–236. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Hanafi, I.; Mahmoud, R.; Tayeh, B.A. Effect of partial replacement of sand by plastic waste on impact resistance of concrete: Experiment and simulation. Structures 2019, 20, 519–526. [Google Scholar] [CrossRef]
- Saxena, R.; Siddique, S.; Gupta, T.; Sharma, R.K.; Chaudhary, S. Impact resistance and energy absorption capacity of concrete containing plastic waste. Cem. Concr. Comp. 2018, 176, 415–421. [Google Scholar] [CrossRef]
- Basha, S.I.; Ali, M.R.; Al-Dulaijan, S.U.; Maslehuddin, M. Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. J. Build. Eng. 2020, 32, 101710. [Google Scholar] [CrossRef]
- Faraj, R.H.; Sherwani, A.F.H.; Mechanical, A.D. Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles. J. Build. Eng. 2019, 25, 100808. [Google Scholar] [CrossRef]
- Saikia, N.; Brito, J.D. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014, 52, 236–244. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Hansu, O.; Etli, S.; Alhassan, M. Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder. Constr. Build. Mater. 2017, 140, 562–569. [Google Scholar] [CrossRef]
- Alqahtani, F.K.; Ghataora, G.; Khan, M.I.; Dirara, S. Novel lightweight concrete containing manufactured plastic aggregate. Constr. Build. Mater. 2017, 148, 386–397. [Google Scholar] [CrossRef]
- Rahmani, E.; Dehestani, M.; Beygi, M.H.A.; Allahyari, H.; Nikbin, I.M. On the mechanical properties of concrete containing waste PET particles. Constr. Build. Mater. 2013, 47, 1302–1308. [Google Scholar] [CrossRef]
- Olofinnade, O.; Chandra, S.; Chakraborty, P. Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. In Proceedings of the International Conference & Exposition on Mechanical, Material and Manufacturing Technology (ICE3MT), Hyderabad, India, 9 October 2020; pp. 2151–2156. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Manag. 2018, 78, 79–93. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Martínez-López, M.; Coz-Díaz, J.J.; López-Gayarre, F.; Varela-Guerrero, V. Waste polymers and gamma radiation on the mechanical improvement of polymer mortars: Experimental and calculated results. Case Stud. Constr. Mater. 2019, 11, e00273. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Šavija, B.; Paul, S.C.; Anggraini, V. Engineering properties of concrete with waste recycled plastic: A review. Sustainablility 2018, 10, 3875. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Yang, J.; Ling, T.C.; Ghataora, G.S.; Dirar, S. Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. J. Clean. Prod. 2015, 91, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Youssf, O.; Mills, J.E.; Hassanli, R. Assessment of the mechanical performance of crumb rubber concrete. Constr. Build. Mater. 2016, 125, 175–183. [Google Scholar] [CrossRef]
- Aldahdooh, M.A.; Jamrah, A.; Alnuaimi, A.; Martini, M.I.; Ahmed, M.S.; Ahmed, A.S. Influence of various plastics-waste aggregates on properties of normal concrete. J. Build. Eng. 2018, 17, 13–22. [Google Scholar] [CrossRef]
- Thorneycroft, J.; Orr, J.; Savoikar, P.; Ball, R.J. Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Constr. Build. Mater. 2018, 161, 63–69. [Google Scholar] [CrossRef]
- Gu, L.; Ozbakkaloglu, T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016, 51, 19–42. [Google Scholar] [CrossRef]
- Lee, Z.H.; Paul, S.C.; Kong, S.Y.; Susilawati, S.; Yang, X. Modification of waste aggregate PET for improving the concrete properties. Adv. Civ. Eng. 2019, 2019, 6942052. [Google Scholar] [CrossRef]
- Li, X.; Ling, T.-C.; Mo, K.H. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete–A review. Constr. Build. Mater. 2020, 240, 117869. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Mohammed, I.I.; Mohammed, S.A. Some properties of concrete with plastic aggregate derived from shredded PVC sheets. Constr. Build. Mater. 2019, 201, 232–245. [Google Scholar] [CrossRef]
- Naik, T.R.; Singh, S.S.; Huber, C.O.; Brodersen, B.S. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res. 1996, 26, 1489–1492. [Google Scholar] [CrossRef]
- Spadaro, G.; Valenza, A. Influence of the irradiation parameters on the molecular modifications of an isotactic polypropylene gamma-irradiated under vacuum. Polym. Degrad. Stab. 2000, 67, 449–454. [Google Scholar] [CrossRef]
- Martınez-Barrera, G.; Villarruel, U.T.; Vigueras-Santiago, E.; Hernández-López, S.; Brostow, W. Compressive strength of gamma-irradiated polymer concrete. Polym. Compos. 2008, 29, 1210–1217. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; López, H.; Castaño, V.M.; Rodríguez, R. Studies on the rubber phase stability in gamma irradiated polystyrene-SBR blends by using FT-IR and Raman spectroscopy. Radiat. Phys. Chem. 2004, 69, 155–162. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Ureña-Nuñez, F.; Gencel, O.; Brostow, W. Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation. Compos. Part A Appl. Sci. Manuf. 2011, 42, 567–572. [Google Scholar] [CrossRef]
- Kattan, M. Thermal behavior of gamma-irradiated amorphous poly (ethylene terephthalate) films. Polym. Eng. Sci. 2006, 46, 1374–1377. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Ávila-Córdoba, L.; Ureña-Núñez, F.; Martínez, M.A.; Álvarez-Rabanal, F.P.; Gencele, O. Waste Polyethylene terephthalate flakes modified by gamma rays and its use as aggregate in concrete. Constr. Build. Mater. 2021, 268, 121057. [Google Scholar] [CrossRef]
- Burillo, G.; Clough, R.L.; Czvikovszky, T.; Guven, O.; Moel, A.L.; Liu, W.; Singh, A.; Yang, J.; Zaharescu, T. Polymer recycling: Potential application of radiation technology. Radiat. Phys. Chem. 2002, 64, 41–51. [Google Scholar] [CrossRef]
- Dole, M. The Radiation Chemistry of Macromolecules, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Folland, R.; Charlesby, A. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes. Radiat. Phys. Chem. 1977, 10, 61–68. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Menchaca-Campos, C.; Hernández-López, S.; Vigueras-Santiago, E.; Brostow, W. Concrete reinforced with irradiated nylon fibers. J. Mater. Res. 2006, 21, 484–491. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Kupwade-Patil, K.; Ortega, M.; Soriano, C.; Büyüköztürk, O.; White, A.E.; Short, M.P. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint. Waste Manag. 2018, 71, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Barrera, G.; Vigueras-Santiago, E.; Hernández-López, S.; Brostow, W.; Menchaca-Campos, C. Mechanical Improvement of Concrete by Irradiated Polypropylene Fibers. Polym. Eng. Sci. 2005, 45, 1426–1431. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Coz-Díaz, J.J.; Martínez-Cruz, E.; Martínez-López, M.; Ribeiro, M.C.S.; Velasco-Santos, C.; Lobland, H.E.H.; Brostow, W. Modified recycled tire fibers by gamma radiation and their use on the improvement of polymer concrete. Constr. Build. Mater. 2019, 204, 327–334. [Google Scholar] [CrossRef]
- El-Hamouly, S.H.; Ismail, M.R.; Abdel-Rahman, H.A.; Younes, M.M.; Amin, E.H. Thermal, Mineralogical, and Microstructural Characterizations of Irradiated Polymer Blended Cement Mortar Composites. Polym. Compos. 2014, 36, 1849–1858. [Google Scholar] [CrossRef]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
Reference | Plastic Type | Shape | Replacement Types and Ratio | Studied Properties |
---|---|---|---|---|
[3] | PE | Powder | Cement: 15, 25, 50, 75, and 100 vol.% | Flexural strength |
[4] | PO + PP + PE | Pellet | 1 FA: 10 and 25 vol.% | Density, compressive strength |
[5] | HDPE | Pellet /Flake | 2 CA: 25, 50, and 100 vol.% | Density, compressive and flexural strength |
[6] | PO + other types | Irregular | CA/FA: 4.7, 7.5, 9.6, 12.5, and 15 vol.% | Density, bond, compressive and tensile strength |
[7] | PP, HDPE and PVC | Irregular | CA/FA: 25, 50, and 75 vol.% | Density, compressive strength, conductivity, acoustic insulation |
[8] | Tire rubber | Irregular | FA: 10, 20, and 30 vol.% | Workability, durability, impact resistance, compressive strength |
[9] | PET | Pellet /Flake | FA: 5, 10, and 15 vol.% | Density, compressive and flexural strength |
[10] | PC | Pellet | FA: 5, 10, and 20 vol.% | Impact resistance, compressive strength |
[11] | PET | Flake | CA/FA: 5, 10, 15, and 20 vol.% | Impact resistance, compressive strength |
[12] | PE | Pellet /Flake /Fiber | CA: 25, 50, 75, and 100 vol.% | Density, bond, compressive and flexural strength |
[13] | PP | Pellet | CA: 10, 20, 30, and 40 vol.% | Durability, compressive, tensile and flexural strength |
[14] | PET | Pellet /Flake | FA: 5, 10, and 15 vol.% | Compressive, tensile and flexural strength |
[15] | Various plastic mixed waste | Powder | Cement: 5, 10, 15, 20, and 25 vol.% | Compressive, tensile and flexural strength |
[16] | LDPE + red dune sand | Irregular | CA: 25, 50, 75, and 100 vol.% | Density, compressive, tensile and flexural strength |
[17] | PET | Flake | FA: 5, 10, and 15 vol.% | Density, compressive, tensile and flexural strength |
[18] | PS and LDPE | Pellet | FA: 10, 30, and 50 vol.% | Density, compressive strength |
[19] | PET | Fiber | Mixed in concrete: 0.25 vol.% | Density, compressive, tensile and flexural strength |
Reference | Plastic Type | Application Type | γ Irradiation Dose Levels | Major Observations |
---|---|---|---|---|
[40] | Nylon | Fiber | 5, 10, 50, and 100 kGy |
|
[41] | PET | Binder (cement substitute) | 10 and 100 kGy |
|
[42] | PP | Fiber | 5, 10, 50, and 100 kGy |
|
[34] | PP | Fiber | 5, 10, 50, 100, and 150 kGy |
|
[43] | Tire rubber | Fiber | 50 and 100 kGy |
|
[44] | SAE 1 + NCC 2 | Binder (cement substitute) | 10, 20, 30, and 50 kGy |
|
[36] | PET | Fine aggregate | 100, 150, and 200 kGy |
|
[20] | PET, PC, and tire rubber | Fine aggregate | 100 and 200 kGy |
|
Chemical Composition (%) | Blaine (cm2/g) | Density (g/cm3) | ||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | ||
21.9 | 5.2 | 3.6 | 63.2 | 2.0 | 2.2 | 1.0 | 3480 | 3.15 |
Plastic Type | PP | PE | PC | ABS | PET |
---|---|---|---|---|---|
Density (g/cm3) | 0.92 | 0.94 | 1.20 | 1.04 | 1.37 |
Tensile strength (MPa) | 24~27 | 18~20 | 57 | 37 | 26 |
Elongation (%) | 300 | 200 | 105 | 54 | 50~150 |
Flexural modulus (MPa) | 1200~1250 | 815 | 2244 | 2198 | 2800~3100 |
Specimen | Cement (kg/m3) | Water (kg/m3) | Fine Aggregate (kg/m3) | Vol. Ratio (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Sand | PP | PE | PC | ABS | PET | ||||
Control | 508 | 254 | 1524 | - | - | - | - | - | 50 |
PP50 | 762 | 268.6 | - | - | - | - | |||
PE50 | - | 273.0 | - | - | - | ||||
PC50 | - | - | 350.3 | - | - | ||||
ABS50 | - | - | - | 303.6 | - | ||||
PET50 | - | - | - | - | 400.3 |
Plastic Type | Molecular Structure | Absorption Bands (cm−1) for Identification Indicating the Peak Position and Mode Assignments |
---|---|---|
Polypropylene (PP) | 2950 (a): C–H stretching 2915 (b): C–H stretching 2838 (c): C–H stretching 1455 (d): CH2 bending 1377 (e): CH3 bending 1166 (f): CH bending, CH3 rocking, C–C stretching 997 (g): CH3 rocking, CH3 bending, CH bending 972 (h): CH3 rocking, C–C stretching 840 (i): CH2 rocking, C–CH3 stretching 808 (j): CH2 rocking, C–C stretching, C–CH stretching | |
Polyethylene (PE) | 2915 (a): C–H stretching 2845 (b): C–H stretching 1472 (c): CH2 bending 1462 (d): CH2 bending 730 (e): CH2 rocking 717 (f): CH2 rocking | |
Polycarbonate (PC) | 2966 (a): C–H stretching 1768 (b): C=O stretching 1503 (c): Aromatic ring stretching 1409 (d): Aromatic ring stretching 1364 (e): CH3 bending 1186 (f): C–O stretching 1158 (g): C–O stretching 1013 (h): Aromatic CH in-plane bending 828 (i): Aromatic CH out-of-plane bending | |
Acrylonitrile butadiene styrene (ABS) | 2922 (a): C–H stretching 1602 (b): Aromatic ring stretching 1494 (c): Aromatic ring stretching 1452 (d): CH2 bending 966 (e): =C–H bending 759 (f): Aromatic CH out-of-plane bending, =CH bending 698 (g): Aromatic CH out-of-plane bending | |
Polyethylene terephthalate (PET) | 1713 (a): C=O stretching 1241 (b): C–O stretching 1094 (c): C–O stretching 720 (d): Aromatic CH out-of-plane bending |
Specimen | Irradiation Dose (kGy) | Compressive Strength (MPa) | Increase Rate Compared to Nonirradiated Specimen (%) |
---|---|---|---|
PP0 | 0 | 19.09 | - |
PP25 | 25 | 25.09 | 31.4 |
PP50 | 50 | 25.69 | 34.8 |
PP75 | 75 | 33.02 | 73.0 |
PP100 | 100 | 32.55 | 70.5 |
PE0 | 0 | 21.31 | - |
PE25 | 25 | 24.02 | 12.7 |
PE50 | 50 | 25.76 | 20.9 |
PE75 | 75 | 39.43 | 85.0 |
PE100 | 100 | 32.67 | 53.3 |
PC0 | 0 | 22.02 | - |
PC25 | 25 | 28.81 | 30.8 |
PC50 | 50 | 30.3 | 37.6 |
PC75 | 75 | 32.54 | 47.8 |
PC100 | 100 | 30.02 | 36.3 |
ABS0 | 0 | 22.89 | - |
ABS25 | 25 | 28.6 | 25.0 |
ABS50 | 50 | 29.81 | 30.2 |
ABS75 | 75 | 34.94 | 52.6 |
ABS100 | 100 | 32.52 | 42.1 |
PET0 | 0 | 16.32 | - |
PET25 | 25 | 19.98 | 22.4 |
PET50 | 50 | 20.42 | 25.1 |
PET75 | 75 | 23.62 | 44.7 |
PET100 | 100 | 22.69 | 39.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Cheon, H.; Kang, Y.; Roh, S.; Kim, W. State-of-the-Art Modification of Plastic Aggregates Using Gamma Irradiation and Its Optimization for Application to Cementitious Composites. Appl. Sci. 2021, 11, 10340. https://doi.org/10.3390/app112110340
Lee H, Cheon H, Kang Y, Roh S, Kim W. State-of-the-Art Modification of Plastic Aggregates Using Gamma Irradiation and Its Optimization for Application to Cementitious Composites. Applied Sciences. 2021; 11(21):10340. https://doi.org/10.3390/app112110340
Chicago/Turabian StyleLee, Heonseok, Hyeonwook Cheon, Yonghak Kang, Seungjun Roh, and Woosuk Kim. 2021. "State-of-the-Art Modification of Plastic Aggregates Using Gamma Irradiation and Its Optimization for Application to Cementitious Composites" Applied Sciences 11, no. 21: 10340. https://doi.org/10.3390/app112110340
APA StyleLee, H., Cheon, H., Kang, Y., Roh, S., & Kim, W. (2021). State-of-the-Art Modification of Plastic Aggregates Using Gamma Irradiation and Its Optimization for Application to Cementitious Composites. Applied Sciences, 11(21), 10340. https://doi.org/10.3390/app112110340