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Abstract: Lipid vesicles (liposomes) are a unique and fascinating type of polymolecular aggregates,
obtained from bilayer-forming amphiphiles—or mixtures of amphiphiles—in an aqueous medium.
Unilamellar vesicles consist of one single self-closed bilayer membrane, constituted by the am-
phiphiles and an internal volume which is trapped by this bilayer, whereby the vesicle often is
spherical with a typical desired average diameter of either about 100 nm or tens of micrometers.
Functionalization of the external vesicle surface, basically achievable at will, and the possibilities of
entrapping hydrophilic molecules inside the vesicles or/and embedding hydrophobic compounds
within the membrane, resulted in various applications in different fields. This review highlights a few
of the basic studies on the phase behavior of polar lipids, on some of the concepts for the controlled
formation of lipid vesicles as dispersed lamellar phase, on some of the properties of vesicles, and
on the challenges of efficiently loading them with hydrophilic or hydrophobic compounds for use
as delivery systems, as nutraceuticals, for bioassays, or as cell-like compartments. Many of the
large number of basic studies have laid a solid ground for various applications of polymolecular
aggregates of amphiphilic lipids, including, for example, cubosomes, bicelles or—recently most
successfully—nucleic acids-containing lipid nanoparticles. All this highlights the continued impor-
tance of fundamental studies. The life-saving application of mRNA lipid nanoparticle COVID-19
vaccines is in part based on year-long fundamental studies on the formation and properties of lipid
vesicles. It is a fascinating example, which illustrates the importance of considering (i) details of
the chemical structure of the different molecules involved, as well as (ii) physical, (iii) engineering,
(iv) biological, (v) pharmacological, and (vii) economic aspects. Moreover, the strong demand for
interdisciplinary collaboration in the field of lipid vesicles and related aggregates is also an excellent
and convincing example for teaching students in the field of complex molecular systems.

Keywords: liposome; lipid vesicle; lipid nanoparticle; phospholipid; phosphatidylcholine; phase
diagram; micelle; bicelle; cubic phase; drug delivery

1. Introduction

The aggregation behavior of biological amphiphilic lipids in the presence of water as a
function of water content and temperature has been the subject of numerous fundamental
investigations over the last couple of decades. Binary and ternary phase diagrams were
determined for many lipid/water systems to understand the situation at thermodynamic
equilibrium. Furthermore, methods were elaborated for the reproducible preparation of
metastable aqueous lipid dispersions, and their physico-chemical properties were investi-
gated in great detail. Based on the many results that have been obtained from such studies,
innovative applications emerged over the years, resulting not only in useful research tools,
for example, as biomembrane model systems, but also in various lipid-based commercial
products. One of the recent successes is the development of lipid nanoparticle (LNP)-based

Appl. Sci. 2021, 11, 10345. https://doi.org/10.3390/app112110345 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0827-0545
https://doi.org/10.3390/app112110345
https://doi.org/10.3390/app112110345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110345
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110345?type=check_update&version=2


Appl. Sci. 2021, 11, 10345 2 of 81

siRNA delivery systems [1,2] and COVID-19 vaccines containing as active ingredient a
nucleoside-modified mRNA coding for the spike proteins of the COVID-19 virus (‘CO’
stands for corona, ‘VI’ for virus, and ‘D’ for disease) [3–5].

The development of ~70–90 nm-sized LNPs for the delivery of nucleic acids is the
result of intensive research at universities and in industry, particularly focusing on the
challenge to encapsulate—and thereby protect—nucleic acids in a particle that is non-toxic
and efficiently taken up by target cells. Some of the essential steps of the work preceding
commercialization were (i) the finding of a pH-sensitive cationic amphiphile that is able
to complex anionic nucleic acids without being toxic, (ii) the selection of amphiphiles
that are able to stabilize the LNPs in vitro as well as in vivo after administration before
the target cells are reached, and (iii) the assembly of the LNPs in a reproducible and
reliable way to the desired size and morphology. While (i) and (ii) are chemical challenges
that had to be dealt with, (iii) is the engineering part, which is just as important as the
molecular composition. LNPs are a specific type of polymolecular aggregates which are
related to similarly-sized lipid vesicles (liposomes). Historically, intensive fundamental
research on the aggregation behavior of polar lipids carried out by many research groups
worldwide laid a solid foundation for the development of LNPs containing internal nucleic
acids. LNPs emerged from studies on lipid vesicles (liposomes), from many challenging
attempts to incorporate DNA or RNA inside lipid vesicles, for example, [6–15]. There
would probably be no LNPs without the broad basic knowledge accumulated over the
years on the chemistry, biophysics, engineering (methods of controlled and reproducible
preparation), pharmacology, and immunology of lipid vesicles. On the other hand, the
field of lipid vesicles emerged from the many fundamental studies on the phase behavior
of amphiphilic lipids in the presence of water.

In the first part of this review, we would like to recall some of the earlier pioneering
investigations of the aggregation behavior of a few selected amphiphilic lipids in water
(or an aqueous medium) to illustrate how the aggregation state primarily depends on the
chemical structure of the amphiphile, on the amphiphile concentration, on the composition
of the aqueous solution, and on temperature. Although all this might be trivial to most
of the readers, we feel, however, that it is worth emphasizing the importance of careful
and reliable fundamental research, without which the development of many commercial
products probably would not have been possible. Some of the examples mentioned may
also serve for teaching introductory courses on lipid aggregates, or they may motivate to
search for other examples that significantly contributed to our current understanding of
the aggregation behavior of the fascinating class of amphiphilic lipids and their increasing
numbers of successful applications in different areas.

In the following, we will highlight a few of the many important fundamental studies
on the behavior of amphiphilic lipids when they are brought in contact with water (or
an aqueous solution). The focus will be on lipid solubility in water and lipid swelling
behavior, self-assembly (i.e., aggregation) in water, aggregate structure and dynamics; see
Chapter 2. These basic studies, often curiosity-driven [16,17], convincingly demonstrated
that the lipid’s aggregation state in an aqueous medium can be quite complex and does
not depend only on the chemical structure and self-assembly propensity of the amphiphile
but also on the amphiphile concentration, on the presence of other amphiphiles, or of
hydrophobic or hydrophilic compounds, and on the temperature. Moreover, it was shown
that details of the procedure with which a sample consisting of amphiphilic lipids and an
aqueous medium is prepared, i.e., the method of preparation, often are very important
for a desired application. Indeed, the majority of lipid aggregates that are of interest for
applications are only kinetically stable and are not the thermodynamically most favored
structures or a true equilibrium state [18]. They represent dispersed phases. Therefore, the
way these polymolecular lipid aggregates are assembled is very important. Examples are
phospholipid-based vesicles (Figure 1) [19,20], obtained by “guided” (i.e., “directed” or “en-
gineered”) assembly processes from bilayer-forming amphiphiles as colloidal lipid vesicle
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dispersions (see Chapter 4) which are useful, for example, as drug delivery systems [21–23];
see Chapter 6.
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of amphiphilic lipids forms the boundary of the vesicle, thereby entrapping a small internal aqueous volume. Assuming 
that the lipid is POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, with an average head group area requirement 
(a0) of 0.63 nm2 and a bilayer thickness (d) of 4 nm [19], a spherical unilamellar vesicle with a diameter of 100 nm consists 
of about 9.2 × 104 POPC molecules and has a trapped volume of about 4.08 × 10−19 L per vesicle, corresponding to 2.7 
μL/μmol POPC. For a dispersion of 1 mM POPC as ideal unilamellar vesicles of 100 nm diameter, the calculated vesicle 
concentration is about 11 nM and the total aqueous volume trapped by all vesicles present in 1 mL of this dispersion is 2.7 
μL only. (b) Freeze fracture electron microscopy (top) and cryo-TEM (bottom) images of a 20 mM POPC dispersion (50 mM 
Tris/HCl, pH = 8.0) prepared by polycarbonate membrane extrusion (final extrusions through membranes with 100 nm 
pores sizes, see Chapter 4) at T = 25 °C (bar: 100 nm). The vesicles were prepared in the presence of the highly water-
soluble enzyme α-chymotrypsin; after removal of free enzyme at the conditions used in this previous work, each vesicle 
contained on average 87 entrapped α-chymotrypsin molecules (not visible on the electron microscopy images) [20]. The 
concentration of free, non-associated POPC was very low (~10−10 M; see Section 2.15). The electron microscopy images are 
reproduced with permission from [20], John Wiley & Sons, 1999. 

Figure 1. Phospholipid vesicles. (a) Schematic representation of a spherical unilamellar lipid vesicle. A self-closed bilayer of
amphiphilic lipids forms the boundary of the vesicle, thereby entrapping a small internal aqueous volume. Assuming that
the lipid is POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, with an average head group area requirement (a0) of
0.63 nm2 and a bilayer thickness (d) of 4 nm [19], a spherical unilamellar vesicle with a diameter of 100 nm consists of about
9.2 × 104 POPC molecules and has a trapped volume of about 4.08 × 10−19 L per vesicle, corresponding to 2.7 µL/µmol
POPC. For a dispersion of 1 mM POPC as ideal unilamellar vesicles of 100 nm diameter, the calculated vesicle concentration
is about 11 nM and the total aqueous volume trapped by all vesicles present in 1 mL of this dispersion is 2.7 µL only.
(b) Freeze fracture electron microscopy (top) and cryo-TEM (bottom) images of a 20 mM POPC dispersion (50 mM Tris/HCl,
pH = 8.0) prepared by polycarbonate membrane extrusion (final extrusions through membranes with 100 nm pores sizes,
see Chapter 4) at T = 25 ◦C (bar: 100 nm). The vesicles were prepared in the presence of the highly water-soluble enzyme
α-chymotrypsin; after removal of free enzyme at the conditions used in this previous work, each vesicle contained on
average 87 entrapped α-chymotrypsin molecules (not visible on the electron microscopy images) [20]. The concentration of
free, non-associated POPC was very low (~10−10 M; see Section 2.15). The electron microscopy images are reproduced with
permission from [20], John Wiley & Sons, 1999.

For any type of application of lipid vesicles and other dispersed polymolecular aggre-
gates, e.g., cubosomes, the colloidal stability is one of the issues to consider; see Chapter 3.
This stability depends on the chemical structures of the lipids used, on the composition as
well as on the way the lipid aggregates are prepared. In addition to this latter engineering
aspect concerning the preparation of dispersed lipid aggregates, further complexity and
challenges arise if one aims to functionalize the vesicle surface, or if one aims to associate
or entrap active molecules of interest within the aggregates for a desired application; see
Chapter 5. Typical examples can be found in the field of lipid vesicle-based drug delivery
systems [21–25] and cosmetic and dermatological products [26–32] or as vesicular cell
model systems [33–39]; see Chapter 6.

Although the opinions may diverge, and serendipity often might play an important
role, there are many examples where successful applications are based on an understand-
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ing that is based on fundamental studies, possibly carried out many years before the
applications were demonstrated or commercialized. This has recently been emphasized
by Dijkgraaf (2017) [40]: “Basic research, driven by curiosity, freedom and imagination,
provides the groundwork for all applied research and technology”.

The basic studies mentioned in this review are by no means the only ones in the
highly interdisciplinary field of polymolecular lipid assemblies. The examples discussed
are picked from the literature since we feel that they are among the many excellent, funda-
mental investigations that contributed significantly to our current level of understanding of
lipid vesicles and other polymolecular aggregates and their applications in different areas.

2. Comparison of Aqueous Dispersions of a Few Selected Biological Polar Lipids
2.1. Polar Lipid Classification

On the basis of a large number of fundamental studies by different research groups
on the behavior of lipids in the presence of water, notably of lipids carrying a polar head
group at one end of the molecule (called “polar lipids”), an empirical lipid classification
according to the physico-chemical properties of the lipids in bulk aqueous solution and at
the water–air interface was proposed by Small [41]. This classification is illustrated here
with the following biological polar lipids: Palmitic acid, oleic acid, sodium or potassium
oleate, monoolein, diolein, oleoyl-lyso-PC, DOPC, egg PC, POPC, DPPC, DOPE, and DOPA
(Figure 2 and Table 1) [42,43].
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Figure 2. Chemical structures of some of the biological amphiphilic lipids mentioned in this re-
view. Monoolein and diolein are considered to be racemic 1-monoolein and 1,3-diolein, respec-
tively; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DOPE, 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine; DOPA, 1,2-dioleoyl-sn-glycero-3-phosphatidic acid sodium salt.

The compounds are chosen to illustrate how (i) a change in the polar head group and
(ii) a variation of the hydrophobic chain(s)—saturated palmitic acid vs. unsaturated oleic
acid—influence the concentration- and temperature-dependent aggregation behavior of
the lipids in aqueous solution. Some of the key properties of the listed compounds when
brought in contact with water are summarized in this section, illustrated with previously
published binary or ternary phase diagrams and a number of electron microscopy images.
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Table 1. Examples of biological polar lipids, grouped according to the classification of Small [41].

Polar Lipid 1 Properties in Bulk Aqueous Solution Properties at the Water–Air Interface

Class I
Practically insoluble,

the molecules do not swell
Molecules spread to form stable monolayersPalmitic acid

Oleic acid
Diolein

Class II

Practically insoluble, the molecules swell to form
lyotropic liquid crystalline phases 3 Molecules spread to form stable monolayers

DOPC
POPC
egg PC
DPPC
DOPA
DOPE

Monoolein

Class IIIA 2
Soluble, formation of micelles at high water

content above the CMC 4; formation of liquid
crystalline phases 3 at low water content

Molecules spread but form unstable monolayers
due to the solubility in water

Sodium oleate
Potassium oleate
Oleoyl-lyso-PC

1 For chemical structures; see Figure 2. 2 Polar lipids belonging to Class IIIB have the same behavior at the water–air interface like Class
IIIA lipids and form micelles above the critical micellization concentration, CMC, but they do not form liquid crystals. 3 Lyotropic liquid
crystalline phases (also called mesophases) have a short-range disorder but some distinct order over larger distances, whereby the phase
type depends on both water content and temperature [42,43]. 4 Micellar solutions are isotropic solutions, characterized by disorder over
short and long distances [42,43]. The reported critical micellization concentration (CMC) of sodium oleate at T = 24 ◦C in D2O is about
0.7 mM [44]. The CMC of oleoyl-lyso-PC at T = 25 ◦C (20 mM HEPES buffer, 150 mM NaCl, pH = 7.4) is about 5 µM [45].

2.2. Oleic Acid and Palmitic Acid

Oleic acid (= cis-9-octadecenoic acid = (9Z)-octadec-9-enoic acid) and palmitic acid
(= hexadecanoic acid) belong to Class I of the polar lipids (Table 1). They differ in their
melting temperatures: 13.4 ◦C (α-form) and 16.2 ◦C (β-form) for oleic acid and 63 ◦C for
palmitic acid [41]. Therefore, at room temperature (T = 25 ◦C), the unsaturated oleic acid is
a liquid and the saturated palmitic acid is a solid. The water-solubility of both fatty acids
in monomeric (non-associated) form is very low and difficult to determine experimentally.
Careful measurements at T = 37 ◦C in 66 mM sodium phosphate buffer at pH = 7.4 indicated
that for both fatty acids the solubility is below 1 µM [46]. For palmitic acid the conclusion
was that its water-solubility is even below 0.1 nM [46].

If a drop of oleic acid is placed at the water–air interface, some of the oleic acid
molecules will form a stable monolayer with the polar carboxylic acid head group being
in contact with the water, and with the hydrophobic tail pointing towards the air. Only
a few oleic acid molecules will be dissolved in the aqueous solution due to their low
water-solubility [41]. Excess oleic acid molecules will form a separate, lighter, oily liquid
phase on top of the water, with some of the oleic acid molecules expected to be localized at
the oleic acid phase–water interface, with the polar head group in contact with water [41].

2.3. Sodium Oleate/Water Mixtures

The deprotonated form of oleic acid—oleate with Na+ or K+ as counter ion—behaves
very differently from oleic acid when placed at the air–water interface. These soap
molecules belong to Class IIIA of the polar lipids and form a monolayer which is very
unstable (Table 1), since the oleate molecules are several orders of magnitude more soluble
in water than oleic acid and self-assemble to form micelles at high water content or liquid
crystalline phases at lower water content [47] (Figure 3a). Early investigations of the binary
phase diagram of the sodium oleate–water and potassium oleate–water systems were car-
ried out by Vold [48] and Mc Bain and Sierichs [49]. The critical micellization concentration
(CMC) for sodium oleate in D2O was determined by Mahieu et al. (1991) at T = 24 ◦C and
found to be 0.7 mM (=0.02 wt%) [44]. Above the CMC and above the melting temperature
(about 23 ◦C at high water content), the micelles are spherical [47,50] (or cylindrical [51],
Figure 3b) forming an isotropic L1 phase, which transforms with increasing sodium oleate
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content into a concentrated system of entangled cylindrical micelles [47,52] (with observed
viscoelastic behavior, denoted as L1* in Figure 3a), until a (normal) hexagonal liquid crys-
talline phase (H1) is obtained at about 18 wt% sodium oleate (corresponding to 82 wt%
water) (Figure 3a). The binary phase diagram in Figure 3a represents the thermodynamic
equilibrium state, as obtained by Antunes et al. (2007) [47] after homogenization of samples
prepared at the specific composition at 70 ◦C, followed by storage at the desired temper-
ature for 1 week before the aggregation state was analyzed. Obviously, changes in the
chemical structure of the oleate molecules during such sample treatment and long-term
storage should not occur. Otherwise, the determined phase diagram would not represent
the situation for pure sodium oleate/water mixtures.
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Figure 3. Aqueous dispersions of sodium oleate and water. (a) Top: Partial temperature–composition phase diagram,
reproduced from Antunes et al. (2007) [47], as mirror image of the originally published diagram; L1: micellar solution
(consisting of spherical and flexible cylindrical, wormlike micelles); L1*, viscous micellar solution (consisting of entangled
wormlike micelles [52]); H1, hexagonal liquid crystalline phase (consisting of long cylindrical micelles lying parallel to
each other and arranged in a hexagonal lattice); (Sh + W), hydrated oleate crystals plus water; dashed area, coexistence of
L1 and H1. Bottom: Schematic representation of a hexagonal liquid crystalline phase, H1 [53]. (b) Top: Cryo-TEM image
of a 3.6 mM sodium oleate solution (=0.11 wt%) at pH = 10.7, quenched from T = 25 ◦C (bar: 100 nm), showing long
cylindrical oleate micelles, reproduced from Edwards et al. (1995) [51]. Middle: Cryo-TEM image of a 0.45 M sodium oleate
dispersion (=13 wt%), quenched from T = 25 ◦C (bar: 50 nm), showing mostly wormlike micelles, reproduced from Tatini
et al. (2021) [52]. Bottom: Schematic representation of a spherical and cylindrical (worm-like) micelles [53]. Reproduced with
permission from [47], Elsevier, 2007; from [53], Society of Cosmetic Chemists, 1968; from [51], American Chemical Society,
1995; and from [52], Elsevier, 2021.
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A recent cryo-TEM analysis confirmed the presence of flexible cylindrical, wormlike
sodium oleate micelles at 13 wt% (=0.43 M) [52] (Figure 3b). The presence of NaCl or
KCl (as low as 4 wt%) results in significant changes in the structure and properties of the
wormlike oleate micelles [52]. This illustrates that small changes of the composition of the
aqueous solution can have dramatic effects on the aggregation behavior of anionic oleate
due to electrostatic interactions. Similarly, addition of hydrophobic molecules is expected
to have a significant influence on the aggregation behavior.

Overall, sodium oleate is a micelle-forming lipid. Oleate micelles form at high water
content above the CMC. Other types of aggregates form at low water content as a result of
interactions between the micelles if the concentration of oleate is increased. Considering
amphiphiles in the aggregated state as geometrical objects that constitute the aggregates,
then sodium oleate—at conditions where spherical micelles form—can be viewed as
inverted cone with a relatively large optimal area per polar head, a0, at the spherical
micelle surface [18].

Defining a critical packing parameter, p, for an aggregate-forming amphiphile as

p =
v

a0 × lc
(1)

with v being the hydrophobic volume occupied by the hydrophobic chain(s), lc the critical
length of the hydrophobic chain(s), the limit of length the chain(s) could be stretched,
then spherical micelles form for p ≤ 1/3, ellipsoidal micelles for 1/3 < p < 1/2, and
cylindrical or rod-like micelles for p ≈ 1/2 [18]. This packing parameter concept is widely
used for qualitatively explaining the aggregation behavior of natural amphiphilic lipids
and synthetic surfactants in aqueous media. However, p cannot be determined from the
chemical structure of the amphiphiles, since a0 corresponds to the optimal area per polar
area in the aggregate, as a result of hydrophobic attractions between the hydrophobic part
of the amphiphiles and hydrophilic, ionic or steric repulsions of the head groups in the
aggregated state [18].

The packing parameter, p, for sodium oleate in sodium oleate/water mixtures depends
on the sodium oleate concentration. At T = 30 ◦C and 97 wt% water, p ≈ 1/3 (spherical
micelles) or p ≈ 1/2 (cylindrical micelles); for 75 wt% water, p ≈ 1/2 (H1 phase consisting
of aligned cylindrical micelles) (Figure 3) [53]. This packing parameter concept is very
general and can be applied to any other “conventional” aggregate-forming amphiphiles, as
long as they are in a fluid state (as in the case of the interior of a micelle). Often, p is used
for discussing effects of amphiphiles in relatively dilute systems (water-rich mixtures).

2.4. Sodium or Potassium Oleate/Oleic Acid/Water Mixtures

Determining the ternary phase diagram of mixtures of oleic acid, sodium oleate, and
water as a function of temperature is very demanding, i.e., it means an enormous amount
of work. A large number of samples of different compositions need to be prepared and
analyzed. Often, the elaboration of such ternary phase diagrams is limited to a selected
region and temperatures of interest, and the results are reported as triangular diagram
for a specific temperature (Figure 4). Depending on the number of samples that were
prepared and analyzed, and depending on how reliable the state of a mixture of a defined
composition can be determined, a ternary phase diagram may look simple with a lot
of uncertainties and unexplored areas, or it may consist of a lot of detailed information
about the number of phases and the phase types and structures. One general difficulty
is to ascertain that the analyzed samples are at thermodynamic equilibrium and do not
represent kinetically trapped, metastable states.

McBain and Stewart published a ternary phase diagram of the oleic acid/potassium
oleate/water system for T = 25 ◦C already in 1933 [54], and Small reported one for the
oleic acid/sodium oleate/water system for T = 37 ◦C in 1968 [55]. A more recent and
also more detailed triangular diagram for the oleic acid/sodium oleate/water system is
the one published by Engblom et al. (1995) for T = 20 ◦C [56] (Figure 4a). Along the
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water sodium oleate base line of the triangle (representing samples without oleic acid),
the situation for sodium oleate/water mixtures at T = 20 ◦C is shown. According to
Figure 3a the L1 and H1 phases should not be present at T = 20 ◦C, but both phases seem
to exist in the presence of small amounts of oleic acid (Figure 4a). At increasing content
of oleic acid, other phases form as well, notably a lamellar phase (Lα, which exists in the
samples as large multilamellar vesicles), an inverted hexagonal phase (H2), and a cubic
phase of unknown structure (Q). Close to the oleic acid corner, an isotropic solution of
inverted micelles forms (L2). The center of the lamellar phase region (Lα), as an example,
corresponds to a composition of 40 wt% sodium oleate, 20 wt% oleic acid, and 40 wt%
water (Figure 4a). Areas within the triangle that are not specified or labeled either represent
compositions where phase separation occurred (for example, two phases of different
composition, macroscopically separated from each other, appearing as denser lower phase
and as lighter upper phase) or were not investigated at all.

If water is replaced by a 0.15 M aqueous NaCl solution (=0.9 wt%), the ternary phase
diagram looks different from the one with pure water, as shown by Mele et al. (2018) for
T = 25 ◦C [57]. This clearly indicates the effect of salts present in the aqueous solution on
the aggregation properties. The triangular diagram for oleic acid/sodium oleate/0.15 M
NaCl is shown in Figure 4b. No normal micelles form (i.e., no L1 phase) and no H1 exists
at T = 25 ◦C. This can be explained by the screening of the negative charges of the head
group. Furthermore, the region of the pure lamellar phase (Lα1) is much smaller than
in the absence of NaCl, and two different types of lamellar phases were identified in the
presence of 0.1 M NaCl (a large region where Lα1 and Lα2 coexist). In addition to the H2
and L2 phases, two cubic phases were identified, the inverse bicontinuous cubic phase
Pn3m and the inverse micellar cubic phase Fd3m; see [58] for their structures.

Overall, the situation is quite complex, despite the simple chemical structure of the
two amphiphiles (oleic acid and oleate). Nevertheless, one important finding in relation
to the formation of vesicles is that aqueous mixtures of oleic acid and oleate arrange
into bilayers (lamellae), depending on the amounts and ratio of oleic and oleate. Oleate
molecules are present at high pH values (pH > 9), and oleic acid dominates at low pH and
forms a separate phase (see 2.2). From a geometric point of view, inverted cones (oleate)
transform into cylinders with a packing parameter p ≈ 1 (pair of oleate + oleic acid) if the
pH-value is decreased to pH ≈ 8.5. Therefore, the pH value, the total oleic acid + oleate
concentration, and the composition of the aqueous solution (presence of sodium chloride
or inorganic buffer species) determine whether a lamellar phase forms or whether it does
not form [52,59].

The pH dependency of the aggregation state of oleic acid in various aqueous media
was investigated by a number of research groups; see, for example, [41,50,51,60–68]. The
main focus of these studies was not on the determination of the conditions for the formation
of a thermodynamically stable lamellar phase, but on the formation of dispersed “oleic acid
vesicles”—also called “oleic acid/oleate vesicles” to emphasize that the vesicle membrane
consists of oleic acid as well as oleate molecules (forming cylindrical dimers with p ≈ 1).
For the sake of simplicity, we will continue to call these vesicles “oleic acid vesicles”. A
dilute aqueous sample of oleic acid vesicles with a total concentration of oleic acid plus
sodium oleate of 80 mM (about 2.4 wt%), for example, represents a kinetically stable
dispersed state of the lamellar phase (Figure 5). This state can be obtained, for example, by
strong mechanical mixing of a thermodynamically stable oleic acid/oleate lamellar phase
that coexists with water or an aqueous solution (i.e., Lα + water or Lα + aqueous solution).
Once such aqueous oleic acid vesicle dispersion is obtained and one would wait for long
enough, the vesicle dispersion would separate back into the two phases upon reaching
thermodynamic equilibrium (Lα + water or Lα + aqueous solution).
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The situation in the case of oleic acid + oleate mixtures is very similar to the case of
vesicles formed from phospholipids like DOPC or POPC; see later Sections 2.10 and 2.11.
All these vesicle dispersions are obtained by guided assembly procedures and usually are
only kinetically stable dispersions, i.e., they do not represent thermodynamic phases. These
vesicle dispersions can, however, be colloidally stable for several days or weeks. The cryo-
TEM images in Figure 5 demonstrate the existence of mainly unilamellar vesicles in aqueous
oleic acid/sodium oleate dispersions, as obtained through guided assembly procedures
at concentrations above the critical vesiculation concentration (CVC) [51,63,65,68,69]. The
CVC is also known as “critical concentration for bilayer formation”, CBC [70]. For oleic
acid/oleate systems at pH = 8.5–9.9, CVC ~ 0.4-0.7 mM [63].

2.5. Monoolein/Water Mixtures

Monoolein (=1-(cis-9-octadecenoyl)-rac-glycerol = glycerol monooleate) belongs to
Class II of the polar lipids (Table 1). Although it has hemolytic properties, monoolein is
a biodegradable and biocompatible amphiphile that generally is recognized as safe and
useful for many applications, for example, in formulations for the delivery of drugs [71–74].
Monoolein/water systems were investigated intensively in the past [72,75–77]. Applica-
tions emerged from fundamental studies on the aggregation behavior of monoolein in
water. The binary phase diagram published by Briggs et al. (1996) [76] is reproduced in
Figure 6a. It shows the phase situations with increasing water content up to 50 wt% for
temperatures between T = 20 and 110 ◦C. In an extended version of this diagram published
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by Qiu and Caffrey (2000) [77], the temperature range was extended down to T = −15 ◦C.
As seen in Figure 6a, the melting temperature of pure monoolein (no H2O) is 36 ◦C, the
temperature at which the lamellar crystalline phase (Lc) melts into a fluid isotropic phase
(FI). The phases that are present at T = 25 ◦C with increasing water content are the following:
between ~7 and ~19 wt% water, a lamellar liquid crystalline phase exists (Lα); between
~19 and ~22 wt%, Lα coexists with the inverse bicontinuous cubic phase Ia3d [58,78];
between ~22 and ~38 wt%, Ia3d is present; between ~38 and ~39 wt%, Ia3d coexists with
the inverse bicontinuous cubic phase Pn3m (see [58,77,78]); between ~39 and ~42 wt%,
Pn3m is present; and above ~42 wt% (up to more than 95 wt% water), Pn3m coexists
with water (Pn3m + H2O). In this large water-rich area of the phase diagram, the cubic
phase Pn3m can be dispersed in water by strong mechanical agitation or sonication, for
example, to form kinetically stable cubosomes, i.e., dispersed cubic phase as small particles.
Usually, without stabilizers, these cubosome particles are not very stable (see Chapter 3). A
cryo-TEM image of a sample consisting of 98 wt% water and 2 wt% monoolein, quenched
from room temperature, is shown in Figure 6b [79]. In this bicontinuous cubic phase,
the amphiphiles are arranged in bilayers with balanced convex and concave curvatures,
which results in an energetically minimal structure (the mean curvature at any point on the
surface is zero) [80]. On average, the packing parameter of monoolein in Pn3m is p = 1.
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by Briggs et al. (1996) [76]; (b) Top: Schematic representation of the arrangement of amphiphilic lipids in the cubic phases
Ia3d and Pn3m; see Koynova and Tenchov (2013) [58] or Tenchov and Koynova (2017) [78]. The polar head groups of the
amphiphiles point towards the internal water channels. Bottom: cryo-TEM image of dispersed monoolein cubic phase Pn3m
in water (2 wt% monoolein, 98 wt% D2O; bar: 100 nm) [79]. The structured area on the left-hand side is dispersed Pn3m,
present as cubosome particles. Reproduced with permission from [76], EDP Sciences, 1996; from [78], Elsevier, 2017; and
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2.6. Monoolein/Sodium Oleate/Water Mixtures

Aqueous mixtures of monoolein, sodium oleate, and water were investigated system-
atically. The triangular phase diagram published by Borné et al. (2001) for T = 25 ◦C is
shown in Figure 7a [81]. A similar diagram was also determined for T = 37 ◦C [81]. One
characteristic feature of both diagrams is the large region where a lamellar phase (Lα) is
present. A cryo-TEM image of this lamellar phase is shown in Figure 7b (top) for 10 wt%
monoolein, 5 wt% sodium oleate, and 85 wt% water [81]. The lamellar phase appears as
multilamellar vesicles. To distinguish this lamellar phase from the lamellar phase obtained
for the monoolein/water system (no oleate, Lα in Figure 6a, abbreviated as Lα1), the
monoolein/oleate/water lamellar phase is abbreviated as Lα2 [81]. Unilamellar vesicles
representing dispersed Lα2 phase were found to be present in multiphase regions of the
phase diagram shown in Figure 7a localized close to the water corner (>90 wt% water), in
proximity to the region where the lamellar phase, Lα2, was identified; see the cryo-TEM
image of Figure 7b (bottom) [79].

The monoolein/sodium oleate/water system is a nice example for illustrating how
new aggregates can emerge when mixtures of amphiphiles are dispersed in water as
compared to dispersions of the individual amphiphiles. This is very similar to the oleic
acid/sodium oleate/water system; see Section 2.4. Neither monoolein alone nor sodium
oleate alone aggregates into a lamellar phase in excess water. Only when they are present
together does planar bilayer formation occur, which can be explained by a change in the
packing parameter of the amphiphiles. Oleate packs as inverted cone—with a “large” polar
head group—into spherical micelles at concentrations just above the CMC (p ≤ 1/3); see
Section 2.3. The large head group area originates from the hydrated, negatively charged
carboxylate, which results in head group repulsion when the oleate molecules assemble
on the basis of hydrophobic interactions between the hydrophobic oleoyl chain. This
polar head group repulsion is reduced if monoolein is present in the aggregate, self-
associating between the oleate molecules. This induces a change of the inverted cone of
oleate into a cylindrical geometry which favors the formation of bilayers (with p ≈ 1 for
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the oleate/monoolein pair). This is conceptually the same as what is happening in the oleic
acid/sodium oleate/water system where oleic acid takes the role of monoolein.
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2.7. Monoolein/Oleic Acid/Water and Monoolein/Oleic Acid/Sodium Oleate/Water Mixtures

As discussed above, there is a huge difference between the Class III polar lipid sodium
oleate and the Class I polar lipid oleic acid in terms of water solubility and the ability to
swell in water and, therefore, in terms of properties at the water–air interface (Table 1).
With this, it is not surprising that the ternary monoolein/oleic acid/water phase diagram
is very different from the ternary monoolein/sodium oleate/water phase diagram [81].
For the monoolein/oleic acid/water system there is no large lamellar phase region, as was
found for the monoolein/sodium oleate/water system (Figure 7a). There is, however, an
inverse hexagonal phase (HII) area (the packing parameter for the monoolein/oleic acid
pair is p > 1), although considerably smaller than in the case of the monoolein/ sodium
oleate/water system. Moreover, the presence of an inverse micellar cubic phase of space
group Fd3m was also identified, mainly coexisting with other phases [81].

The situation becomes complicated if aqueous mixtures of monoolein, oleic acid,
and oleate are investigated. The ratio of oleic acid to oleate can be set by adjusting the
pH value, often involving the use of buffer salts. The buffer salts themselves may also
have an effect on the aggregation state and on the kinetic stability of dispersed phases.
Moreover, it was demonstrated by Fong et al. (2020) [82] that with small amounts of the
amphiphilic nonionic block copolymer Pluronic F127 (=Poloxamer 407) [83] dispersed
micellar cubic phase Fd3m (cubosomes) can be stabilized (Figure 8a). In this latter work, it
was also shown that by increasing the amount of oleate in the system (by increasing the
pH value using phosphate-buffered saline, PBS), the inverse micellar cubosome dispersion
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obtained at pH = 4.3 (at low ionic strength) transforms into hexosomes, i.e., dispersed
inverse hexagonal phase H2 at pH ~ 7.4 and T = 30 ◦C [82]. Figure 8b depicts this phase
transformation as a consequence of a change of pH value and salt content, which resulted
in a change of the molecular packing [82].
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micellar cubic phase Fd3m formed in the monoolein/oleic acid/water system at T = 30 ◦C at a monoolein/oleic acid
weight ratio of 1:1, stabilized by the amphiphilic block copolymer Pluronic F127 (bar: 200 nm), as published by Fong et al.
(2020) [82]. (b) Schematic representation of the effect of pH and phosphate buffered saline (PBS) on the aggregation state
of aqueous mixtures of monoolein, oleic acid (and oleate), and water at T = 30 ◦C: dispersed inverse micellar cubic phase
Fd3m (cubosomes) at pH = 4.3 and low ionic strength (top); dispersed inverse hexagonal phase (hexosomes) at pH ~ 7.4
in the presence of PBS (bottom). The cubosome→ hexosome transformation is explained by considering a change in the
geometry of the molecular packing of the amphiphiles. The lipid with blue head group represents monoolein. The lipid
with green head group represents either neutral oleic acid at low pH (small head group) or negatively charged oleate at high
pH (large head group) [82]. Reproduced with permission from [82], Elsevier, 2020.

2.8. Diolein

Like other diacylglycerols, 1,3- and 1,2-diolein belong to Class I of the polar lipids
(Table 1). The water solubility of both isomers is very low and the molecules do not swell
when brought in contact with water [41].

2.9. Oleoyl-Lyso-PC/Water Mixtures

The lysolecithin oleoyl-lyso-PC (=1-oleoyl-sn-glycero-3-phosphocholine = 1-oleoyl-
2-hydroxy-sn-glycero-3-phosphocholine) belongs to Class IIIA of the polar lipids, like
sodium or potassium oleate (Table 1). Oleoyl-lyso-PC is a “micelle-forming amphiphile”
(p ~ 1/3). Therefore, like in the case of the sodium oleate/water system (Figure 3a), the
binary oleoyl-lyso-PC/water phase diagram has an extended isotropic region consisting
of (normal) micelles. They self-assemble at T = 25 ◦C in water-rich mixtures, above about
75 wt% water, above the CMC; see Figure 9a. The diagram in Figure 9a was published
by Marsh (2013) [84] on the basis of the one elaborated by Arvidson et al. (1985) [85]. In
the diagram shown in Figure 9a, the region of the micellar solution (usually denoted as
L1) is abbreviated as MI. The presence of a normal hexagonal phase (consisting of packed
cylindrical micelles, HI) between 30 and 70 wt% water is a characteristic feature of this
diagram, while a lamellar phase (Lα) and a cubic phase (QI) exist at low water content.
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chain in position sn-2 in the PC molecules), prepared in physiological saline, was analyzed by negative staining transmis-
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Figure 9. Aqueous solutions and dispersions of oleoyl-lyso-PC (or stearoyl-lyso-PC). (a) Binary oleoyl-lyso-PC/water
phase diagram, as published by Marsh (2013) [84], a mirror image of the diagram originally published by Arvidson et al.
(1985) [85]. Regions of the isotropic micellar phase (usually denoted by L1) are labeled with MI, of the hexagonal phase with
HI, and of the cubic phase with QI. “1-oleoyl-2-lyso-sn-glycero-3-phosphocholine” is another description for oleoyl-lyso-PC.
A water weight fraction of 0.8, for example, means 80 wt% water. (b) Top: A micellar solution of 10 mM (~0.5 wt%) egg
lyso-PC (obtained from egg yolk phosphatidylcholine after treatment with phospholipase A2 to remove the acyl chain
in position sn-2 in the PC molecules), prepared in physiological saline, was analyzed by negative staining transmission
electron microscopy in the dry state at room temperature (bar: 100 nm; stained with sodium phosphotungstate); see
Inoue et al. (1977) [86]. The presence of spherical micelles (with a fluid core) is evident from the electron micrograph.
Bottom: Schematic representation of the temperature-dependent aggregation behavior of dilute aqueous dispersions of
stearyol-lyso-PC. Stearoyl-lyso-PC forms spherical micelles at elevated temperature and “interdigitated” bilayer structures
at low temperature. In the interdigitated bilayer state, the stearoyl chains interpenetrate; see Mattai and Shipley (1989) [87].
Reproduced from [84], copyright © Taylor and Francis, 2013; from [86], copyright © Oxford University Press, 1977; and with
permission from [87], Elsevier, 1986.

The CMC value of oleoyl-lyso-PC was determined to about 5 µM in HEPES buffer
(20 mM, 150 mM NaCl) at pH = 7.4 and T = 25 ◦C by Bergstrand and Edwards (2001) [45].
Micelles at a concentration of 1.34 mM oleoyl-lyso-PC were found to be more or less spher-
ical (p ≤ 1/3) with an average aggregation number of 142 [45]. An electron micrograph
of micelles formed in aqueous solution by the related lysolecitin mixture from egg yolk is
shown in Figure 9b (top) [86].

Depending on the melting temperature of the lysolecitin, a transformation of the mi-
celles into interdigitated, crystalline lamellar bilayers occurs below the melting temperature,
as illustrated in Figure 9b (bottom) on the basis of a detailed investigation of stearoyl-lyso-
PC, i.e., a lysolecithin consisting of a hydrophobic chain of 18 carbon atoms without any
double bonds [87]. Above 40 wt% water, the melting temperature of stearoyl-lyso-PC is
Tm = 27 ◦C [87].

2.10. DOPC/Water Mixtures

DOPC belongs to Class II of the polar lipids (Table 1). It is a typical “bilayer-forming
amphiphile” (p ≈ 1) [88,89]. This is evident from the binary phase diagram determined
by Bergenståhl and Stenius (1987) [90], redrawn in a compilation of phase diagrams by
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Marsh (2013) [84]; see Figure 10a. Apart from an inverse cubic phase (QII) at low water
content between T = 60 and 120 ◦C and an inverse hexagonal phase (HII) at even higher
temperature, a lamellar phase (Lα) exists between ~10 wt% water (at T = 25 ◦C) and
~42 wt% water. Above ~42 wt% water, this lamellar phase is in equilibrium with water,
forming a two-phase system (Lα + water). Dispersing the lamellar phase (multilamellar
vesicles, MLVs, in reality) in excess water results in the formation of dispersed vesicles, i.e.,
self-closed bilayers, often with diameters above 500 nm. These vesicles are only kinetically
stable and will turn back to two phases after prolonged storage. Depending on how the
lamellar phase is dispersed (see Chapter 4), the vesicles might be mainly unilamellar
(see as an example the cryo-TEM image in Figure 10b [91]), and the vesicle dispersion
may be colloidally stable for a long time without aggregation and eventually fusion into
multilamellar vesicles and without macroscopic phase separation.
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Figure 10. Aqueous dispersions of DOPC. (a) Binary DOPC/water phase diagram, published by Marsh (2013) [84], drawn
on the basis of the phase diagram elaborated by Bergenståhl and Stenius (1987) [90]. Lα, lamellar phase; Lα + water,
two coexisting phases; Lc, lamellar crystals; QII, inverse cubic phase, HII, inverse hexagonal phase. (b) Example of a
cryo-TEM image of a dispersion of unilamellar DOPC vesicles (0.1 wt% in water (=1.3 mM; bar: 100 nm), prepared with the
polycarbonate membrane extrusion method (see Chapter 4), using for the final extrusions 100 nm pore membranes; see
Hoffmann et al. (2014) [91]. Reproduced from [84], copyright © Taylor and Francis, 2013; and with permission from [91],
Royal Society of Chemistry, 2014.

2.11. Egg PC/Water or POPC/Water Mixtures

Egg PC is a mixture of phosphatidylcholines isolated from chicken egg yolk. All
molecules have the same polar head group (zwitterionic sn-glycero-3-phosphocholine).
Variations among the molecules exist in the type of fatty acid chains esterified to the two
hydroxyl groups at positions sn-1 and sn-2 of glycerol; see Table 2. In Table 2, data for
soybean PC (a mixture of extracted phosphatidylcholines from soybean) are also included.
In the case of egg PC, the majority of the fatty acyl chains are palmitoyl (C16:0) and
oleoyl (C18:1) chains, while in the case of soybean PC, linoleoyl (C18:2) chains clearly
dominate [92,93]. The binary eggPC/water phase diagram originally published by Small
(1967) [94] and redrawn by Marsh (2013) [84] is shown in Figure 11a. In Figure 11b (top),
the famous electron micrograph of a multilamellar dispersion of egg PC in water is shown,
as published by Bangham and Horne (1964) [95], together with a cryo-TEM image of a
dispersion of egg PC vesicles prepared by the detergent dialysis method (bottom) [96]. The
pioneering work of Bangham is the beginning of the research on liposomes (lipid vesicles),
originally also called “Banghasomes” [16,17].
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Table 2. Some of the results obtained from the determination of the acyl chain composition in egg PC
and soybean PC 1.

Acyl Chain (Fatty Acid) 2 Egg PC (%) 3 Soybean PC (%) 3

C16:0 (palmitic acid) 35.0 (37.0 ± 0.07) 11.2 (13.6 ± 0.06)
C18:0 (stearic acid) 13.4 (14.1 ± 0.03) 11.9 (3.7 ± 0.02)
C18:1 (oleic acid) 30.4 (22.1 ± 0.05) 8.6 (10.6 ± 0.06)

C18:2 (linoleic acid) 18.0 (21.2 ± 0.07) 58.6 65.9 ± 0.09)
C18:3 (linolenic acid) − 9.9 (6.2 ± 0.04)

C20:4 (arachidonic acid) 3.2 (3.9 ± 0.1) −
1 In chemistry, biochemistry and biology, egg (or soybean) PC is also called egg (or soybean) lecithin. In food
technology, however, a “lecithin” consists of a mixture of different phospholipids (including PC); see Section 6.4.
2 C16:0 means 16 C-atoms, no double bond; C18:1 means 18 C-atoms, one double bond with cis-configuration. The
position of the double bonds is determined by the biosynthesis and has a big effect on the melting temperature.
For oleic acid, for example, the double bond is between carbon atoms 9 and 10 (C-9 and C-10), with the carbonyl
C-atom being C-1. 3 First values from Palacios and Wang (2005) [92]; values in parenthesis from Kiełbowicz et al.
(2012) [93]. For the positional distribution (sn-1 and sn-2), see Kiełbowicz et al. (2012) [93].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 83 
 

2.12), and an Lα phase between about 10 and 40 wt% water. These amphiphiles are perfect 
bilayer-forming lipids (p ≈ 1). One of the key differences between the different long chain 
phosphatidylcholines are their Tm values. For DOPC, egg PC, soybean PC, and POPC, the 
Tm values are all below 0 °C. In the presence of excess water, the reported Tm values are 
−18.3 ± 3.6 °C (DOPC [101]), −5.8 ± 6.5 °C (egg PC [101]), between −25 °C and −11 °C (soy-
bean PC [102]), and −2.5 ± 2.4 °C (POPC [101]). Above Tm, the bilayers constituting the 
vesicle membrane are in a fluid, liquid-crystalline state (Lα). Below Tm, the molecules are 
in a crystalline-like state, as illustrated for the DPPC/water system in Section 2.12. For 
DOPC, for example, the low Tm value is not only due to the presence of a cis-double bond 
in the two acyl chains but also due to the position of these cis-double bonds, between C-9 
and C-10; see Table 2. For a related PC molecule with a cis-double bond in both acyl chains 
between C-3 and C-4, Tm ~ 35 °C [103,104]. 

 

 

 

(a) (b) 

Figure 11. Aqueous dispersions of egg PC. (a) Binary egg PC/water phase diagram, published by Marsh (2013) [84], orig-
inally elaborated by Small (1967) [94]. Iα, a fluid isotropic phase; MII, inverse micellar phase. (b) Top: Aqueous multilamellar 
egg PC dispersion (0.5 wt% in water, ~6.5 mM), analyzed by negative staining transmission electron microscopy in the 
dry state at room temperature (bar: 100 nm; stained with potassium phosphotungstate); see Bangham and Horne (1964) 
[95]. White areas are occupied by the hydrophobic part of the egg PC lipids (no phosphotungstate), allowing the electron 
beam to pass through the sample to reach a beam-sensitive film; in the dark area, phosphotungstate is present so that the 
electron beam is reflected at the heavy atoms. Bottom: Example of a cryo-TEM image of unilamellar egg PC vesicles (<20 
mM in 5 mM phosphate buffer, pH = 7.0; bar: 500 nm) prepared with the “detergent removal method” (see Chapter 4), as 
published by Holzer et al. (2009) [96]. Reproduced from [84], copyright © Taylor and Francis, 2013; and with permission 
from [95], Elsevier, 1964; and from [96], Elsevier, 2009. 

  

Figure 11. Aqueous dispersions of egg PC. (a) Binary egg PC/water phase diagram, published by
Marsh (2013) [84], originally elaborated by Small (1967) [94]. Iα, a fluid isotropic phase; MII, inverse
micellar phase. (b) Top: Aqueous multilamellar egg PC dispersion (0.5 wt% in water, ~6.5 mM),
analyzed by negative staining transmission electron microscopy in the dry state at room temperature
(bar: 100 nm; stained with potassium phosphotungstate); see Bangham and Horne (1964) [95].
White areas are occupied by the hydrophobic part of the egg PC lipids (no phosphotungstate),
allowing the electron beam to pass through the sample to reach a beam-sensitive film; in the dark
area, phosphotungstate is present so that the electron beam is reflected at the heavy atoms. Bottom:
Example of a cryo-TEM image of unilamellar egg PC vesicles (<20 mM in 5 mM phosphate buffer,
pH = 7.0; bar: 500 nm) prepared with the “detergent removal method” (see Chapter 4), as published
by Holzer et al. (2009) [96]. Reproduced from [84], copyright © Taylor and Francis, 2013; and with
permission from [95], Elsevier, 1964; and from [96], Elsevier, 2009.
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The egg PC/water phase diagram is very similar to the DOPC/water phase diagram,
and both diagrams are very similar to the soybean PC/water phase diagram published
by Bergenståhl and Fontell (1983) [97]. In all three cases, there is a large region of lamellar
phase (Lα), and at high water content, Lα coexists with water. This is the region where
vesicle dispersions can be prepared easily by one of the different procedures that have been
developed (see Chapter 4).

Although many basic studies on POPC/water mixtures were carried out, e.g., [98,99], a
complete binary POPC/water phase diagram was not (yet) determined. It is, however, clear,
that such diagram must be very similar to the ones of the DOPC/water or egg PC/water
system shown in Figures 10 and 11. POPC is an “average” component of egg PC consisting
of a palmitoyl and an oleoyl chain in positions sn-1 and sn-2, respectively [100] (Figure 2).
Phosphatidylcholines with two long acyl chains (unsaturated or saturated) always form a
two-phase system at high water content (Lα + water) above the chain melting temperature
(also known as main phase transition temperature, Tm; see Section 2.12), and an Lα phase
between about 10 and 40 wt% water. These amphiphiles are perfect bilayer-forming lipids
(p ≈ 1). One of the key differences between the different long chain phosphatidylcholines
are their Tm values. For DOPC, egg PC, soybean PC, and POPC, the Tm values are all
below 0 ◦C. In the presence of excess water, the reported Tm values are −18.3 ± 3.6 ◦C
(DOPC [101]),−5.8± 6.5 ◦C (egg PC [101]), between−25 ◦C and−11 ◦C (soybean PC [102]),
and −2.5 ± 2.4 ◦C (POPC [101]). Above Tm, the bilayers constituting the vesicle membrane
are in a fluid, liquid-crystalline state (Lα). Below Tm, the molecules are in a crystalline-like
state, as illustrated for the DPPC/water system in Section 2.12. For DOPC, for example, the
low Tm value is not only due to the presence of a cis-double bond in the two acyl chains
but also due to the position of these cis-double bonds, between C-9 and C-10; see Table 2.
For a related PC molecule with a cis-double bond in both acyl chains between C-3 and C-4,
Tm ~ 35 ◦C [103,104].

2.12. DPPC/Water Mixtures

The binary DPPC/water phase diagram is very similar to the DOPC/water or egg
PC/water phase diagrams. However, the main phase transition temperature of DPPC at
high water content is Tm (DPPC) = 41.3 ± 1.8 ◦C [101], which is considerably higher than
Tm (DOPC) or Tm (egg PC); see Section 2.11. The consequence is that the fluid (liquid
crystalline) lamellar phase (Lα) exists at elevated temperature only, above Tm ~ 41 ◦C and
above about 20 wt% H2O; see Figure 12a (top). This lamellar fluid (“liquid-crystalline”) state
of the amphiphilic lipids is also called “liquid disordered state” (ld) [105,106].

Below Tm, the DPPC molecules form bilayers that are crystalline-like, more ordered,
less fluid than above Tm. They are in a “solid-ordered state”, so [105,107]. Above ~30–40 wt%
water, the liquid disordered Lα phase coexists with water above Tm, while the solid
ordered states which coexist with water below Tm are the ripple phase (Pβ′ ) and the
Lβ′ phase (also known as “gel phase”) [107,108]. The prime (‘) indicates that the DPPC
molecules are tilted with respect to the normal of the bilayer. Mechanical treatments of
dilute aqueous PC dispersions have to be carried out at T > Tm in order to make it easier
for the amphiphiles to reorganize according to the applied mechanical (“guiding”) force;
see Chapter 4. This means that for DPPC, such mechanical treatment should be done at a
temperature which is clearly above room temperature. This is true for any other aqueous
dispersions of lipids with high Tm. Cryo-TEM images of DPPC vesicle dispersions are
shown in Figure 12b [109–111], whereby the samples prepared were frozen from either
T > Tm or T < Tm. In the latter case, facetted vesicles are often observed, indicating the
presence of rigid domains within the vesicle membrane; see also [112].
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to bottom: First and second: dispersion of DPPC in 50 mM Mes buffer (pH = 6.0, 150 mM NaCl, 5 mM EDTA), as obtained
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(first) or T = 25 ◦C (second); see El Jastimi et al. (1999) [109]. Third: dispersion of DPPC in 10 mM Tris-HCl buffer (pH = 7.4),
as obtained by repeated extrusion through 100 nm polycarbonate membranes at T = 60 ◦C (bar: 100 nm), and quenched
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Reproduced from [84], copyright © Taylor and Francis, 2013; and with permission from [101], Elsevier, 1998; from [106], AIP
Publishing, 1996; from [107], Springer Nature, 2000; from [109], Elsevier, 1999; from [110], Elsevier, 2019; and from [111],
American Chemical Society, 2019.

2.13. DOPA/Water Mixtures

A tentative binary DOPA/water phase diagram was published by Lindlom et al.
(1991) [113]; see Figure 13. DOPA is an anionic lipid. The pH of the aqueous solution in
which the lipid is dispersed—and, more importantly, the acidity at the aggregate surface—
determines whether the head group of DOPA (or any other PA) is neutral, mono-anionic,
or di-anionic [114]. Therefore, the extent of hydration and the aggregation behavior in
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the aqueous solution is expected to depend on pH as well as on the counter ion type and
composition of the aqueous solution [115,116]. The experimentally determined (apparent)
pKa values for the di-protonated and mono-protonated forms of DOPA are 3.9 ± 0.1 and
8.6 ± 0.3, respectively [117]. The intrinsic pKa values may be lower [114]. For the binary
phase diagram shown in Figure 13, the results obtained from the analysis of dispersions of
the mono-sodium salt of DOPA in water are shown. As the phase diagram should represent
the thermodynamic equilibrium situation, details provided for the sample preparation are
worth mentioning here as an example. According to the description by Lindblom et al.
(1991) [113], the samples were mixed in sealed tubes by centrifugation and several freeze-
thaw cycles to achieve an equilibrated state “at rest”. The samples were repeatedly analyzed
by 31P NMR measurements during a period of 2–3 months. Such NMR measurements
involve a spinning of the NMR tubes containing the samples and therefore may result
in phase mixing if different phases would coexist at equilibrium. This needs to be taken
into account when interpreting the NMR measurements. Moreover, measurements of
aqueous DOPA dispersions at high temperature were found to be ambiguous since long
term storage above T ~ 50 ◦C resulted in DOPA degradation [113] most likely due to ester
bond hydrolysis.
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Figure 13. Aqueous dispersions of the mono-anionic form of DOPA. Tentative binary DOPA/water
phase diagram, according to Lindblom et al. (1991) [113]. In the diagram shown, H2O was added
in the high water content region as second phase (Lα + H2O); H2O was omitted in the originally
published diagram. Reproduced with permission from [113], American Chemical Society, 1991.

A shown in Figure 13, the mono-anionic form of DOPA forms a dispersed liquid-
crystalline lamellar phase at high water content. This means that for these conditions,
p ≈ 1. As a consequence, dispersions of DOPA vesicles can be obtained under these
conditions, which was confirmed experimentally [118]. Like DOPC and other long-chain
phosphatidylcholines, DOPA is a bilayer-forming amphiphile. At low water content,
however, an inverse hexagonal phase exists (HII, p > 1).

2.14. DOPE/Water Mixtures

Kozlov et al. (1994) [119] published a calculated phase diagram for DOPE/water mix-
tures. A mirror image of this diagram is shown in Figure 14 (top). Phosphatidylethanolamines
like DOPE are zwitterionic at pH ~ 2.5–8.0; the apparent pKa value of the ammonium group
is about 10 [114].
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Figure 14. Aqueous dispersions of DOPE. Top: Calculated binary DOPE/water phase diagram,
represented as mirror image of the diagram published by Kozlov et al. (1994) [119]. Bottom: Schematic
representation of the (metastable) dispersed cubic phase formation upon temperature-cycling through
a Lα + H2O→ HII + H2O transition, as published by Tenchov and Koynova (2017) [78]. Among the
phosphatidylethanolamines investigated, the dispersed inverted cubic phase that formed from DOPE
was Pn3m; in other cases, Im3m was obtained [78,120,121]. The experimental conditions in the case of
DOPE were the following: 20 wt% DOPE in water, 1 M NaSCN, after 50 temperature-cycles (35–65 ◦C)
and 7 days storage at T = 20 ◦C; the sealed sample was analyzed by X-ray diffraction measurements at
T = 20 ◦C [78]. Reproduced with permission from [119], Elsevier, 1994; and from [78], Elsevier, 2017.

Although there might be uncertainties concerning the phase boundaries, it is evident
that at high water content and T = 25 ◦C, an inverted hexagonal phase (HII) coexists with
water. This means that upon mechanically mixing the HII phase with water, a dispersion of
hexosomes is obtained (not to be confused with “exosomes”, i.e., extracellular vesicles of
biological origin; see Section 6.5). Below T ~ 10 ◦C, a fluid lamellar phase Lα coexists with
water, i.e., an aqueous dispersion of vesicles is expected to form upon mixing the two phases
at this low temperature. Lowering the water content for T > 25 ◦C, a HII phase is expected
to be present at thermodynamic equilibrium. Formation of the HII phase is understood
on the basis of a small head group, which favors inverted structures (cone geometry of
the amphiphile, p > 1). The surprising behavior of DOPE is that a reduction in the water
content at 15 ◦C < T < 25 ◦C can result in a HII→ Lα→ HII transformation [119]. Similarly,
at high water content, a Lα + H2O→ HII + H2O transformation is evident from the phase
diagram. This later transition is the basis for the possibility of forming a metastable (but
“long-lived”) dispersed inverted bicontinuous cubic phase from DOPE (Pn3m) at high
water content, achievable by many temperature cycles [120–122]; see Figure 14 (bottom).
This dispersed cubic phase formation is accelerated in the presence of certain dissolved
compounds, e.g., the chaotropic solute sodium thiocyanate (NaSCN), which also increased
the temperature of the Lα + H2O→ HII + H2O transition [58,78].
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2.15. A comparison of Lipid Vesicles and Micelles

An isotropic aqueous solution of (spherical) micelles (L1 or MI) is considered by most
researchers—but not by all [62,123]—as a one phase system consisting of fluid micellar
aggregates which are in rapid, dynamic equilibrium with non-associated, micelle-forming
amphiphiles. The non-associated amphiphiles are also called “monomers” or “unimers”,
and the micelles often are considered as “pseudophase” [124]. An aqueous dispersion
of fluid, i.e., liquid crystalline lipid vesicles consists of fluid vesicular aggregates that are
in dynamic equilibrium with non-associated, bilayer-forming amphiphiles dissolved in
the aqueous solution (Lα + aqueous solution, two phases). Figure 15 [125] illustrates the
situations with a simplified representation of a snapshot across the two spherical aggregates,
a vesicles (left) and micelles (right). Although smaller aggregates than an “optimal” micelle
or an “optimally packed” vesicle may also exist in an equilibrated sample, the drawing
highlights certain conceptual similarities between the two types of systems and also points
to some differences with respect to (i) the concentration of non-associated amphiphiles and
(ii) the time required to re-establish an equilibrated state once the equilibrium is disturbed
(aggregate-unimer exchange kinetics). There are, however, also borderline cases, which
clearly indicate that it is primarily the chemical structure of the amphiphile that dictates
the properties, as outlined in the following.
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Elsevier, 1977.

The concentration of non-associated amphiphiles in the case of typical micelle-forming
amphiphiles is much higher than the concentration of non-associated amphiphiles in the case
of bilayer-forming amphiphiles; the unimer concentration corresponds in a first approximation
to the CMC or CVC, respectively, usually with CMC >> CVC. However, depending on the
chemical structure of the amphiphile, the CVC values can also be relatively high [70]. One
example is the CVC for decanoic acid vesicles: about 20–40 mM at pH = 7.1–7.3 [65,70,126].

Diluting a micellar solution below the CMC results in a complete disintegration of the
micelles. In the case of a vesicle dispersion, the situation is the same: dilution below the CVC
results in a disintegration of the vesicles. Since the CVC for conventional bilayer-forming phos-
phatidylcholines like POPC is, however, very low (CVC(DPPC) ~ (4.6± 0.5)× 10−10 M [127],
or even lower [128]), concerns about vesicle disintegration are only appropriate in ex-
tremely dilute samples. To illustrate this, let us assume that one 100 nm-sized LUV of
POPC is constituted by 9.2 × 104 POPC molecules (see legend of Figure 1). For a dilution
of a LUV dispersion from 1 mM POPC to 1 µM POPC, for example, each vesicle on average
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would lose ~10 POPC molecules, only. This loss of POPC molecules from the vesicle can be
ignored. In the case of a decanoic acid vesicle dispersion prepared a pH ~ 7.2, however,
vesicles do not exist below 20–40 mM decanoic acid + decanoate.

2.16. Summary

The phase diagrams shown and discussed in this Chapter are illustrations of how
selected biological amphiphiles aggregate in aqueous solution under certain conditions in
terms of amphiphile concentration, composition of the aqueous solution, and temperature
for a standard pressure of about 1 bar. A large number of similar phase diagrams are
also known for non-natural, fully synthetic amphiphiles that are important for industrial
applications [129,130], for example, for aqueous mixtures of anionic sodium dodecylsulfate
(SDS) [131], cationic hexadecyltrimethylammonium bromide (CTAB) [132], or non-ionic
n-hexadecyl octaethylene glycol ether (C16EO8) [133] and n-dodecyl octaethylene glycol
ether (C12EO8) [134], all four compounds being typical micelle-forming amphiphiles. Con-
ceptually, there is no difference between the aggregation behavior of synthetic amphiphiles
and the aggregation behavior of naturally occurring (biological) amphiphiles; the focus in
this article, however, is on biological amphiphiles.

Binary amphiphile/water diagrams show for which conditions at thermodynamic
equilibrium a single liquid crystalline phase forms—and how the amphiphiles are orga-
nized in the aggregated state comprising this phase—or whether two (or even more) phases
coexist. The molecular arrangement of the amphiphiles in a phase represents the energeti-
cally most favorable situation due to the amphiphile’s self-assembly, primarily on the basis
of hydrophobic attractions, electrostatic repulsions, and maximal entropy [18]. The fluid
lamellar phase (Lα) formed from biological amphiphiles (lipids), the different cubic phases
(e.g., the inverse bicontinuous cubic phase Pn3m), or the two hexagonal phases (HI and HII)
are of particular interest for many applications, due to the dispersibility of these phases
in excess aqueous solution, where these phases coexist at thermodynamic equilibrium
with an aqueous solution, to form in the dispersed state kinetically trapped lipid vesicles
(liposomes) [21–23,135–138], cubosomes [80,139–144], or hexosomes [141,144,145]. If other
amphiphiles or non-amphiphilic hydrophobic or hydrophilic molecules are present as well,
the aggregation behavior can be very complex, with the possible formation of phases that
are not present in the binary system [146]. Moreover, added molecules may (i) stabilize
or (ii) completely destabilize the state of the dispersed phase, or (iii) they may alter the
properties of the dispersed phase in a desired and controlled way.

Examples for (ii) and (iii) are micelle-forming amphiphiles (detergents). If added
to lipid vesicles, detergents permeabilize lipid vesicles (liposomes) at low concentration
and low detergent-to-lipid ratio by forming mixed lipid-detergent vesicles with altered
properties as compared to detergent-free vesicles [147]. In the presence of high enough
amounts of detergent, a dispersion of lipid vesicles will transform into a solution of
mixed detergent-lipid micelles [147–152], a process known as membrane or liposome
solubilization.

Concerning (i), in Chapter 3, the colloidal (physical) stability of lipid vesicles and
cubosomes is discussed and how their stability can be increased for in vitro or in vivo
applications.

In the subsequent Chapters 4 and 5, the focus will be on lipid vesicles, discussing
concepts about the preparation methods (Chapter 4) and approaches for loading vesicles
with water-soluble molecules and for the surface functionalization of vesicles (Chapter 5).
Finally, the selected examples of the application of lipid vesicles (and lipid nanoparticles)
in Chapter 6 should highlight some of the innovative ideas that were developed over the
years about this type of lipid aggregates, emerging from properties that were previously
determined by a large number of fundamental studies.
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3. Increasing the Stability of Aqueous Dispersions of Lipid Vesicles and Cubosomes

The physical stability of lipid vesicle dispersions very much depends on the type
and concentration of bilayer-forming amphiphile (or type of lipid mixture) used, on the
way the dispersion is prepared (see Chapter 4), the temperature, and the composition
of the aqueous solution. Often, aqueous lipid vesicle dispersions are colloidally rather
stable for several weeks or months if analyzed by dynamic light scattering [153–158]. As
an example, fluid, zwitterionic DOPC or POPC vesicle dispersions that were prepared
in PBS (pH = 7.4, phosphate buffered saline composed of 137 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4, 2 mM KH2PO4) by polycarbonate membrane extrusion by using for
final extrusions membranes with average pore diameters of 100 nm were stable at T = 25
or 42 ◦C for at least one week [155] (measurements beyond this time were not carried
out). Another example is the high colloidal stability of vesicles that were prepared from
mixtures of partially hydrogenated egg PC and egg phosphatidylglycerol (egg PG) in
50 mM HEPES buffer, pH = 7.0, using again polycarbonate membrane extrusion (with
200 nm-membranes for final extrusions), and then stored for 40 days at T = 40 ◦C [153].
The physical stability of phosphatidylcholine vesicle dispersions originates in part at least
from repulsive “hydration forces” [18,159,160] due to the presence of water molecules that
hydrate the polar head groups on the surface of the vesicles (Figure 16). These hydration
forces act between two vesicles that come in close contact and thereby prevent vesicle
aggregation, which would be the result of attractive van der Waals (hydrophobic) forces. If
required, the colloidal stability of zwitterionic lipid vesicle dispersions can be increased
by adding charged amphiphiles (e.g., anionic phosphatidylglycerol (PG) [153,161,162]) at
amounts that do not prevent bilayer formation and that do not alter the vesicle membrane
properties in an undesired way [163–167]. The addition of charged amphiphiles results in
a stabilization of the vesicle dispersion due to inter-vesicular electrostatic repulsions [168],
which prevent vesicle aggregation and fusion to form multilamellar vesicles as lamellar
phase (Lα) that would separate from the aqueous solution in which the vesicles originally
were dispersed.

Another possibility for increasing the colloidal stability of lipid vesicles is to use
a small fraction of a synthetic amphiphile that has a bulky polar head group, usually
polyethylene glycol (PEG). Two of the PEGylated amphiphiles are 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-PEG750 (DSPE-PEG750, with about 17 ethyleneoxide moieties
(−CH2CH2O−) in the head group, with a terminal methoxy group (−OCH3), correspond-
ing to an average molar mass of M ~ 750 g/mol [169] or Tween 80 (also known as polysor-
bate 80, polyoxyethylene (20) sorbitan monooleate) [170]. Vesicles containing such am-
phiphiles at the optimal amount do not aggregate easily due to steric hindrance by the
hydrated polymer chains, as long as the polymer chain density on the vesicle surface is
high enough (Figure 16).

Lipid vesicles containing PEGylated lipids, for example DSPE-PEG2000 (about
45 ethyleneoxide units, with a terminal methoxy group, M ~ 2000 g/mol), at optimal
PEG chain length and surface density (Figure 16) are used in intravenously administered
drug delivery systems (see Section 6.2). Such sterically stabilized vesicles (“stealth li-
posomes” [25,171–175]) do not interact so easily with opsonins (i.e., serum proteins of
the immune system). Therefore, vesicles injected into the blood circulation are not re-
moved immediately by phagocytes of the immune system, i.e., monocytes in the blood and
macrophages in tissue, and therefore stay longer in the blood circulation than vesicles that
do not contain such water soluble polymers on their surface [25]. With an extended period
of time in the blood circulation, stealth liposomes eventually reach the target, for example
tumor cells, more efficiently than non-PEGylated liposomes of otherwise similar size and
composition [172]. Compared to the increased colloidal stability of PEGylated vesicles
in vitro, where vesicle–vesicle interactions are minimized, the role of the PEG chains on
the surface of the stealth liposomes play in vivo is to minimize vesicle–protein (opsonin)
interactions.
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sketched by Rand et al. (1988) [159], resulting in bilayer repulsions due to “hydration forces”. Each phosphoryl head group
is capable of polarizing water molecules in opposite directions. For an inter-bilayer contact, a force has to be applied to
remove the water molecules from the inter-bilayer space. This hydration force prevents bilayer aggregation in the Lα

phase and prevents fluid lipid vesicle aggregation in lipid vesicle dispersions at T > Tm. Other repulsive interactions
between dispersed lipid vesicles are electrostatic interactions in the case of charged vesicles and steric repulsions for
vesicles containing water-soluble polymers attached to some of the polar head groups on the surface of the vesicles
(“PEGylated liposomes”) [172,173]. (b) Top: Schematic representation of the situation on the surface of PEGylated liposomes,
depicting various possible PEG chain densities (pancake, mushroom, or brush regime), from Čeh et al. (1997) [173]. For
in vivo applications of “stealth liposomes” [172,173], the stealth effect is achieved for PEGylated liposomes in the brush
regime [175]. Bottom: Chemical structure of DSPE-PEG2000 with 45 ethyleneoxide repeating units and a terminal methoxy
group. Reproduced with permission from [159], American Chemical Society, 1988; and from [173], Elsevier, 1997.

Amphiphiles with PEG as polar head group often are also used to increase the colloidal
stability of cubosome (or hexosomes) dispersions [80,176]. Examples are DSPE-PEG750 [80],
PEGylated monoolein (MO-PEG2000), or non-ionic triblock copolymers Pluronic® F127
(also known as poloxamer 407, EO100PO65EO100 [177]), or Pluronic® F68 (also known as
poloxamer 188, EO76PO29EO76 [177]) [80,140,145], EO and PO being ethylenoxide and
propylenoxide repeating units, respectively. In these cases, the PEGylated amphiphiles
should form a protecting coat on the surface of the cubosome particles. With this, cubosome–
cubosome interactions should be minimized, and the formation of a separate cubic phase
should be avoided. If the stabilizing amphiphiles diffuse into the internal cubic phase and
mix with the cubosome-forming amphiphiles, the original cubic phase might be altered,
and partial vesicle formation might occur [80].

4. Lipid Vesicle Dispersions Obtained by Guided Assembly
4.1. Overview of the Concepts for the Formation of Large or Giant Unilamellar Vesicles

As mentioned in Chapter 2, aqueous lipid vesicle dispersions usually—but not al-
ways [178–180]—are only kinetically stable. They are obtained by “guided assembly”
procedures. With these procedures, bilayer-forming amphiphilic lipids are forced to ar-
range as curved self-closed bilayers (vesicles) of desired average curvature (i.e., desired
average vesicle size). In the majority of cases, the conditions are chosen such that the vesi-
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cles have a spherical shape, although the formation of (transiently) non-spherical vesicles
is also possible [181–185].

There are various established methods for the formation of spherical unilamellar
vesicles with average sizes of either about 100 nm (known as “large unilamellar vesicles”,
LUVs) or several micrometers (so-called “giant unilamellar vesicles”, GUVs). These meth-
ods are summarized in many review articles or in books [161,186–195]. In Figure 17, some
of the key concepts for the formation of LUVs and GUVs are summarized.
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originally were deposited. Other methods for GUV formation are based on the initial formation of micrometer-sized water 
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Figure 17. Schematic representation of the concepts of some of the methods that were developed for the formation of (a) large
unilamellar vesicles (LUVs), with diameters in the range of 100 nm, and (b) giant unilamellar vesicles (GUVs), with diameters above
1 µm. (a) Multilamellar vesicles (MLVs) are usually obtained by dispersing a dry film of bilayer-forming lipids at T > Tm in an
aqueous solution (I). The obtained MLV dispersion can be sized down to LUVs by polycarbonate membrane extrusion at T > Tm.
Sonication of MLVs yields sonicated (or small) unilamellar vesicles (SUVs). The reduction in vesicle size and lamellarity is represented
by “II” as process from left to right in the horizontal box. Sub-micrometer-sized unilamellar vesicles can also be obtained from
w/o-emulsions or w/o/w-double emulsions containing bilayer-forming lipids (III, well-known is the “reverse-phase evaporation
method”); from an aqueous solution of mixed detergent-lipid micelles (IV, “detergent removal method” or “detergent depletion
method”) or from an ethanolic solution containing bilayer-forming lipids (V, known as “ethanol injection method”). (b) GUVs can
be obtained by a careful hydration of a thin film of bilayer-forming lipids deposited on a solid surface (1a and 1b, “spontaneous
hydration method” in its simplest version). The hydration may be done on a conducting surface in the presence of an electric field
(“electroformation method”). With these methods (1a,1b), the GUVs usually remain attached to the surface at the place where the
lipids originally were deposited. Other methods for GUV formation are based on the initial formation of micrometer-sized water
droplets in a water-immiscible oil, followed by either the transfer of the droplets from the oil into an aqueous solution (“droplet
transfer method”, 2a), or by first freezing the droplets, followed by coating with lipids in the frozen state and hydration during
droplet melting (“lipid-coated ice droplet hydration method”, 2b). In alternative procedures, the initial states of the lipids are
either in the form of w/o/w-double emulsions (3), dispersions of SUVs or LUVs (4), planar lipid bilayers (5), lipids dissolved in a
water-miscible organic solvent (dioxan or tetrahydrofuran, for example, 6), micelles (7), or a water-oil system (8). For details of the
different procedures, see text and the original literature cited in the two references where the schemes were published first [191,192].
Reproduced with small modifications from [191], American Scientific Publishers, 2004, and with permission from [192], WILEY-VCH
Verlag GmbH & Co. KGaA, 2010.
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For the formation of LUVs (Figure 17a), one well-known method is the “extrusion
technique” [112,196–200]. A heterogeneous dispersion of multilamellar vesicles (MLVs) is
forced to pass through the cylindrical pores of polycarbonate membranes at T > Tm, i.e.,
under conditions at which the vesicle bilayers are in the liquid-disordered (ld), fluid state.
During this passage through the pores, MLVs get deformed and most likely undergo a
pearling process during which the vesicle membranes are ruptured and then finally re-close
at the outlet of the pores [201–203], to an average size which correlates with the size of the
pores. This procedure is done repeatedly by using membranes with 400, 200, and finally
100 nm pore diameters [197,204]. The smaller the pore size is, the more homogenous the
obtained LUVs are, although the presence of oligolamellar vesicles in the final dispersions
can not be excluded, depending of the lipid type and the aqueous solution [205]. Often,
final extrusions are made with membranes consisting of 100 nm pores, yielding LUVET100,
an abbreviation that is used to indicate that the vesicles obtained were LUVs prepared by
the extrusion technique (ET), using for final extrusions the pore diameter indicated in the
subscript (in nm). The diameter of the vesicles obtained with 100 nm pore membranes
usually is about 100 nm. Using larger pores, often a substantial amount of oligolamellar
vesicles (OLVs) are also present in the final vesicle dispersion, and the vesicle size is not
so homogenous, with an average diameter that is smaller than the pore diameter [197].
Conceptually, polycarbonate membrane extrusion is a mechanical treatment of a vesicle
dispersion for the reduction of average size and lamellarity (indicated in Figure 17a in the
horizontal box with “II” as size and lamellarity reduction process occurring from left to
right). Sonication at T > Tm can also be used as alternative method to decrease vesicle
size and lamellarity, yielding SUVs (sonicated or small unilamellar vesicles) [206,207]. The
initial dispersion of MLVs often is obtained by hydrating at T > Tm a dry film of bilayer-
forming lipids deposited on a solid surface [95]; see Figure 17a (I). Depending on the lipid
film thickness, on the type of lipid, and on how the hydration is made, GUVs may also
form; see Figure 17b (1a).

Aqueous vesicle dispersions can also be obtained by starting with a water-in-oil
emulsion (w/o-emulsion). After removal of the oil (a water-immiscible organic solvent)
and addition of excess aqueous solution, a dispersion of vesicles is obtained. One of the
original procedures is known as “reverse phase evaporation method” [208]; see Figure 17a
(III). Like for any of the other methods mentioned here, a successful application in terms of
desired quality of the vesicle dispersion obtained depends on the experimental details, such
as chemical structure of the lipids used, lipid concentration, composition of the aqueous
solution, etc. Starting with a water-in oil-in water (w/o/w)-double emulsion, aqueous
dispersions of vesicles can be obtained as well after the oil is removed.

Another approach is to start with an aqueous solution of mixed micelles consist-
ing of a bilayer-forming lipid and a micelle-forming amphiphile (a detergent) at condi-
tions, where mixed detergent-lipid micelles form; see Figure 17a (IV). The characteris-
tics of this mixed micelle solution is that the concentration of non-associated detergent
molecules is much higher than the concentration of non-associated lipid molecules, i.e.,
CMC(detergent) >> CVC(lipid); see Section 2.15. Non-associated detergent molecules are
continuously removed from the system, for example, by dialysis or by size exclusion
chromatography. A new equilibrium will be established due to the exchange of the de-
tergent molecules between the mixed micelles and the aqueous solution, until mixed
lipid-detergent vesicles form and finally vesicles that are almost free of detergent. The
entire process is known as “detergent depletion method” [209–211].

The “ethanol injection method” is based on the addition of an ethanol solution, in
which bilayer-forming, ethanol-soluble amphiphiles are dissolved, to an aqueous solution,
in which vesicle formation is desired to occur; see Figure 17a (V). Ethanol is miscible with
water. As a consequence, the ethanol molecules solvating the hydrophilic and hydrophobic
parts of the lipids in the ethanol solution will partition into the aqueous solution when the
ethanol solution and the aqueous solution are mixed. With this, the lipids self-organize
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to form bilayers that self-close to vesicles, the size of the vesicles being dependent on the
experimental conditions [212–218].

For the formation of GUVs (Figure 17b), the most successful procedures are, and must
be, different from the ones used for the formation of LUVs (Figure 17a). There are two
different kinds of GUV preparations that one can obtain by the different procedures: First,
GUVs that form on a solid surface and usually are left attached to this surface for investigations and
then investigated by light or confocal fluorescence microscopy (in the latter case by using
hydrophobic, amphiphilic, or hydrophilic fluorescent probe molecules); second, GUVs that
are part of an aqueous dispersion, which is analyzed or applied as dispersion, just like in the
case of a dispersion of LUVs.

Surface-attached GUVs can be obtained by a careful hydration of a thin film of com-
pletely dried (or optimally wetted) bilayer-forming lipids deposited on a solid surface; see
Figure 17b (1a,b) [219]. Without any additional guiding of the lipid hydration process, this
method is called “spontaneous swelling” or “gentle hydration method” [220]. Using as
solid surface a conductive glass or an electrode (platinum wire), the swelling and hydration
of the lipids can be promoted (“guided”) in a controlled way by applying an electric field.
This procedure originally was developed by Angelova and Dimitrov (1986) [221] and is
known as “electroformation method” [222] and is widely used [222–227].

For obtaining GUV dispersions, there is one method which is often applied. It is called
“droplet transfer method” because the method is based on the transfer of micrometer-
sized aqueous droplets present in a w/o-emulsion into an aqueous solution; see Figure 17b
(2a) [228]. During this process, monolayer-stabilized aqueous droplets of the w/o-emulsion
are converted into bilayer-stabilized aqueous droplets (present as GUVs in the aqueous
medium into which the droplets are transferred). The required second (outer) mono-
layer, which is needed for coating the droplets, is acquired during the migration of the
droplets from the lighter w/o-emulsion across a monolayer-stabilized interface into the
lower, denser aqueous solution. Although this procedure is understood conceptually, the
experimental details are very critical for obtaining in a reproducible way the desired GUV
dispersion [194,229–231]. Moreover, the possible presence of oil in the GUVs needs to be
considered. Related to this method is the “lipid-coated ice droplet hydration method” [232],
where monodisperse aqueous droplets in an organic solvent (hexane) are first formed
by microchannel emulsification, followed by freezing of the droplets in liquid nitrogen,
removal of the organic solvent, and finally hydration with an aqueous dispersion of LUVs,
succeeded by droplet melting through a raise in temperature; see Figure 17b (2b). With
another method that requires the use of oil, an initial w/o/w-double emulsion is prepared
from which the oil is removed; see Figure 17b (3). Depending on the oil present, signif-
icant rearrangements of the amphiphiles have to take place, which makes it difficult to
understand how the final vesicles should become unilamellar.

The other methods for GUV formation that are shown in Figure 17b are based on
either the fusion of a very large number of SUVs or LUVs (4), or, for example, on the
jet-blowing of a small aqueous volume onto a planar lipid bilayer [233–235] (5). Although
for bilayer-forming biological lipids it may not work very well, the mixing of a solution of
amphiphiles dissolved in a water-miscible solvent with an aqueous solution (6, related to
the “ethanol injection method” for the formation of LUVs) is another way for potentially
obtaining GUVs. Other methods mentioned in Figure 17b are based on either the initial
use of an aqueous solution of (mixed) micelles (7), or amphiphiles dissolved in a water-oil
system (8).

4.2. Reproducible Large Scale Formation of LUV Dispersions with the “Ethanol Injecton Method”

Over the last years, the general concept of the “ethanol injection method” was devel-
oped further for large scale applications by optimizing the engineering part of this method
so that even the reproducible production of a commercial liposomal antifungal product
became possible (Pevaryl Lipogel) [236,237]. Based on recent developments in the use of
microfluidic systems for the controlled mixing of an ethanolic solution containing bilayer-
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forming lipids and an aqueous solution [238–241], Kuwamura et al. (2020) [218] published
a systematic investigation for the continuous production of lipid vesicles by using a simple
procedure involving an inexpensive V-shaped solvent mixer unit; see Figure 18. The lipo-
somes obtained had diameters in the range of 50-70 nm (with narrow size distributions),
depending on the experimental parameters used. Different lipid mixtures were used, in-
cluding DSPC:cholesterol:DSPE-PEG2000 (10:10:1, molar ratio), at 6.82 M DSPC in ethanol
and a physiological saline solution (154 mM NaCl in water) as aqueous solution [218]. The
liposomes obtained were stable when stored at T = 4 ◦C for up to 28 days without signif-
icant change in size. Encapsulation experiments by using as aqueous solution 125 mM
closo-dodecaborate in water and a flow rate of 12 mL/min indicated a rather high entrap-
ment efficiency for this water soluble compound with entrapment yields varying with
the flow rates used [218]. Closo-dodecaborate is a water-soluble icosahedral boron cluster
consisting in its sodium form of 12 boron atoms and two sodium counter ions, Na2B12H12.
This compound was used as model compound for sodium borocaptate (Na2B12H11SH),
which is used in clinical treatments of tumors (“boron neutron capture therapy”) [242].
After separation by ultracentrifugation of the non-entrapped clusters from the vesicles
containing entrapped Na2B12H12, followed by resuspension of the pellets obtained in the
physiological saline solution, the experimentally determined entrapment varied between
1.6 and 2.8 mol boron atom of the cluster to phosphorus atom of the lipid [218].
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Figure 18. Size-controlled and scalable production of LUVs based on the “ethanol injection method” by using a V-shaped
mixer (diameter: 250 µm) and a micro-flow reactor, with an outlet tube diameter of 1 mm, as published by Kawamura et al.
(2020) [218]. (a) Schematic representation of the set-up and details of the stainless steel V-mixer. The procedure was shown to
be applicable for the preparation of lipid vesicles from mixtures of amphiphilic phospholipids (e.g., DSPC:cholesterol:DSPE-
PEG2000 (10:10:1, molar ratio) as well as for vesicles prepared from non-ionic surfactants (“niosomes”). The size of the
obtained vesicles was in the range of 50–70 nm depending on the experimental conditions; see text and [218]. (b) Negative
staining transmission electron microscopy image of one of the lipid vesicle dispersion obtained, analyzed after mixing
with an EM stain solution (containing a lanthanide salt) and then analyzed in the dry state at room temperature (bar:
100 nm) [218]. Reproduced with permission from [218], American Chemical Society, 2020.

In another investigation, a microfluidic glass capillary version of the “ethanol injection
method” was used successfully for the preparation of lipid vesicles containing entrapped
enzyme molecules (bovine erythrocytes Cu,Zn-superoxide dismutase, SOD); see Costa
et al. (2021) [243] and Figure 19. Using an ethanolic solution of egg PC:cholesterol:DSPE-
PEG2000 (1.85:1:0.15, molar ratio), at a total lipid concentration of 48 mM, and an aqueous
solution consisting of 145 mM NaCl, 10 mM citric acid, pH = 6.0, and 75 µg/mL SOD,
a dispersion of LUVs was obtained at a flow rate of 25 mL/h. The vesicles had a di-
ameter of 135 ± 41 nm [243]. Separation of the vesicles containing entrapped SOD from
non-entrapped SOD was carried out by ultracentrifugation followed by re-suspending of
the pellets obtained in the pH = 6.0 buffer solution. The entrapment yield obtained was
high, and the entrapped enzyme molecules were shown to be catalytically active, even in
an intravenous in vivo application of the SOD containing vesicles as anti-inflammatory
nanosystem [243]. From the reported protein to phospholipid ratio of the SOD-containing
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vesicles prepared, about 0.9 µg/µmol [243], the approximate average amount of enzyme
molecules per lipid vesicle can be estimated. It is about 3–4 SOD molecules per vesicle.
This estimation is based on several assumptions, but nevertheless, it is a useful exer-
cise since it provides a rough view of the molecular situation (see also the legend of
Figure 1). The calculations were made as follows. We assumed that all vesicles obtained by
the microfluidic method used are unilamellar and uniform in size with an outer vesicle
diameter of 135 nm and a vesicle bilayer thickness of 4 nm. With this, the outer and
the inner vesicle surface areas can be calculated and with this the total interfacial area
of one vesicle membrane (~1.08 × 105 nm2). Assuming that the protein content deter-
mined in the vesicle dispersion after removing non-entrapped SOD molecules (0.9 µg
per µmol phospholipid) reflects the SOD content, with M(SOD) = 32,500 g/mol [244]
(~2.83 × 10−11 mol SOD per µmol phospholipid), and assuming that the head group area
occupied on average by one phospholipid molecule is a0 = 0.825 nm2 (taking into account
a0(POPC) = 0.63 nm2 [19] and a0(cholesterol) = 0.39 nm2 [245]; molar ratio of phospholipid
to cholesterol = 2:1), one 135 nm-sized unilamellar vesicle consists of ~1.3 × 105 phos-
pholipid molecules (=1.08·105 nm2/0.825 nm2). Therefore, the estimated number of SOD
molecules per vesicle is ~3–4 (=(2.83 × 10−11 mol SOD molecules/10−6 mol phospholipid
molecules) × (1.3 × 105 phospholipid molecules per vesicle) = 3.7 SOD molecules per
vesicle). The calculated trapped aqueous volume of one spherical vesicle with an inner
diameter of 131 nm (=135 nm − 4 nm) is ~1.07 × 10−18 L. With this, the estimated av-
erage SOD concentration inside one vesicle for the experiments reported by Costa et al.
(2020) [243] was ~5 µM.
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and [243]. (b) Cryo TEM image of the SOD-containing vesicles obtained (bar: 100 nm) [243]. Reproduced with permission
from [243], Elsevier, 2021.

Although there are many other procedures that were (or are being developed) [193,246–252],
the examples mentioned in Figure 17a should serve as illustration of some of the ways
bilayer-forming amphiphiles can be guided to end up as vesicle dispersion consisting of
spherical vesicles with a desired size of about 100 nm (LUVs).

The smallest unilamellar phospholipid vesicles that have been prepared were probably
the ones reported by Zhigaltsev et al. (2016) [253]: 30–40 nm in diameter, composed of
POPC/DPPC/DSPE-PEG2000 (45/20/35/3, molar ratio), prepared by using a modified
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“ethanol injection method”. For drug delivery applications, LUVs with sizes of about
100 nm are often desired.

Each method has its advantages and disadvantages [191]. For some methods, the
presence of remaining oil is an issue to consider, the possible “contamination” by non-
bilayer-forming amphiphiles (“detergent depletion method”), the costs, or difficulties
for an upscaling to larger sample volumes. Moreover, for the efficient encapsulation of
water-soluble molecules during the vesicle preparation, some methods are more suitable
(“reverse-phase evaporation method”) than others (“ethanol injection method”); see also
Chapter 5.

4.3. Sophisticated Microfluidic Methods for the Formation of GUVs

Recent progress in the field of microfluidics showed that for certain amphiphiles and
under specific conditions, uniform GUVs can be obtained by microfluidic mixing on a
specifically designed chip. In this case, mixing of two types of aqueous solutions (inner and
outer) and a solution of amphiphiles in an oil occurs [254–263]; see Figure 20 [259,260,264].

Since an oil has to be used in such microfluidics-based procedures, the presence of
remaining oil in the GUVs obtained needs to be considered, as in the case of GUVs prepared
by the “droplet transfer method” (see above) or of GUVs prepared by jet-blowing [265].
With octanol as oil (in presence of 15 vol% glycerol), Deshpande et al. (2016) [259,260]
reported that conditions can be found for which octanol spontaneously separates as
micrometer-sized droplets from the GUVs after initial w/o/w-double emulsion formation
and that the presence of the amphiphilic block copolymer poloxamer 188, EO76PO29EO76,
was important for stabilizing the GUVs; see Figure 20 (bottom).

4.4. Preparation of Vesicles with Asymmetric Membranes and/or with Internal Vesicles

Independent from whether one aims at preparing LUVs or GUVs, details of the
preparation methods are very important. Depending on the type of amphiphile used
and on its chemical structure, or on whether complex amphiphile mixtures are used,
optimization steps often are essential for a successful preparation. This is the engineering
part of the vesicle preparation. It is as important as the scientific understanding of the
general concepts of a certain preparation procedure.

There are various methods that can be applied for determining the “quality” of a
prepared lipid vesicle dispersion, for example, by focusing on the average vesicle size and
lamellarity, the surface charge, the chemical and colloidal stability, the amount of volume
that is trapped by the vesicles in a certain total volume at a certain lipid concentration
(see the legend of Figure 1), possible domain formation within the vesicle membrane (see
Chapter 5), etc. [158,190,195,266,267].

When using different types of bilayer-forming amphiphiles, the preparation of vesi-
cles, LUVs or GUVs, with a desired asymmetric distribution of the amphiphiles is also
possible (Figure 21a). Such lipid asymmetry may stay for some time (a few days) until
the energetically most favorable lipid distribution is obtained. The rate of equilibration
depends on the fluidity of the membrane (i.e., Tm of the lipids) and the flip-flop rates for
the amphiphiles within the bilayer [268]. The latter properties usually are a challenge
to determine experimentally [118,269–272]. Among the methods depicted in Figure 17,
asymmetric vesicles can be prepared by the “droplet transfer method” [194,228] and the
“jet-blowing method” [235]. There are, however, also other methods that could be applied,
for example, by means of a cyclodextrin-catalyzed phospholipid exchange [268,273–279].

Apart from the different procedures with which unilamellar—or mainly unilamellar—
vesicles can be obtained, there are also methods that allow the formation of multivesicular
vesicles (MVVs), i.e., vesicles that contain internal non-concentrically arranged vesicles
(Figure 21b). Although dispersions of MVVs (also called “vesosomes”, [280]) can be
obtained with some of the methods summarized in Figure 17, additional methods can also
be used, usually applicable to a certain class of amphiphilic lipids; see the recent review
by Giuliano et al. (2021) [281]. Depending on the method used, the inner vesicles may be
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composed of chemically different lipids than the outer “wrapping” vesicle, and MVVs with
asymmetric membrane lipid distributions can be prepared as well.
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Figure 20. The use of microfluidics for the formation of GUVs. Top: Schematic representation of one of the
microfluidics methods for the preparation of GUVs, as published by Litschel and Schwille (2021) [264].
The concept of the method is related to the conventional w/o/w-double emulsion method illustrated
in Figure 17b. The key difference between the conventional method and the microfluidic method is
that in the case of the microfluidic method the w/o/w-double emulsion is prepared in a very controlled
way—droplet-by-droplet—on a microfluidic chip from an aqueous internal solution (dark blue “water”),
an “oil” containing the amphiphiles (yellow “oil”)—which finally form the membrane of the GUVs—and
an external aqueous solution (light blue “water”). In contrast to the microfluidic LUV formation by the
“ethanol injection method”, where ethanol is used as water-miscible organic solvent (Figures 18 and 19),
the “oil” used for the microfluidic GUV formation is a water-immiscible organic solvent (e.g., octanol in
the presence of 15 vol.% glycerol [259,260]). The initially formed w/o/w-droplets consist of an internal
aqueous solution, an amphiphile-stabilized oil layer, and an external aqueous solution. As final step,
the oil needs to be removed. Middle: Scheme of the chip used by Deshpande et al. (2018) [260], with
OA, LO, and IA being the “outer aqueous solution”, the “lipid-carrying oil”, and the “inner aqueous
solution”, respectively. Bottom: Details of the chip (bar: 50 µm) [260] and fluorescence microscopy images
(bar: 20 µm) showing the spontaneous removal of the “oil” octanol (originally containing 15 vol.% glycerol
and 2 mg/mL DOPC with 0.1 mol% of a fluorescently labelled PE) from the vesicles by a budding process
that occurs due to interfacial forces acting on the droplets [259]. The octanol droplet (bright sphere)
separates from a w/o/w-double emulsion droplet (t = 0 s) and results in the formation of an almost octanol-
free GUV and a separated octanol droplet (at t = 5.6 s). The fluorescently labeled PE was DOPE-LissRhod,
whereby “LissRhod” stands for the -(N-(lissamine rhodamine B sulfonyl moiety). The chip used was
prepared from vinyl-terminated PDMS, poly(dimethylsiloxane), and the surface was coated with PVA,
poly(vinylalcohol) to make it hydrophilic [259,260]. Reproduced from [264], copyright © Annual Reviews,
2021; with permission from [259], Springer Nature, 2016; and from [260], Springer Nature, 2018.
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Figure 21. (a) Illustration of a section of a completely asymmetric fluid vesicle bilayer (with a high lateral lipid diffusion)
built from a mixture of two different bilayer-forming amphiphiles (filled and empty polar head groups). Depending on
Table 2019. [268]. (b) Freeze-fracture electron microscopy image of a multivesicular vesicle (MVV), consisting of an outer
larger vesicle and many internal smaller vesicles (bar: 400 nm). A dispersion of such MVVs was prepared by heating a
dispersion of interdigitated sheets prepared from DPPC/cholesterol (97.5:2.5, molar ratio) to T = 46 ◦C, as published by
Kisak et al. (2002) [280]. Formation of the initial interdigitated sheet dispersion which occurred in the presence of 3 M
ethanol; see also Giuliano et al. (2021) [281]. Reproduced with permission form [268], American Chemical Society, 2019; and
from [280], American Chemical Society, 2002.

5. Functionalization of Lipid Vesicles and Possible Bicelle Formation
5.1. Opportunities for the Functionalization of Lipid Vesicles

Among the different polymolecular aggregates that amphiphilic lipids can form in
aqueous solution, vesicles are unique.

• First of all, hydrophilic molecules can be entrapped in the interior aqueous volume
of the vesicles, for example, low molar mass pharmaceutically active compounds or
therapeutic enzymes. Such entrapment can be achieved during the vesicle preparation,
followed by separation of non-entrapped compounds (see Chapter 4). In special cases,
loading of the vesicles is also possible after vesicles formation (so-called “remote
loading”); see Section 5.4. Independent from the way desired water-soluble molecules
are entrapped inside vesicles of desired size, lamellarity, and membrane composition,
the entrapped molecules are separated from the bulk solution by a lipid bilayer, which
acts as protective permeability barrier for the entrapped molecules.

• Second, hydrophobic compounds can be embedded within the vesicle membrane.
This can again be achieved either during vesicle preparation or after vesicle formation.
Depending on the type of membrane-embedded compound, it may alter the physico-
chemical properties of the membrane in a desired way. The embedding of cholesterol
into a fluid phospholipid bilayer, for example, can result in a significant bilayer
rigidification, or it can lead to domain formation within the membrane due to a
non-homogeneous distribution of the cholesterol and lipid molecules; see Section 5.3.

• Third, the external vesicle surface can be functionalized. Such surface functionaliza-
tion can be achieved either during vesicle preparation by using amphiphiles with
a desired functionalized head group (for example PEGylated lipids, as mentioned
in Chapter 3, Figure 16b) or by chemically modifying the outer vesicle surface after
vesicle formation.

Concerning the functionalization of the vesicle surface, there are many opportunities,
depending on the desired application. Some of these opportunities towards pharmaceutical
applications are summarized in Figure 22 [23]. Obviously, for a successful surface function-
alization of vesicles, knowledge is required about the type and amount of functionalized
amphiphiles that can be used and about the method of vesicle preparation that would be
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most suitable for a particular functionalization. This knowledge usually is gained from
systematic investigations. Small changes in the chemical structure of the hydrophobic part
of an amphiphile that one would like to incorporate in a vesicle bilayer and a variation of its
content within the vesicle membrane may have a big effect on the properties of the vesicles.
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functionalization of the vesicle surface for potential targeted drug delivery and theranostic applications, as published by
Sercombe et al. (2015) [23]. For use as drug delivery systems, the possibilities for entrapping water-soluble (hydrophilic)
and membrane-soluble (hydrophobic) drugs are also indicated. Other surface functionalities than the ones shown are also
possible for non-pharmaceutical applications. The illustration is not drawn to scale as the diameter of the internal aqueous
pool usually is considerably larger than the lipid bilayer thickness (often ~90 nm diameter and 4–5 nm membrane thickness).
The possibility surface PEGylation is also indicated; see Figure 16b. Reproduced from [23], Frontiers, 2015.

There are many examples of surface-functionalized vesicles. In addition to PEGylated
vesicles (see Chapter 3), vesicles containing surface-bound immunoglobulins are well-
known for their potential use for targeted drug delivery [282–286].

5.2. Vesicle Functionalization May Lead to the Formation of Bicelles

Depending on the functionality one would like to place on a vesicle surface at a desired
surface density, the formation of stable vesicles may not always be possible. One example
is the case of an aqueous mixture of DMPC and DMPE-DTPA (1,2-dimyristoyl-sn-glycero-
3-phosphoethanolamine-diethylenetriaminepentaacetate), complexed to paramagnetic
thulium ions (Tm3+) at a molar ratio of 4:1:1 (DMPC:DMPE-DTPA:Tm3+). Dispersing the
lipids at a total concentration of 15 mM at pH = 7.0 in water (unbuffered, pH adjusted by
using NaOH), followed by polycarbonate membrane extrusion using for final extrusions
membranes with a pore diameter of 100 nm, results in the formation of “bicelles”, disk-like
aggregates at T = 5–30 ◦C with a disk diameter of about 40 nm and a thickness of about
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4 nm [287,288] (Figure 23a). Although the dominating lipid DMPC is a bilayer forming
amphiphile, vesicles do not form at T = 25 ◦C under the conditions used. The polar DTPA-
Tm3+ head group is too large for accommodating all DMPE-DTPA-Tm3+ amphiphiles
in the DMPC bilayer. DMPE-DTPA-Tm3+ is a micelle-forming amphiphile and occupies
preferentially the edges when mixed with DMPC under the chosen conditions at which
the DMPC molecules tend to form bilayers in a solid-ordered (so) state. Therefore, the two
amphiphiles demix and form separate domains, flat bilayers (rich in DMPC molecules)
and highly curved “semi-micelles” (rich in DMPE-DTPA-Tm3+). The inability of vesicle
formation for this particular lipid mixture was first discovered after it was found to be
impossible to entrap in the aggregates that formed a water-soluble fluorescent dye (calcein).
Simply judging from the translucent appearance of the samples prepared in the absence of
calcein (similarly to the appearance in the case of extruded POPC vesicle dispersions, for
example), one might be tempted to conclude—erroneously—that vesicles formed. A careful
cryo-TEM analysis, however, clearly showed that bicelles instead of vesicles were obtained
(Figure 23a). The formation of bicelles was in agreement with the simple dye entrapment
experiments and was further supported by detailed small angle neutron scattering (SANS)
measurements [287,288]. This example highlights the importance of the use of some
of the many analytical methods that are available for characterizing lipid vesicles and
other polymolecular aggregates to unambiguously prove the formation of vesicles if one
aims to prepare them. For the mentioned aqueous DMPC/DMPE-DTPA-Tm3+ system,
vesicle formation can still occur at T > 35 ◦C, above Tm of DMPC (23.6 ± 1.5 ◦C [101]), or at
T = 25 ◦C if DMPC is replaced by POPC (Tm = −2.5 ± 2.4 ◦C [101]) [289,290] (Figure 23b).
This showcases how seemingly minor changes in the chemical structure of the amphiphiles
used can influence their aggregation behavior due to the dependence of the physico-
chemical properties of the amphiphiles on their chemical structure [291]. The high mobility
of the lipids in the fluid state of POPC at T = 25 ◦C allows accommodating DMPE-DTPA-
Tm3+ within the bilayer to form self-closed, curved bilayers (vesicles) and not bicelles.

Probably the most intensively investigated bicelles are the ones composed of DMPC
and 1,2-dihexanoyl-sn-glycero-3-phosphocholine, DHPC [292–295]. Depending on the
total concentration of DMPC and DHPC, on the molar DMPC:DHPC ratio, and on the
temperature, bicelles form or (perforated) multilamellar vesicles. In the case of bicelles, the
sort of micelle-forming DHPC molecules are localized preferentially at the edges [292,294],
just like DMPE-DTPA-Tm3+ in the case mentioned above and illustrated in Figure 23b (top).

5.3. Domain formation within Vesicle Membranes May Occur

Domain formation within the bilayers of intact vesicles is well-known for phospho-
lipid/cholesterol mixtures, although the size (ranging from a few nanometers to several
micrometers) and dynamics of the domains is very complex and depends on many factors,
such as type of phospholipid (phosphatidylcholines, sphingomyelins), cholesterol content,
and temperature [296–312]. As shown in Figure 24, diagrams for illustrating the state of
the bilayers in aqueous mixtures of phosphatidylcholines and cholesterol, as examples,
were determined [297–300,302,305]. The presence of cholesterol can lead to the formation
of a liquid-ordered (lo) state and to the coexistence within the same membrane of ld and
lo or ld and so states. The lo state is characterized by a reduced head group hydration as
compared to the ld state, as determined for mixed DPPC/sphingomyelin bilayers using
fluorescent membrane probes [300].
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The two arrows point to a bicelle lying edge-on (a) and one lying face-on (b) [287]. Bottom: Cryo-TEM image of an aqueous 
dispersion of vesicles formed from an aqueous POPC:DMPE-DTPA:Tm3+ (4:1:1, molar ratio) mixture, prepared by poly-
carbonate membrane extrusion with final extrusion through 100 nm-sized pores, frozen from T = 5 °C (bar: 200 nm) [289]. 
(b) Top: Schematic representation of a 4:1:1 DPMC:DMPE-DTPA:Tm3+ bicelle, indicating the non-homogenous distribution 
of the two amphiphiles within the bicelle. Bottom: Temperature dependence of the aggregates formed in aqueous disper-
sions of DPMC:DMPE-DTPA:Tm3+ (4:1:1, molar ratio), at a total lipid concentration of 15 mM [288]. DPMC:DMPE-
DTPA:Tm3+ is 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate, complexed to a para-
magnetic thulium ion (Tm3+). Reproduced with permission from [287], American Chemical Society, 2010; from [289], 
American Chemical Society, 2010; and from [288], ETH Zürich, 2013. 

Figure 23. Formation of bicelles or vesicles. (a) Top: Cryo-TEM image of an aqueous dispersion of bicelles formed
from an aqueous DPMC:DMPE-DTPA:Tm3+ (4:1:1, molar ratio) mixture (total lipid concentration: 15 mM), prepared by
polycarbonate membrane extrusion with final extrusion through 100 nm-sized pores, frozen from T = 5 ◦C (bar: 200 nm);
see text. The two arrows point to a bicelle lying edge-on (a) and one lying face-on (b) [287]. Bottom: Cryo-TEM image of an
aqueous dispersion of vesicles formed from an aqueous POPC:DMPE-DTPA:Tm3+ (4:1:1, molar ratio) mixture, prepared by
polycarbonate membrane extrusion with final extrusion through 100 nm-sized pores, frozen from T = 5 ◦C (bar: 200 nm) [289].
(b) Top: Schematic representation of a 4:1:1 DPMC:DMPE-DTPA:Tm3+ bicelle, indicating the non-homogenous distribution
of the two amphiphiles within the bicelle. Bottom: Temperature dependence of the aggregates formed in aqueous dispersions
of DPMC:DMPE-DTPA:Tm3+ (4:1:1, molar ratio), at a total lipid concentration of 15 mM [288]. DPMC:DMPE-DTPA:Tm3+ is
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate, complexed to a paramagnetic thulium
ion (Tm3+). Reproduced with permission from [287], American Chemical Society, 2010; from [289], American Chemical
Society, 2010; and from [288], ETH Zürich, 2013.
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Figure 24. Domain formation in mixed aqueous phospholipid/cholesterol bilayers (a) Top: General-
ized bilayer state diagram for bilayers of phosphatidylcholines and cholesterol as a function of cho-
lesterol content and temperature, as published by Rheinstädter et al. (2013) [305]. Depending on the 
cholesterol content and the temperature, single states exist within the bilayer (Lα at T > Tm, Pβ′ at T < 
Tm, both at low cholesterol contents; lo at ~30–37 mol% cholesterol; or coexisting states are present 
(Lα and lo, or Pβ′ and lo). At high levels of cholesterol, cholesterol separates as pure crystalline phase 
[305]. Middle: Elaborated diagram for illustrating the situation in the case of aqueous SOPC/choles-
terol bilayers, as determined by differential scanning calorimetry/DSC) (♦,◊) proton magic angle 
spinning NMR (■,□), and deuterium NMR (●,○) measurements, as published by Polozov and 
Gawrisch (2006) [299]. SOPC is 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine, Tm (SOPC) = 6.9 ± 
2.9 °C [101]. Bottom: Elaborated diagram for aqueous POPC/cholesterol bilayers, as determined from 
measurements of the steady state anisotropy of embedded DPH (1,6-diphenylhexatriene) and fluo-
rescence lifetime measurements of t-PnA (trans-parinaric acid), as published by de Almeida et al. 
(2003) [297]. (b) Top: Triangular representation of the domain formation in mixed DOPC/DPPC/cho-
lesterol bilayers at T = 25 °C, determined by analyzing fluorescence micrographs using DPPE-Texas 
Red as fluorescent probe that partitions preferentially into less ordered, liquid domains; see Veatch 
et al. (2004) [298]. The GUVs shown were prepared by “electroformation” at 30% cholesterol and 
the following compositions (from left to right): DOPC/DPPC (2:1), DOPC/DPPC (1:1), and 
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and temperature, as published by Rheinstädter et al. (2013) [305]. Depending on the cholesterol content
and the temperature, single states exist within the bilayer (Lα at T > Tm, Pβ′ at T < Tm, both at low
cholesterol contents; lo at ~30–37 mol% cholesterol; or coexisting states are present (Lα and lo, or Pβ′ and
lo). At high levels of cholesterol, cholesterol separates as pure crystalline phase [305]. Middle: Elaborated
diagram for illustrating the situation in the case of aqueous SOPC/cholesterol bilayers, as determined by
differential scanning calorimetry/DSC) (�,♦) proton magic angle spinning NMR (�,�), and deuterium
NMR (•,#) measurements, as published by Polozov and Gawrisch (2006) [299]. SOPC is 1-stearoyl-2-oleoyl-
sn-glycero-3-phosphocholine, Tm (SOPC) = 6.9 ± 2.9 ◦C [101]. Bottom: Elaborated diagram for aqueous
POPC/cholesterol bilayers, as determined from measurements of the steady state anisotropy of embedded
DPH (1,6-diphenylhexatriene) and fluorescence lifetime measurements of t-PnA (trans-parinaric acid), as
published by de Almeida et al. (2003) [297]. (b) Top: Triangular representation of the domain formation in
mixed DOPC/DPPC/cholesterol bilayers at T = 25 ◦C, determined by analyzing fluorescence micrographs
using DPPE-Texas Red as fluorescent probe that partitions preferentially into less ordered, liquid domains;
see Veatch et al. (2004) [298]. The GUVs shown were prepared by “electroformation” at 30% cholesterol and
the following compositions (from left to right): DOPC/DPPC (2:1), DOPC/DPPC (1:1), and DOPC/DPPC
(1:2) (bars: 20 µm) [298]. Middle: Schematic drawing of unilamellar vesicle and illustration of two liquid
states containing different fractions of the three lipid types; see Honerkamp-Smith et al. (2009) [302]. Bottom:
Schematic model of the effect of cholesterol (long gray bars) on the presence of water molecules (small
gray ellipsoids) near the phospholipid head groups forming the lo state within the bilayer; see M’Baye et al.
(2008) [300]. Reproduced with permission from [305] Elsevier, 2013; from [299], Elsevier 2006; from [297],
Elsevier, 2003; from [296], Elsevier, 2004; from [302], Elsevier, 2009; and from [300], Elsevier, 2008.
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GUVs are particularly useful for visualizing the formation of stable, micrometer-sized
domains. Such domain visualization can be achieved by using a fluorescently labeled lipid
which partitions preferentially into less ordered, i.e., more fluid, domains, as compared to
more ordered and therefore less fluid ones [296,298] (Figure 24b, top). Alternatively, two
different types of fluorescent amphiphilic lipids can be applied as probe molecules [313]
which (i) differ in the physical properties of the hydrophobic chains, and (ii) have different
fluorescent moieties in the polar head group [306,313]. Due to the differences in the
hydrophobic chain properties, the two fluorescently labeled lipid partition selectively into
the ld or lo domains.

Concerning the embedding of membrane-soluble compounds within the vesicle mem-
brane in general, the maximum amount that can be embedded depends on the chemical
structure of the vesicle membrane-forming amphiphiles and on the chemical structure
of the compounds that one likes to embed. A too high amount is expected to result in a
destabilization of the vesicles. From a practical point of view, membrane-soluble molecules
can be added at the beginning of the vesicle preparation, for example, admixed to the
solution of bilayer-forming lipids with which a dried thin film is first formed. Alternatively,
membrane-soluble compounds may also be added to pre-formed fluid vesicles [314].

5.4. The “Remote Loading” of Lipid Vesicles with Certain Water-Soluble Compounds

For many applications, the entrapment of water-soluble compounds within the aque-
ous interior is required; see Chapter 6. For such entrapment, the vesicles can be prepared
by using an aqueous solution containing the molecules to be entrapped for the vesicle
preparation [189]. Depending on the vesicle preparation method, the entrapment may not
be very efficient, for example, in the case of the “ethanol injection method” [212,213], unless
the method is optimized accordingly [315]. In any case, non-entrapped molecules need to
be removed after vesicle preparation, for example, by ultracentrifugation or size exclusion
chromatography [20]. High entrapment yields are possible by using the “reverse phase
evaporation method” [208], the “droplet transfer method [228], the “lipid-coated ice droplet
hydration method” [232,316], or the “dehydration-rehydration method” [191,317,318]. In
the latter case, the molecules to be entrapped inside the vesicles are forced to come in
close contact to the bilayer-forming lipids when an initially formed vesicle dispersion
is dehydrated (removal of water molecules only, for example, by freeze-drying), before
rehydration with water molecules is initiated [317].

The efficient loading of vesicles with water-soluble molecules often is a big challenge
and a bottle-neck for desired applications. The development of the “remote loading
methodology” for the preparation of doxorubicin-containing vesicles [198,319–329] can be
considered as one of the two breakthroughs for the application of vesicles as drug delivery
systems. The second breakthrough was the development of sterically stabilized, PEGylated
liposomes (Figure 16b).

The “remote loading” (also called “active loading”) of phospholipid vesicles with
doxorubicin (also known under the brand name adriamycin) occurs after vesicle forma-
tion by using a pH and ammonium sulfate gradient across the vesicle membrane. At
the applied external alkaline pH, the majority of the added doxorubicin molecules is un-
charged and able to penetrate across the vesicle membrane. At the low pH-value inside
(pH < 5.25)—achieved by buffer species that do not permeate the membrane easily (citric
acid/citrate)—doxorubicin is getting protonated (i.e., charged) and crystallizes (i.e., forms
fibrous precipitates) in the presence of entrapped ammonium sulfate; see Figure 25. With
this, high internal concentrations of doxorubicin can be achieved, important for the use as
a vesicle-based drug delivery system, the first liposomal system that was approved 1995
by the American Food and Drug Administration (FDA). The product is known under the
trade name Doxil®, a dispersion of PEGylated phospholipid vesicles; see Section 6.2.1.
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sents a phospholipid bilayer of a LUV, for example prepared by polycarbonate membrane extrusion; see Section 4.1. [323]. 
The arrows in bold indicate the situation during the loading process; see [324] and text for details. (b) Top: Cryo-TEM 
image of commercial Doxil®, consisting of PEGylated phospholipid vesicles and internal doxorubicin precipitates, ob-
tained via the remote loading mechanism shown in (a); see [324]. Middle: Illustration of the structure of a Doxil® product 
vesicle (not drawn to scale), consisting of internal doxorubicin precipitates and a single bilayer composed of HSPC (hy-
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(DOX-NH2). The reported pKa-value of the protonated form of the amine (-NH3

+) of doxorubicin is 8.15 [323]. Bottom:
Schematic representation of the remote loading of doxorubicin into pre-formed phospholipid vesicles. The loading is
based on trans-membrane ammonium sulfate and pH-gradients, as published by Barenholz (2001) and (2012) [322,324].
The circle represents a phospholipid bilayer of a LUV, for example prepared by polycarbonate membrane extrusion; see
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(b) Top: Cryo-TEM image of commercial Doxil®, consisting of PEGylated phospholipid vesicles and internal doxorubicin
precipitates, obtained via the remote loading mechanism shown in (a); see [324]. Middle: Illustration of the structure of a
Doxil® product vesicle (not drawn to scale), consisting of internal doxorubicin precipitates and a single bilayer composed
of HSPC (hydrogenated soybean phosphatidylcholine), DSPE-PEG2000, and cholesterol [329] (bottom); see Section 6.2.1.
Reproduced with permission from [324], Elsevier, 2012; and from [329], Elsevier, 2016.

6. Selected Examples of Applications of Lipid Vesicles and Related Lipid Aggregates
6.1. Overview

There are many different research areas where lipid vesicles (liposomes) are either
successfully applied as soft compartment systems or where fundamental studies are carried
out towards real applications [186,330,331]; see Figure 26. The types of application can be
divided into two groups. Applications of the first group are in areas where a commercial-
ization of a liposomal product is the target (e.g., for drug delivery or as cosmetic product).
Applications of the second group deal with lipid vesicles as tools for research works in
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academia, for example, as model system for gaining insight into the organization and
properties of the plasma membrane of biological cells. Most of the applications belong-
ing to the first group are driven by creative and innovative ideas as part of fundamental
investigations—often without any direct involvement of the researchers in a translation
of the idea into a “real world application”—there are several commercial liposome-based
products that currently are (or previously were) in commercial use, either for the delivery
of drugs [21–23,138,332–336], as vaccines [336–340], or as cosmetic products [330,341–344].
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Figure 26. Some of the areas where lipid vesicles are used, either in commercial products, for
preclinical or clinical studies (as LUV dispersions), or as tools for fundamental studies in research
laboratories (LUVs or GUVs). Depending on the application, the size and properties of the vesicles
can be tuned; see Chapters 4 and 5.

There are at least five reasons to explain why so many application-oriented studies
involving lipid vesicles were (or are being) published, often ending with the conclusion
that the results obtained with the particular vesicular systems used are (very) promising:

• The good level of understanding of the correlation between chemical structure of an
amphiphile and types of aggregates that can be formed in an aqueous medium and of
the aggregates’ thermodynamic and kinetic properties.

• The remarkable size range within which lipid vesicles can be prepared, from ~30 nm
to 100 µm (and more), and the knowledge about the concepts and methods that
have been elaborated for obtaining stable vesicles with a relatively defined diameter
(preparation methods).

• The knowledge about the concepts that can be used for loading vesicles with desired
water- and/or membrane-soluble ingredients.

• The possibilities of tuning lipid vesicles, basically at will, by incorporating functional-
ized, partially synthetic amphiphiles in the membrane, or by modifying some of the
vesicle-forming amphiphiles present in the membrane after vesicle formation.

• The fact that many of the lipid vesicles prepared with biological lipids as main
membrane-forming amphiphiles are biocompatible, biodegradable and toxicolog-
ically safe [138,335].

Despite these advantages of lipid vesicles, there are also considerable challenges that
need to be considered if one likes to move towards a commercialization:

• The expected costs for the development of a product might be unacceptably high
due to the molecular complexity of specifically engineered vesicles and the method
of vesicle preparation and purification, as compared to the expected quantity that
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one would need to produce and the price consumers would be willing to pay for a
specific product.

• The loading of the vesicles with desired active compounds might not be as efficient as
required.

• The desired long-term storage stability of a liposomal product in dried, lyophilized
state and the reconstitution of the liposomes after rehydration might not always be
easy to achieve [345,346].

For medical applications, these three considerations—among others—often hinder
undertaking steps to move from laboratory investigations to preclinical studies and to
proceed from successful preclinical investigations to clinical trials [138,333,335,347]. There
are, however, also other areas where either sophisticated vesicles are not needed (e.g., for
cosmetics), or a mass production of vesicles is not required. An example of the latter case is
the non-commercial laboratory application of lipid vesicles as model systems for investigat-
ing the physics of biological membranes [181,182,184,348–353] or in origin-of-life research
where lipid vesicles are used as one of the model systems of the hypothetical precursor
compartment structures (“protocells”) that may have preceded the first cells [35,354–363].

In the following, some of the areas where lipid vesicles are applied are briefly men-
tioned, together with a few selected examples to illustrate some of the recent developments.
What is not included here are the many efforts on developing vesicular systems from
fully synthetic, largely non-natural compounds, including vesicles from non-ionic, low
molar mass amphiphiles (also called “niosomes”) [364–366], vesicles from synthetic an-
ionic [367–371] or cationic [367,368,371–375] low molar mass amphiphiles—or mixtures
therefrom [374–378]—or “polymersomes”, i.e., vesicles from amphiphilic block copolymers
(or block cooligomers) [379–385]. Some of these synthetic vesicle systems yielded promising
results in research laboratories, for example, as enzyme-containing reactor units for poten-
tial in vivo applications as artificial organelles [386,387], as additives for guiding chemical
or enzymatic reactions [369,370,388,389], as versatile sensors based on polydiacetylene
vesicles [390–394], etc. Although artificial vesicles are used in cosmetic products [364,390],
a translation of polymersome-based drug delivery systems, for example, into “real world
applications” has not been achieved yet [395].

6.2. Liposome (and “Lipid Nanoparticle”) Applications in Medicine

6.2.1. Doxil®, AmBisome®, Visudyne®, Exparel®, and Inflexal® V

There are large numbers of investigations on the (potential) use of lipid vesicles in
various medical areas, for therapeutic, prophylactic or diagnostic applications. Studies
on liposomal drug delivery dominate, mainly for the treatment of cancer via the delivery
of liposome-encapsulated anti-tumor drugs to tumor cells for inhibiting their growth.
In successful cases, encapsulation of anti-tumor drugs within the liposomes results in
a lower drug toxicity, as compared to the free drug, as well as to a prolongation of the
time the drug stays in the blood circulation after intravenous (i.v.) administration, if the
liposomes are sterically stabilized with a surface bound water-soluble polymer (use of
“stealth liposomes”; see Figure 16b). The improvement of the toxicity profile of a liposomal
anti-cancer drug, as compared to the free drug, yields a better patient compliance and
quality of life [396].

As already mentioned above, several liposomal products currently are in clinical use,
most of them for i.v. administrations [332–335]. Well known is Doxil® (Figure 25b), with
doxorubicin as active agent and HSPC (hydrogenated soybean phosphatidylcholine):
cholesterol:DSPE-PEG2000 (56.51:38.18:5.31, molar ratio) as liposome membrane con-
stituents, 75–90 nm mean size) [25,329,332]. Hydrogenation of soybean PC eliminates
the cis-double bonds present in the PC mixture isolated from soybeans (Table 2), which
results in an increase in Tm, from below 0 ◦C for soybean PC (see Section 2.11) to Tm ~ 54 ◦C
for HSPC [397] (similar to Tm(DSPC) = 54.5 ± 1.5 ◦C [101]). The presence of cholesterol
influences the state of the lipids within the bilayer and the formation of domains, de-
pending on the cholesterol content [397]; see also 5.3. Each liposome in Doxil® contains
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10,000–15,000 doxorubicin molecules [25], corresponding to an overall intraliposomal
concentration of about 45 mM, present as fibrous precipitates. Liposomal systems for
other therapies than anti-cancer were investigated as well, e.g., (i) for the treatment of
fungal infections (AmBisome® (i.v.), containing amphothericin B as active agent, with
HSPC:DSPG:cholesterol:amphotericin B (2:0.8:1:0.4, molar ratio), 100 nm size) [332,398];
(ii) for a photodynamic therapy (Visudyne® (subcutaneously), containing verteporfin as ac-
tive agent with verteporfin:DMPC and EPG (egg yolk phosphatidylglycerol) (1:8, drug total
lipid molar ratio), 150–300 nm size) [332]; or (iii) as local anesthetic depot form formulation
with extended release properties (Exparel®, containing bupivacaine as active agent, with
a mixture of DEPC (1,2-dierucoyl-sn-glycero-3-phosphocholine, C22:1):DPPG:cholesterol
and tricaprylin (=1,2,3-trioctanoylglycerol)), 24–31 µm) [332].

Another application of lipid vesicles is in vaccination, for the prevention of cer-
tain diseases via a prophylactic activation of the immune system [338–340]. One of the
successfully used product was Inflexal® V, applied for several years intramuscularly as
virosomal adjuvant influenza vaccine [338,399–401]. It consisted of 150 nm-sized lipid
vesicles (DOPC:DOPE, 75:25, molar ratio [332]) that contained reconstituted influenza virus
envelopes (the antigen glycoproteins that are localized on the surface of the virus particles,
the “spike proteins”), without the inner capsid proteins and without the capsid-trapped
genetic information (no viral RNA). Figure 27 is a schematic representation of an influenza
virosome, together with an electron microscopy image of such virosome particle [338].
The virosomes were prepared by using the detergent depletion method [402]. A current
challenge for the development of seasonal influenza vaccines that are based on the use
of the spike proteins is the development of production processes of the spike proteins
that are not based on the cultivation of human influenza viruses in eggs, since amino acid
substitutions in the spike proteins may occur in the eggs and cause an antigenic mismatch
between the vaccine and the circulating virus [403].
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ratio) as membrane forming amphiphiles, with the two membrane-integrated antigene glycoproteins (“spike proteins”) 
haemagglutinin and neuramidase, as present in the vaccine product Inflexal® V, as published by Herzog et al. (2009) [338]. 

Figure 27. Application of lipid vesicles for vaccination. Schematic representation (a) and transmission electron microscopy
image (b) of an influenza virosome (diameter: 150 nm) consisting of the phospholipids DOPC and DOPE (75:25, molar
ratio) as membrane forming amphiphiles, with the two membrane-integrated antigene glycoproteins (“spike proteins”)
haemagglutinin and neuramidase, as present in the vaccine product Inflexal® V, as published by Herzog et al. (2009) [338].
This virosome preparation was made by using the “detergent-depletion method” [401,402]; see Chapter 4, Figure 17a.
Reproduced with permission from [338], Elsevier, 2009.

In addition to these selected examples of the application of lipid vesicles for the
treatment of diseases and as prophylactic vaccines, there are more examples of liposomal
products which are in clinical use and many more that currently are in clinical trials (or
were in clinical trials and failed to become commercial products) [354].
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There is also a great potential for the use of liposomes for the treatment of non-
cancer diseases [404]. One example is for the treatment of rheumatoid arthritis (a systemic
autoimmune inflammatory disease) [405–408]. Another example is for the treatment of
hyperammonemic crises, via intraperitoneally administered liposomes for scavenging
excess levels of ammonia [409,410].

Among the most recent developments of liposomes for biomedical applications,
ThermoDox® [332,396,411–413] and Onpattro® (patisiran) [1] are worth mentioning.

6.2.2. ThermoDox®

The concept of ThermoDox® is illustrated in Figure 28. This liposomal product
containing entrapped doxorubicin as active agent was developed as (mild) hyperthermia-
induced liposomal drug release system [414], also called “temperature-sensitive liposomes”,
TSL [412]. The vesicle membrane consists of DPPC, stearoyl-lyso-PC and DSPE-PEG2000, at
a molar ratio of 86:10:4 [332,396,411,412]. The idea behind the development of ThermoDox®

is the controlled and rapid release of doxorubicin as anti-tumor drug at the site of an in-
operable tumor upon locally heating the tumor site [411,412] (Figure 28). The general
concept of such liposomal controlled-release system was already presented in pioneer-
ing fundamental studies by Yatvin et al. (1978) [415] and Weinstein et al. (1979) [416].
Knowledge from basic studies on the main phase transition temperature of phospholipids,
on the temperature-dependent permeability of phospholipid bilayers for water-soluble
molecules (highest at Tm), and on the efficient, active loading of lipid vesicles with dox-
orubicin (via a pH gradient [414]) was essential for the development of ThermoDox®,
which reached phase III clinical studies [417]. The main phase transition temperature of
DPPC is 41.3 ± 1.8 ◦C [101]; see Section 2.12 and Figure 12a. Therefore, high doxorubicin
release is expected to occur at T ~ 41 ◦C. The presence of the “lyso-lipid” stearoyl-lyso-PC
(=1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine = mono-stearoyl-phosphatidylcholine,
abbreviated as MSPC [332,411,413]) in the bilayer results in a slight reduction of Tm (by
~1 ◦C), allowing the drug release at even lower temperature than in the case of pure
DPPC [411,412]. More importantly, however, is (i) the additional effect the micelle-forming
stearoyl-lyso-PC has on the liposomal bilayer permeability at elevated temperature through
the possible formation of pores (see Figure 28), and (ii) the possible permeabilization of the
tumor cells by interaction with the tumor cell membrane; in the fluid state, above T ~ 40 ◦C,
stearoyl-lyso-PC is a micelle-forming amphiphile (with packing parameter p ≤ 1/3; see
Equation (1) in Section 2.3). It behaves like oleoyl-lyso-PC below T = 40 ◦C (see Figure 9).

Conceptually, ThermoDox® belongs to those liposomal drug delivery systems which
are designed for an efficient drug release at the site where the drug is required, and ideally
only on that site (so-called “stimuli-responsive liposomes” that respond either due to an
external stimulus—by heat in the case of ThermoDox® or by light [418], for example—or
due to the particular situation at the target site (pathophysiological conditions [419–421]).
With respect to this second possibility, an innovative approach was developed, which is
conceptually very much along the same line as in the case of ThermoDox®. It is the secretory
phospholipase A2 (sPLA2)-induced destabilization of DPPC vesicles at T = 36–41 ◦C for
the release of anti-cancer drugs at the site of certain tumors, where the sPLA2 activity is
increased due to an overexpression of sPLA2 [422–424]. Compared to the ThermoDox®

approach, a “lyso-lipid” is not present in the vesicle membrane from the beginning, but it
is formed in situ due to the sPLA2-catalyzed hydrolysis of DPPC, yielding palmitoyl-lyso-
PC together with palmitic acid (present in part as palmitate depending on the pH). The
physico-chemical effects the two micelle-forming amphiphiles have on the permeability
of the liposomes and as permeabilizing agents on the tumor cells at the local temperature
conditions are expected to be similar to the effect stearoyl-lyso-PC (MSPC) has in the case
of ThermoDox® [332].
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(so), and fluid, liquid-disordered (ld), domains (at the “grain boundaries”) and forms pores due to 
the micelle-forming propensity of MSPC in its fluid state. Such pore formation explains the rapid 
release of doxorubicin from the liposomes once T = Tm is reached. The schematic drawings of DSPE-
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Figure 28. Application of lipid vesicles as temperature-sensitive drug delivery systems. Top: Schematic representation
of the general concept for the use of temperature-sensitive liposomes (TSLs), as described by May and Li (2013) [412].
Mild hyperthermia (T = 39–42 ◦C) induced by a heating source at the site of the tumor can trigger the burst-release of
anti-cancer drug molecules from administered TSLs. This creates high local concentrations of the drug within the tumor
vasculature, promoting extravasation into the tumor. The hyperthermia also increases the permeability of the tumor cell
membrane (possibly supported by the release of membrane-active components from the TSLs), which leads to increased
drug uptake by the tumor cells. Bottom: Illustration of the suggested effect the lyso-lipid stearoyl-lyso-PC (=mono-stearoyl-
phosphatidylcholine = MSPC) present in the TSL ThermoDox® (together with DPPC and DSPE-PEG2000) is thought to have
at elevated temperature on the liposome permeability towards the entrapped anti-cancer drug doxorubicin, as published by
Landen et al. (2011) [411]. At T ~ Tm, MSPC accumulates between the rigid, solid-ordered (so), and fluid, liquid-disordered
(ld), domains (at the “grain boundaries”) and forms pores due to the micelle-forming propensity of MSPC in its fluid state.
Such pore formation explains the rapid release of doxorubicin from the liposomes once T = Tm is reached. The schematic
drawings of DSPE-PEG2000 illustrates the two temperature-dependent physical states of this amphiphile, “ordered” and
“fluid”. Reproduced from [412], copyright © Taylor and Francis, 2013; and with permission from [411], Bentham Open, 2011.

6.2.3. Onpattro®

Onpattro® (patisiran), FDA-approved in 2018, was developed for the i.v. delivery of
vesicle-entrapped siRNA (short interfering RNA) for the treatment of polyneuropathies
resulting from the hereditary disease transthyretin-mediated amyloidosis, whereby the
entrapped drug (siRNA) acts by inhibiting the synthesis of the transthyretin protein in the
liver (hepatocytes as target cells), as explained by Akinc et al. (2019) [1] in their “Onpattro®
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story”. This “story” is an excellent, important and exciting example of how a commercial
product—and more than that, a useful and versatile platform for the delivery of various
types of RNA or plasmid DNA [3,425–427]—was successfully developed on the basis of
previous fundamental studies dealing with, for example, (i) the aggregation behavior of
amphiphilic lipids in aqueous media, i.e., the influence of the lipid’s molecular shape on the
type of aggregates formed, and (ii) the reproducible preparation of submicrometer-sized
vesicles with a simple procedure (related to the “ethanol-injection method”, whereby rapid
mixing turned out to be essential [3,428,429]).

The role of the lipidic delivery system is to protect the polyanionic siRNA molecules
by entrapping them in the interior of the vesicles, and to allow for the release of the trapped
siRNA molecules in active form inside the hepatocytes, once the “vesicles” (which actually
turned out to be lipid nanoparticles; see Figure 29) are taken up by these cells via endocy-
tosis (mediated by apolipoprotein E which binds to the surface of the lipid nanoparticles
and to the hepatocytes’ apolipoprotein E receptor [1,425]). These requirements could be
fulfilled by (i) using the “helper lipids” DSPC and cholesterol, (ii) a “diffusible” PEGylated
amphiphile (for controlling the size of the lipid nanoparticles and for providing steric
stabilization to prevent aggregation during lipid nanoparticle formation and to increase the
stability in the biological milieu; see Chapter 3), (iii) an appropriate cationic ionizable am-
phiphile (which not only forms a complex with siRNA during lipid nanoparticle formation
but is also responsible for the release of siRNA from the endosomes into the cytoplasm after
endocytosis), and (iv) a suitable preparation method [425,429–433]; see Figures 29 and 30.
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aggregates that are obtained by the procedure used are not conventional lipid vesicles 
(liposomes) with an entirely aqueous interior in which the entrapped molecules are mo-
lecularly dissolved or present as crystalline precipitates (Figure 25). The lipidic siRNA-
containing aggregates contain a substantial amount of lipids in the interior as well, the 
ionizable lipid as stabilizing complex with siRNA, as inverted micelles [425]. For this rea-
son, spherical siRNA-containing lipid aggregates are called lipid nanoparticles (LNPs) and 
not lipid vesicles or liposomes. However, the term “lipid nanoparticle” is frequently also 
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a matter of how LNPs are defined. For this review article, however, we distinguish the 

Figure 29. Morphology of the aggregates and chemical structures of the amphiphilic lipids present in Onpattro®, an
application of lipid nanoparticles (LNPs) for the delivery of siRNA to hepatocytes. Top: (A) Schematic representation
of a cross-section through a spherical LNP containing entrapped siRNA, as published by Kulkarni et al. (2019) [429].
(B) Cryo-TEM image of a dispersion of siRNA-containing LNPs (bar: 50 nm) [429,430]. Bottom: Chemical structures of the
lipids constituting the siRNA-containing LNPs, the phospholipid DSPC, cholesterol, the PEGylated lipid DMG-PEG2000
and the ionizable cationic lipid DLin-MC3-DMA, used at a molar ratio of 10:38.5:1.5:50 [429]. Reproduced with permission
from [429], American Chemical Society, 2019.

Since cationic lipids are known to be toxic [434,435], the key challenge was to design
and synthesize an amphiphile that (i) is able to act as cationic lipid during the lipid nanopar-
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ticle preparation and to promote siRNA release from the acidic endosomes, and (ii) has low
toxicity in neutral form when in contact with cells. To tackle this challenge, detailed basic
studies were necessary for finding an optimal “ionizable” cationic amphiphile which ful-
filled the requirements of serving as siRNA complexing lipid and at the same time being of
low toxicity. After synthesizing more than 300 ionizable lipids, an optimal compound was
found [1,425]. This amphiphile, dilinoleylmethyl-4-dimethylaminobutyrate, abbreviated as
DLin-MC3-DMA (Figure 29) has a tertiary amine in the polar head group, with a pKa ~ 6.4
of the protonated form (difficult to determine experimentally [427]). DLin-MCS-DMA is
positively charged at the acidic conditions used during the initial stage of the nanoparticle
preparation (using an ethanol solution containing all lipids and an aqueous solution con-
taining siRNA at pH = 4.0), and becomes neutral, non-toxic, after the pH is increased to
pH = 7.4 and ethanol is removed by dialysis [430,431,433]; see Figure 30. Once taken up by
the liver cells through endocytosis, the escape of siRNA from the endosomes is promoted
by interactions between positively charged DLin-MC3-DMA molecules, which interact
with negatively charged endogenous lipids, resulting in endosome-disrupting, inverted,
non-bilayer forming structures (pair of cationic and anionic lipids that have the propensity
to form inverted micelles, with packing parameter p > 1) [425].

Overall, this work by Cullis’ team and collaborators is not only remarkable and fas-
cinating, but it is also a nice example for teaching, since it illustrates (i) how important
fundamental studies are, (ii) how important it is to consider details of the chemical structure
of the key molecules involved, (iii) how important the engineering component is for the
preparation of aggregates that are only kinetically stable and not thermodynamically, and
(iv) how important a careful analysis of the samples prepared is, so that further improve-
ments and applications to related delivery challenges are possible [436]. With respect to this
latter point, by using cryo-TEM it became clear that the roughly 100 nm-sized aggregates
that are obtained by the procedure used are not conventional lipid vesicles (liposomes)
with an entirely aqueous interior in which the entrapped molecules are molecularly dis-
solved or present as crystalline precipitates (Figure 25). The lipidic siRNA-containing
aggregates contain a substantial amount of lipids in the interior as well, the ionizable lipid
as stabilizing complex with siRNA, as inverted micelles [425]. For this reason, spherical
siRNA-containing lipid aggregates are called lipid nanoparticles (LNPs) and not lipid vesicles
or liposomes. However, the term “lipid nanoparticle” is frequently also used as general
term to include any type of lipid aggregates with sizes in the sub-micrometer range [1,425].
Therefore, lipid vesicles (liposomes) may also be called LNPs, it is just a matter of how
LNPs are defined. For this review article, however, we distinguish the type of 100 nm-sized
lipidic RNA particles from conventional unilamellar vesicles of similar size (LUVs) by only
calling the type of lipidic siRNA particles as LNPs.

The suggested mechanism for the formation of siRNA-LNPs upon mixing an ethanolic
solution containing the lipids and an aqueous solution containing siRNA, followed by
dialysis and pH value increase, is shown in Figure 30 [430,437].

6.2.4. Lipid Nanoparticle (LNP) mRNA COVID-19 Vaccines

Although mRNA is considerably larger than siRNA [5], the general technology used
for the preparation of siRNA-LNPs is conceptually the same as the one for the preparation
of mRNA-LNPs [425–427,438–440], whereby the structure of the LNPs might be different
in the two cases [5,441–443]. This novel type of mRNA-LNPs is investigated for potential
use in cancer immunotherapy [444], and it was developed successfully as one of the novel
vaccine types against the COVID-19 virus, which spread all over the world and caused the
corona virus (COVID-19) pandemic [3,4]. The ingredients of the two mRNA vaccines that
were developed in 2020 by Pfizer/BioNTech and Moderna and approved worldwide as
first mRNA vaccines are compared in Figure 31 [3,5].
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tion of the events taking place at the first phase of the LNP formation, after mixing at pH = 4.0, as 
published by Kulkarni et al. (2019) [437]. Experiments demonstrate that positively charged lipid 
vesicles form at the beginning, before siRNA molecules interact. The positively charged vesicles get 
then coated by anionic siRNA molecules, which leads to vesicle aggregation and the formation of 
multilamellar structures, which then undergo further transformations as shown in drawings at the 
bottom. Bottom: Proposed mechanism for the formation of siRNA-containing LNPs in the second 
phase of the preparation process, as published by Kulkarni et al. (2018) [430]. Upon neutralization 
by dialysis with PBS (pH = 7.4) of the cationic ionizable lipids present in the dispersion of multila-
mellar structures, which form in the first phase at pH = 4.0, the cationic ionizable lipids get deproto-
nated and generate a metastable oil-phase, which transforms via fusion processes to the final LNPs 
with surface localized PEG chains and internal siRNA molecules that are sandwiched between lay-
ers of lipids and a lipid core consisting of neutralized lipids [430,437]. Reproduced with permission 
from [437], Royal Society of Chemistry, 2020; and from [430], American Chemical Society, 2018. 
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in the two cases [5,441–443]. This novel type of mRNA-LNPs is investigated for potential 
use in cancer immunotherapy [444], and it was developed successfully as one of the novel 

Figure 30. Schematic representation of the formation of siRNA-lipid nanoparticles (LNPs) for the delivery of siRNA to
hepatocytes. Top, left: Drawing of the rapid mixing of an ethanolic solution containing the lipids in appropriate concentration
and ratio (lipids in water-miscible organic solvent) with an aqueous solution of siRNA in buffer solution at pH = 4.0, using a
T-mixer, followed by dialysis (buffer exchange to PBS at pH = 7.4), from Kulkarni et al. (2020) [437]. Top, right: Illustration of
the events taking place at the first phase of the LNP formation, after mixing at pH = 4.0, as published by Kulkarni et al.
(2019) [437]. Experiments demonstrate that positively charged lipid vesicles form at the beginning, before siRNA molecules
interact. The positively charged vesicles get then coated by anionic siRNA molecules, which leads to vesicle aggregation
and the formation of multilamellar structures, which then undergo further transformations as shown in drawings at the
bottom. Bottom: Proposed mechanism for the formation of siRNA-containing LNPs in the second phase of the preparation
process, as published by Kulkarni et al. (2018) [430]. Upon neutralization by dialysis with PBS (pH = 7.4) of the cationic
ionizable lipids present in the dispersion of multilamellar structures, which form in the first phase at pH = 4.0, the cationic
ionizable lipids get deprotonated and generate a metastable oil-phase, which transforms via fusion processes to the final
LNPs with surface localized PEG chains and internal siRNA molecules that are sandwiched between layers of lipids and a
lipid core consisting of neutralized lipids [430,437]. Reproduced with permission from [437], Royal Society of Chemistry,
2020; and from [430], American Chemical Society, 2018.

Compared to the lipids of the siRNA-LNPs of Onpattro® (Figure 29), there are differ-
ences in the chemical structures of the cationic ionizable lipids and the PEGylated lipids in
the two mentioned mRNA COVID-19 vaccines (Figure 31), while the “helper lipids” are
the same, DSPC and cholesterol. Cryo-TEM images of mRNA-LNPs show that they may
have a non-spherical structure, with a non-homogeneous distribution of mRNA within the
particles, depending on the conditions [5,427,445], different from Onpattro® siRNA-LNPs;
see Figure 29. What seems to be evident is that the interior of the mRNA particles contains
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the ionizable cationic lipid that is present in large quantities, and water, forming inverted
micelle-like structures, as illustrated in Figure 31.
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Figure 31. Novel application of lipid nanoparticles (LNPs) for the delivery of mRNA for vaccination.
Top: Chemical structures of the lipids present in the first two FDA-approved COVID-19 mRNA-
LNP vaccines that were developed by Pfizer/BioNTech (left) and Moderna (right) used in 2021
for vaccination; see Buschmann et al. (2021) [3]. Bottom, left: Schematic representation of two
of the models that were proposed for the structure of siRNA-LNPs or mRNA-LNPs, either with
a “nanostructured core” [442,443] (top), or with a “homogenous core” (bottom). The drawings
illustrate the possible situations in the case of siRNA-LNPs, modified drawing published in [441].
The “homogenous core model” got support from dynamic nuclear polarization-enhanced NMR
spectroscopy; see Viger-Gravel et al. (2018) [441], and see also [5]. In both cases, the LNPs are
assumed to be spherical with the ionizable cationic amphiphiles being localized mainly inside the
particles, together with a substantial amount of aqueous solution, forming inverted internal structures
to which mRNA molecules are associated. Bottom, right: Drawing of a mRNA-LNP, as published by
Buschmann et al. (2021) [3]. Each mRNA-LNP contains 1-10 mRNA molecules [3]. Reproduced with
permission from [441], American Chemical Society, 2018; and from [3], MDPI AG, 2021.

The mRNA LNP vaccines are administered intramuscularly as in the case of the
virosomes mentioned above (see Figure 27). The key difference in terms of immunization
between administered mRNA-LNPs and virosomes is that in the case of the virosomes
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antibodies are directly formed against the delivered antigen proteins localized on the
surface of the virosomes, while for mRNA-LNPs, the spike protein antigens need to be
synthesized first within the cells into which the mRNA-LNPs enter, at the cells’ ribosomes—
on the basis of the RNA nucleotide sequence of the mRNA that is released from the
LNPs into the cytosol—before the antibodies against the synthesized spike proteins are
formed [440,446,447].

6.2.5. Lipid Vesicles for Transdermal or Oral Drug Delivery Applications

Another intensively investigated route for the delivery of drugs is across the skin,
so-called transdermal drug delivery [448–451]. Although progress has been made over the
years, mainly by making the lipid vesicles flexible (“deformable”) by using mixtures of
PCs and micelle-forming amphiphiles (e.g., lyso-PC [450] or bile salts [27,448–450]), it is in
general difficult to overcome the barrier provided by the outermost horny layer of the skin,
the stratum corneum. The general concepts behind these investigations were elaborated by
fundamental studies on the phase behavior of amphiphiles, as mentioned in Chapter 2.
Some of the transdermal and topical drug delivery systems that were developed are known
as Transfersomes®, invasomes, and ethosomes [450,452].

A final example for biomedical applications of liposomal systems highlighted in this
review article is the one illustrated in Figure 32, as published by Uhl et al. (2021) [453]. It is
about the potential use of specifically designed liposomes as carrier system for oral drug
delivery. As drug, the glycopeptide antibiotic vancomycin was used. The challenge for the
preparation of liposomal oral drug delivery systems is (i) to overcome the chemical and col-
loidal instability of conventional lipid vesicles in the stomach (acidic milieu, pH ~ 1.0–2.0,
presence of acid proteinases) and in the small intestine (slightly alkaline milieu, presence
of alkaline proteinases and micelle-forming bile salts), (ii) to succeed in high drug loadings
inside the vesicles; and (iii) to achieve efficient drug permeation across the mucosal layer
once the vesicles reach the small intestine. In the work of Uhl et al. (2021) [453], these
three requirements could be fulfilled (i) by using in addition to the main lipids egg PC and
cholesterol bipolar tetraether lipids isolated from the thermoacidophile archaeon sulfolobus
acidocaldarius (containing ether bonds which are chemically more stable than the ester
bonds that are present in PCs, and bearing two polar head groups of variable chemical
structure) [454,455]; (ii) by using an additional phospholipid carrying a cell penetrating
peptide (CPP) covalently linked to the lipid’s polar head group; and (iii) by applying the
“dual asymmetric centrifugation method” for efficient drug loading (a centrifugal homoge-
nization of a concentrated lipid dispersion containing the drug, followed by dilution with
an aqueous solution) [456,457]; see Figure 32. The CPP had a cyclic structure (consisting
of nine arginines and one lysine, R9K) to provide a higher stability against proteinase-
catalyzed hydrolysis, as compared to a linear CPP. The results obtained from preclinical
in vivo studies are promising (high therapeutic efficacy) [453]. In addition to this specific
example, it may well be that the number of promising lipid-based formulations for oral
drug delivery will increase in the future [458], not only for the delivery of antibiotics [459].

6.3. Bioanalytical Applications of Lipid Vesicles (Bioassays and Biosensors)

In addition to the use of synthetic polydiacetylene-based vesicles as colorimetric
and fluorimetric sensor systems towards various chemical, biological and physical stim-
uli [390–393], there is a large number of studies on the application of lipid vesicles from
naturally occurring amphiphiles in biosensor devices and for bioassays [460–467]. This
type of analytical application is based on three fundamental properties of lipid vesicles:
(i) the possibilities of external vesicle surface functionalization (Figure 22) [463,465], (ii) the
possibilities of entrapping water-soluble molecules in the aqueous interior of the vesicles,
and (iii) the possibilities of immobilizing the vesicles on a solid surface, either via covalent
bonds [468,469] or noncovalently, for example through the biotin-avidin (or streptavidin)
system [470–472].
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Figure 32. Application of lipid vesicles for oral drug delivery. Top: Illustration of the challenges
and concept of the work published by Uhl et al. (2021) [453], for the oral delivery of vancomycin
(filled yellow circles) entrapped inside lipid vesicles. Top left: Limitations of the use of conventional
liposomes due to chemical instability at the acidic conditions of the stomach, which results in
undesired drug release. Top, center: Increased vesicle membrane stability in the presence of bipolar
tetraether lipids (TELs). Top right: Increased permeation across the mucosal layer of the small intestine
due to the use of lipids carrying a cyclic cell penetrating peptide (CPP) in the polar head group.
Middle: Chemical structures of the lipids used in addition to cholesterol. The phospholipid shown
is POPC, a representative for the mixture of egg yolk PC (1) that was used [453]. The TELs are
mixtures of glycerylcaldityltetraether lipids (2), isolated from Sulfolobus acidocaldarius. For the polar
head group R, see for example Chong et al. (2012) [454]. The lipidic CPP-conjugate is a head group-
modified double chain phospholipid with two palmitoyl chains (3). The following molar ratio was
used: phospholipid (1): cholesterol:bipolar tetraether lipid (2): CPP-conjugate (3) = 84:10:5:1 [453].
Bottom: Cryo-TEM image of the CPP-modified vesicles (D1) and of “control vesicles” consisting of
(1) and cholesterol (9:1, mol ratio) only (D2) (bar: 100 nm). The vesicles were prepared by the dual
asymmetric centrifugation method [456,457]. Reproduced with permission from [453], Wiley-VCH,
GmbH, 2021.
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In one type of approach, vesicle surface-localized functional groups can serve as
specific binding sites for analyte molecules, whereby the trapped molecules “report” this
analyte binding through a detectable signal, which correlates with the analyte binding
event. This concept was applied in the work reported by Sforzi et al. (2020) [466]. DPPC
vesicles were used for a fast, simple, and reproducible detection of single or double
stranded DNA in biological samples (serum), as demonstrated by first proof-of-concept
experiments. The analyte (DNA) binding step of this bioassay is illustrated in Figure 33.
The principles of the DNA quantification on the basis of DPPC vesicles (Figure 33, left)
and streptavidin-coated magnetic Sepharose beads (Figure 33, right) is the following.
The DNA fragment to be quantified (the analyte) is the “TARGET” fragment. For the
detection of this TARGET fragment, two conjugates need to be synthesized. The first
one is a conjugate between biotin and an oligonucleotide fragment (the “ANCHOR”),
which is complementary to the sequence at the 3′ end of the TARGET fragment (“Biotin-
TEG”). Incubation of the biotin-ANCHOR conjugate with streptavidin-coated beads leads
to a binding of the biotin-ANCHOR conjugate to the beads. Further incubation with the
TARGET fragment results in binding of the TARGET fragment to the surface of the beads
while the sequence at the 5′ end remains free for binding to DPPC vesicles containing
entrapped 5(6)-carboxyfluorescein (CF) and a surface-localized oligonucleotide sequence
(the “PROBE”), which is complementary to the free sequence at the 5′ end of the TARGET
fragment. The PROBE is conjugated to cholesterol, the second conjugate to be prepared
for this assay system, to keep the PROBE on the surface of the DPPC vesicles through an
insertion of the cholesteryl moiety into the DPPC bilayer [473].

Experimentally, pure DPPC LUVs were first prepared by using the polycarbonate membrane
extrusion method (see Chapter 4, extruded at T = 56 ◦C > Tm (DPPC) = 41.3± 1.8 ◦C [101], with
200 nm membranes for the final extrusions) in the presence of 50 mM 5(6)-carboxyfluorescein
(CF) in 3.8 mM HEPES buffer, 0.15 M NaCl, pH = 7.4 [466]. At this high concentration,
the fluorescence of CF is quenched due to dimer formation [474,475]. After separation of
the non-entrapped CF molecules from the extruded vesicles by extensive dialysis of the
aqueous vesicle dispersion against isotonic HEPES/NaCl solution (to avoid leakage of
CF from the vesicles, which may occur in osmotically unbalanced systems), the vesicles
had a diameter of 110 ± 31 nm (as determined by dynamic light scattering measurements)
and were stable for at least 4 months if stored at T = 4 ◦C (in the so state) [466]. The
cholesteryl-PROBE conjugate was added to the DPPC LUVs for spontaneous insertion of
the cholesteryl moiety at T = 4 ◦C [466], followed by removal of non-associated conjugate
molecules by dialysis. After mixing an aqueous dispersion of the magnetic Sepharose
beads with surface-bound TARGET fragments with an aqueous dispersion of DPPC LUVs
containing the PROBE on their surface, binding of the vesicles to the beads occurred. Upon
washing with buffer solution to remove excess vesicles, the amount of vesicles bound to the
magnetic beads was quantified by determining the amount of CF bound to the beads, which
is expected to be proportional to the amount of DNA in the sample. Quantification of the
amount of CF was done by adding Triton X-100 which caused CF-leakage from the vesicles
and resulted in an increase in fluorescence (λex = 492 nm, λem = 517 nm) due to CF dilution
caused by CF diffusion from the vesicles into the bulk solution. Such CF leakage occurs
upon addition of the micelle-forming amphiphile Triton X-100, due to a transformation
of the DPPC:cholesteryl-PROBE vesicles into mixed vesicles and finally mixed micelles,
depending on the amount and concentration of added Triton X-100 [148,476–478].

With this liposomal assay, a TAREGET DNA fragment as analyte could be detected at
a concentration of 7 × 10−11 M in HEPES buffer and 0.8 × 10−8 M in serum. Although this
latter concentration is higher than the desired detection limit for analyzing free serum DNA
associated to cancer diseases, an optimization at the level of the vesicles used might still be
possible and could result in a more sensitive assay than the one developed so far [466].
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Figure 33. Application of dye-containing lipid vesicles in a bioassay for the quantitative determi-
nation of DNA, as published by Sforzi et al. (2020) [466]. Top: The first part of the assay of an
oligonucleotide TARGET fragment as analyte is shown. This first part is the interaction between
(i) DPPC LUVs containing encapsulated 5(6)-carboxyfluorescein (CF) at a self-quenching concentra-
tion and a membrane-embedded cholesteryl-PROBE conjugate, the PROBE being an oligonucleotide
with a sequence that is complementary to the oligonucleotide sequence at the 5′ end of the TAR-
GET fragment (left hand side) and (ii) streptavidin-coated magnetic Sepharose beads with a surface
bound biotin-ANCHOR conjugate, the ANCHOR being an oligonucleotide with a sequence that is
complementary to the oligonucleotide sequence at the 3′ end of the TARGET fragment (right hand
side). The TARGET fragment acts as linker unit for the binding of the CF-loaded DPPC LUVs to the
magnetic beads. Bottom: The second part of the assay is the release and quantification of CF from the
beads-bound DPPC LUVs by adding the micelle-forming surfactant Triton X-100, as illustrated by
Dalgarno et al. (2020) [478] for dispersed vesicles. “Expansion” means mixed lipid-detergent vesicles
that increase in mass and size after addition of Triton X-100 before micellization starts; see [478] for
details. Reproduced with permission from [466], American Chemical Society, 2020; and from [478],
Springer Nature, 2019.

Another possible bioanalytical application of liposomes is their use as enzyme-containing
amplification system in immunoassays [479], conceptually related to the liposomal quan-
tification system just described. A selected example is the one described by Lin et al.
(2017) [480]. In that work, liposomes containing entrapped horseradish peroxidase (HRP)
were used as colorimetric amplification system in an immunoassay for the quantification
of influenza virus H5N1. The concept of the work is shown in Figure 34 and explained in
the following. Lipid vesicles consisting of egg PC, cholesterol, and DSPE-PEG2000-biotin
(at an initial molar ratio of 70:28:2) were prepared by first dissolving the three lipids in
ethanol. A volume of 0.25 mL of this ethanol solution was then added to 10 mL of an
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aqueous phosphate buffer solution (pH = 7.4) containing HRP. During the mixing of these
two solutions, vesicle formation occurred with some of the biotin moieties being localized
on the outer vesicle surface, and some of the HRP molecules becoming entrapped inside
the vesicles (ethanol injection method; see Figure 17a). The obtained vesicle dispersion was
sonicated using a probe-type sonicator (for vesicle size reduction and homogenization),
followed by removal of non-entrapped HRP by size exclusion chromatography (using
Sephadex G-100). It seems that the sonication conditions used did not lead to a substantial
HRP inactivation. The size of the obtained HRP-containing lipid vesicles with surface
bound biotin was ~100 nm [480]. The vesicle dispersion was stored at T = 4 ◦C until use in
the way shown in Figure 34.
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A 96-well microplate was coated with H5N1 antibodies (so-called “capture antibod-
ies”) via simple adsorption. After washing steps, a dispersion of H5N1 virus particles (the 
antigens) was added and incubated to allow for binding of the virus particles to the cap-
ture antibodies. After a washing step, a solution of biotinylated H5N1 antibodies (so-
called “detection antibodies”) was added. After incubation and a washing step, a solution 
of streptavidin was added so that the biotin molecules covalently linked to the capture 
antibody could bind to one of the four binding sites of streptavidin. After a further wash-

Figure 34. Application of enzyme-containing lipid vesicles in an immunoassay for the quantitative determination of
influenza virus H5N1, as published by Lin et al. (2017) [480]. (a) Illustration of the concept of the method. A capture
antibody is adsorbed onto the solid surface of a 96-well microplate. The antigens present in the analyte medium—
H5N1 virus particles—bind selectively to the surface-bound capture antibody. Addition of a biotinylated detection
antibody results in binding of the biotinylated capture antibody to the antigen. Following addition of streptavidin,
added biotinylated lipid vesicles containing entrapped horseradish peroxidase (HRP) bind to streptavidin. After washing,
quantification of HRP is achieved by using 3,3′,5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) as substrates
at pH ~ 4–5, whereby HRP may leak from the vesicles. (b) The one-electron oxidation of two TMB molecules—followed by
a disproportionation reaction—yields a blue colored charge-transfer complex between the diimine product and TMB, with
λmax ~ 650 nm; see [481]. The liposomes were prepared from egg PC, cholesterol and DSPE-PEG2000-biotin; see [480] for
details. Reproduced with permission from [480], Elsevier, 2017.

A 96-well microplate was coated with H5N1 antibodies (so-called “capture antibod-
ies”) via simple adsorption. After washing steps, a dispersion of H5N1 virus particles (the
antigens) was added and incubated to allow for binding of the virus particles to the capture
antibodies. After a washing step, a solution of biotinylated H5N1 antibodies (so-called
“detection antibodies”) was added. After incubation and a washing step, a solution of strep-
tavidin was added so that the biotin molecules covalently linked to the capture antibody
could bind to one of the four binding sites of streptavidin. After a further washing step, an
aqueous dispersion of the lipid vesicles with surface-bound biotin and entrapped HRP was
added, followed by incubation to allow binding between the biotinylated vesicles and strep-
tavidin. After a final washing step to remove unbound vesicles, the amount of remaining
HRP was determined by using TMB (3,3′,5,5′-tetramethylbenzidine) and hydrogen perox-
ide (H2O2) as HRP substrates. For the enzymatic reaction to be successful, both, H2O2 and
TMB, need to reach the heme group at the active site of the enzyme. For the small and neu-
tral H2O2 molecule, the vesicle bilayer is expected to be quite permeable [482]. In contrast,
for TMB, the situation in terms of lipid bilayer permeability is expected to depend on pH
(the pKa values of the protonated amines of TMB are about 4.0 and 3.1, respectively [483]).
Since there is no doubt that the HRP-catalyzed oxidation reaction took place under the
assay conditions (reported blue color development, Figure 34a), it seems that either TMB
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could permeate into the vesicles once TMB was added, or the HRP molecules were released
from the vesicles. This latter possibility is indicated in Figure 34a. A quantification of
the oxidation of TMB was carried out by analyzing the formation of the charge-transfer
complex which has a blue color, with an absorption maximum at λmax ~ 650 nm [481];
see Figure 34b. The use of liposomal HRP allowed the selective detection of H5N1 virus
particles at 0.1–0.4 ng/mL, with a detection limit of 0.04 ng/mL, much lower than in the
case of a conventional enzyme-linked immunosorbent assay (ELISA), [480], where only
one enzyme molecule is covalently attached to a detecting antibody. It seems that the lipid
vesicles contained several HRP molecules, although this was not determined in the work
carried out by Lin et al. (2017) [480].

In the final example about bioanalytical applications of lipid vesicles we would like to
mention here, L-lactate was quantified in blood samples by using giant vesicle-trapped
L-lactate oxidase from Aerococcus viridans (LO [484,485]), HRP, and the fluorescent HRP
substrate “sulfo-cyanine 7 carboxylic acid” [486]; see Figure 35. The two enzymes (LO and
HRP) and sulfo-cyanine 7 carboxylic acid (λmax = 750 nm, fluorescent, λmax,em = 773 nm)
were entrapped inside lipid vesicles formed from DPPC, cholesterol, and DSPE-PEG2000
(15.3:18.4:0.3, molar ratio) at pH = 7.4 by using a 50 mM sodium phosphate buffer solution
containing NaCl to yield an osmolality of 300 mOsm/kg. The vesicles were obtained by
spontaneous hydration of a previously prepared dried lipid film with the buffer solution
containing the two enzymes and sulfo-cyanine 7 carboxylic acid, to obtain a total lipid
concentration of 34 mM and 100 µM sulfo-cyanine 7 carboxylic acid, followed by a heating
(to T = 56 ◦C) and vortexing protocol; see [486] for details. Non-entrapped compounds
were separated from the vesicles by using size exclusion chromatography (Sepharose CL-6B
and Miditrap G-25). The vesicles obtained had a unimodal size distribution with a median
diameter of about 7-8 µm. Bovine whole blood samples to which a defined amount of
L-lactate was added were then analyzed. To optimize vesicle bilayer permeability, the pH-
value of the blood was lowered from pH = 7.4 to 6.1 to increase the amount of protonated
lactate (i.e., lactic acid, pKa ~ 3.9 [487]) over lactate, and with this to increase the vesicle
bilayer permeability of the analyte as compared to the pH = 7.4 conditions; see the concept
of the “remote loading of vesicles” in 5.4. After adding the blood sample to a portion of
the vesicle dispersion, the lactic acid molecules could permeate from the external bulk
medium to the interior of the vesicles, where the oxidation of lactate to pyruvate and
hydrogen peroxide (H2O2) could take place. The formed H2O2 oxidized HRP, which in
turn oxidized sulfo-cyanine 7 carboxylic acid, which resulted in a loss of the absorption
with maximum centered around λ = 750 nm and as a consequence to a concomitant loss
in fluorescence. With this liposomal assay, the decrease in relative fluorescence intensity
was found to be directly proportional to the lactate concentration in the blood sample.
Quantification was possible between 0.2 and 5.0 mM L-lactate (final concentration in the
assay), corresponding to 1.25–20 mM in the blood [486]. Using instead of LO other oxidases
may allow the quantification of other metabolites in blood, e.g., D-glucose [486].

6.4. Application of Lipid Vesicles in Food Processing and Nutrition

There have been a number of studies on the use of lipid vesicles (liposomes) in
various areas of food industry [488] and nutrition [489], as dietary supplements (nu-
traceuticals [489–493]), for promoting the processing of food (for example, in cheese pro-
duction, [494,495]), or for the prevention of bacterial growth (using liposome-entrapped
antimicrobial peptides [496–498]); see Figure 36a. Often, the role the liposomes should
play in these applications is to protect entrapped sensitive ingredients from being de-
graded [490]. Another possibility is to include antioxidants (e.g., α-tocopherol, β-carotene,
vitamin C), flavor molecules, or vitamins that may not have antioxidant activities [490].
Due to the particular structure of liposomes, the co-loading of water-soluble as well as
membrane-soluble molecules within the same liposomes—for example vitamin C and
β-carotene (Figure 36b)—is possible for potential applications as food additives [499].
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In the case of the application of liposomes for the production of cheese, in the pi-
oneering work of Kheadr et al. (2000) [494], negatively charged phospholipid vesicles
containing entrapped proteinases were added to the curd in Cheddar cheese production
for controlling the development of cheese flavor and texture. With the exception of lipo-
somal nutritional products that are (or were) commercially available [489], there is not
(yet) much known about real applications of liposomal preparations in the food industry,
despite the many efforts and many possibilities lipid vesicles offer [491,500–505]. This
is somewhat surprising because one of the advantages of vesicles prepared with natural
amphiphiles is their biocompatibility and the beneficial health effects phospholipids can
have by themselves [506–509]. As discussed previously [488], reasons that may hinder
real applications include (i) a lack of knowledge about the interaction of the liposomes
(and possibly entrapped or membrane-embedded active ingredients) with the food compo-
nents, (ii) the costs of the amphiphilic raw materials for the formation and loading of the
liposomes, (iii) not yet developed simple and reproducible methods for a cheap liposome
manufacturing, and (iv) lack of a deep knowledge about the fate of the liposomes in the
gastrointestinal tract.

Concerning the required cheap and efficient large scale industrial production of
liposomes containing desired ingredients of nutritional benefit, for example, by microflu-
idization [498], one recent example worth mentioning is the development of oral liposomal
vitamin C, as published by Łukawski et al. (2020) [510] (Figure 37) and Prantl et al.
(2020) [511]. In both studies, lipid vesicles were prepared by using a water-miscible or-
ganic solvent which is nutritionally and pharmacologically accepted, glycerol [510], or
ethanol [511], whereby the phospholipid products and the general procedure applied for
the preparation of the vesicles containing entrapped vitamin C (as sodium ascorbate or
ascorbic acid) were quite different. Therefore, it is not surprising that the characteristics of
the two liposome dispersions prepared were also rather different.
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Figure 37. Applications of lipid vesicles for the delivery of food supplements. Cryo-TEM image of a soybean PC/“rape
seed lecithin” vesicle dispersion containing entrapped vitamin C, as obtained by a simple procedure involving the use of
glycerol and mechanical mixing steps, as published by Łukawski et al. (2020) [510]. Reproduced with permission from [510],
Taylor & Francis, 2020.

Łukawski et al. (2020) [510] used soybean phosphatidylcholine (Phospholipon 90 G,
i.e., a mixture of unsaturated phosphatidylcholines from soybeans, with 94–100% PC [512])
and a crude phospholipid mixture from rapeseeds containing PCs but also other phospho-
lipids. This phospholipid mixture is called “rapeseed lecithin” by the producer because
in agriculture and food technology, the term “lecithin” is used for phospholipid mixtures
and not for phosphatidylcholines only; see Table 2. Aqueous phospholipid dispersions at
higher than 20 wt% lipid were prepared to optimize the vitamin C encapsulation efficiency.
The liposomes were obtained by using a glycerol solution containing the lipids (50 wt%)
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and an aqueous solution containing vitamin C (20 wt% vitamin C). Interestingly, and
remarkably, simple mixing of these two solutions resulted in a rather homogeneous, highly
viscous, gel-like vesicle dispersion. A cryo-TEM analysis of the vitamin C-containing
vesicles indicated the presence of mainly unilamellar vesicles with 180 ± 30 nm diameter
(Figure 37), which was in good agreement with dynamic light scattering measurements
(168 ± 25 nm) [510]. Therefore, the simple procedure used not only yielded rather well
defined vesicles, but the method also appears applicable to large volumes. Overall, this
liposomal vitamin C showed elevated bioavailability if compared to an aqueous vitamin C
solution, as demonstrated by analyzing the vitamin C content in the serum of 20 volunteers
after oral administration [510]. Such enhanced bioavailability in humans was also found in
the work of Prantl et al. (2020) [511]. In that work, however, a powder from sunflower seeds
(“sunflower lecithin”) was used, ethanol as water-miscible solvent and bath sonication for
dispersing the lipids and for homogenizing the vesicle dispersion to some extent. This
mechanical treatment resulted in a reported size range of the vesicles between 400 nm and
3 µm [511].

In both studies relatively crude phospholipid mixtures and simple preparation pro-
cedures were used. This appears an advantage for real applications. Nevertheless, based
on the data available from literature, it seems that more fundamental studies are required,
as applications of lipid vesicles in food science and technology are still under develop-
ment. The beneficial health effects that some of the vesicle forming phospholipids are
known to have [506–509] should make this type of application very attractive for further
investigations.

6.5. Application of Lipid Vesicles for Membrane Protein Reconstitution, for the Preparation of
Synthetic Cell-like Compartments (“Artificial Cells”), and as Models of “Protocells”

Lipid vesicles have been used for many years as biomembrane-mimicking model
systems for the reconstitution and investigation of membrane proteins; see also the related
application of virosomes (Figure 27). Membrane protein-containing lipid vesicles are called
“proteoliposomes” [513–515]. Systematic studies on the detergent-assisted reconstitution
of membrane proteins in LUVs were carried out by Rigaud, Lévy, and their collabora-
tors [516–518], and with GUVs by Rigaud, Bassereau, Lévy, and coworkers [519–525].

Although the general concepts for transferring membrane proteins from their native
environments into the membranes of artificial vesicles are straightforward, details of the
procedures are important to elaborate if one aims at retaining the membrane proteins’
activities. An optimization is required for each type of protein. One of the procedures
for membrane protein reconstitution in LUVs is shown in Figure 38 [518]; approaches for
membrane protein reconstitution in GUVs are summarized in Figure 39 [523].

In many of the procedures applied a “mild” micelle-forming detergent was used
(for example, sodium cholate, n-octyl-β-D-glucopyranoside, or n-dodecyl octaethylene
glycol ether, [520]). They allow in an initial step the solubilization of membrane proteins by
extracting them from a biological membrane into mixed detergent/membrane lipid micelles
(Figure 38). Detailed experiments with Ca2+-ATPase and bacteriorhodopsin showed that a
desired orientation of this membrane protein within the bilayer of LUVs could be achieved
to a larger extent than statistically expected so that the directional transport of Ca2+ or H+

across egg PC/egg PA (9:1, molar ratio) bilayers of LUVs from the external medium into
the trapped vesicle volume was possible [517,519,520].

For the preparation of proteoliposomes with asymmetric lipid membranes, the prepa-
ration of asymmetric LUVs containing membrane-embedded proteins was shown to be
possible by an exchange of some of the outer lipids after membrane protein reconstitution
by using cyclodextrin [526]; see also Section 4.4. With such procedure, the preparation of
sophisticated cell membrane-mimicking vesicle systems is possible for investigation of the
influence of the lipid asymmetry on the activity of membrane proteins.
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Figure 38. Membrane protein reconstitution in LUVs. (a) Schematic representation of the concept of one of the procedures 
that were developed for the preparation of LUVs containing a desired membrane-embedded protein (“proteoliposomes”) 
by using a micelle-forming amphiphile (detergent). The procedure consists of four main steps, as described by Rigaud and 
collaborators [517,521]. Step 1: The membrane protein (1), which originally was present in a biological membrane (2), is 
first solubilized with detergent molecules (3) as mixed micelles (4). The mixed micelles contain some of the biomembrane 
lipids (5), and the mixed micelles are in dynamic equilibrium with non-associated detergent molecules. After purification 
(step 2), excess bilayer-forming lipids (6) and detergents (3) are first added (step 3, the case of added mixed lipid-detergent 
micelles is shown (7); see (b) for other possibilities). Step 4: The detergent molecules are then removed (by polystyrene 
bead adsorption, dialysis, size exclusion chromatography or dilution) to yield lipid vesicles with the desired membrane 
protein embedded within the vesicle bilayer (8). (b) Top: The three possibilities for adding excess detergent and lipid to a 
solubilized and purified membrane protein; see step 3 in (a). I: Mixed lipid-detergent vesicles that are saturated with de-
tergent molecules, existing in equilibrium with non-associated detergent molecules. II: Mixed lipid-detergent vesicles that 
are saturated with detergent molecules, coexisting with mixed detergent-lipid micelles, existing in equilibrium with non-
associated detergent molecules. III: Mixed detergent-lipid micelles, existing in equilibrium with non-associated detergent 
molecules. Please note that in all these cases, the concentration of non-associated lipid molecules is assumed to be negli-
gibly small. This assumption holds for conventional bilayer-forming phospholipids like POPC, CVC(POPC) ~ 10−10 M 
[127,128] (see Section 2.15). The drawings are slightly modified versions of previously published figures, [518]. Bottom: 
Freeze-fracture electron microscopy image of LUVs containing membrane-embedded bacteriorhodopsin from Halobacte-
rium halobium (bar: 500 nm); see [516]. The sample was prepared from a 9:1 molar mixture of egg PC and egg PA without 
any detergent, but instead by using the “reverse-phase evaporation method” (see Figure 17a), followed by polycarbonate 
membrane extrusion using membranes with average pore diameters of first 400 and then 200 nm, yielding LUVs with a 
relatively broad size distribution centered around 150 nm. High resolution images show that about 20–200 membrane-
embedded proteins are present per LUV, depending on the protein to lipid ratio used; see [516]. Reproduced with small 
modifications from [191], American Scientific Publishers, 2004; and with permission from [516], Elsevier, 1987. 

Figure 38. Membrane protein reconstitution in LUVs. (a) Schematic representation of the concept of one of the procedures
that were developed for the preparation of LUVs containing a desired membrane-embedded protein (“proteoliposomes”)
by using a micelle-forming amphiphile (detergent). The procedure consists of four main steps, as described by Rigaud and
collaborators [517,521]. Step 1: The membrane protein (1), which originally was present in a biological membrane (2), is first
solubilized with detergent molecules (3) as mixed micelles (4). The mixed micelles contain some of the biomembrane lipids (5),
and the mixed micelles are in dynamic equilibrium with non-associated detergent molecules. After purification (step 2), excess
bilayer-forming lipids (6) and detergents (3) are first added (step 3, the case of added mixed lipid-detergent micelles is shown
(7); see (b) for other possibilities). Step 4: The detergent molecules are then removed (by polystyrene bead adsorption, dialysis,
size exclusion chromatography or dilution) to yield lipid vesicles with the desired membrane protein embedded within the
vesicle bilayer (8). (b) Top: The three possibilities for adding excess detergent and lipid to a solubilized and purified membrane
protein; see step 3 in (a). I: Mixed lipid-detergent vesicles that are saturated with detergent molecules, existing in equilibrium with
non-associated detergent molecules. II: Mixed lipid-detergent vesicles that are saturated with detergent molecules, coexisting
with mixed detergent-lipid micelles, existing in equilibrium with non-associated detergent molecules. III: Mixed detergent-lipid
micelles, existing in equilibrium with non-associated detergent molecules. Please note that in all these cases, the concentration
of non-associated lipid molecules is assumed to be negligibly small. This assumption holds for conventional bilayer-forming
phospholipids like POPC, CVC(POPC) ~ 10−10 M [127,128] (see Section 2.15). The drawings are slightly modified versions of
previously published figures, [518]. Bottom: Freeze-fracture electron microscopy image of LUVs containing membrane-embedded
bacteriorhodopsin from Halobacterium halobium (bar: 500 nm); see [516]. The sample was prepared from a 9:1 molar mixture
of egg PC and egg PA without any detergent, but instead by using the “reverse-phase evaporation method” (see Figure 17a),
followed by polycarbonate membrane extrusion using membranes with average pore diameters of first 400 and then 200 nm,
yielding LUVs with a relatively broad size distribution centered around 150 nm. High resolution images show that about
20–200 membrane-embedded proteins are present per LUV, depending on the protein to lipid ratio used; see [516]. Reproduced
with small modifications from [191], American Scientific Publishers, 2004; and with permission from [516], Elsevier, 1987.
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Figure 39. Membrane protein reconstitution in GUVs. Schematic representation of the methods currently used for the 
preparation of GUVs containing membrane-embedded proteins (“proteo GUVs”), as summarized by Jørgensen et al. 
(2017) [523]. Some of the methods sketched are related to the methods summarized in Figure 17b for the preparation of 
membrane protein-free GUVs (drawing is not to scale). (1a) Spontaneous swelling and (1b) electroformation: Rehydration 
of dehydrated or partially hydrated biological membranes, use of pre-formed “proteoliposomes” or lipid/protein solutions 
without (1a) or with (1b) applying an external alternating electric field. (2) Vesicle fusion between a preformed GUV and 
“proteoliposomes” containing membrane fusion-inducing peptides. (3) Addition of a lipid/detergent/protein complex to 
preformed GUVs. (4) Spontaneous fusion of “proteoliposomes” with preformed GUVs. (5) Application of the “droplet-
transfer method” with the membrane protein being dissolved in the aqueous interior volume of the initial w/o-droplets 
or dissolved in the “oil”. (6) Application of the “microfluidic jetting method” involving the use of “proteoliposomes”. See 
[523] for details. Reproduced with permission from [523], Springer Nature, 2017. 

In the work of Yao et al. (2020) [527], the multidrug-resistant transporter AcrB from 
Escherichia coli was reconstituted in POPC vesicles by using the detergent n-decyl-β-D-
maltopyranoside and size exclusion chromatography for detergent removal, followed by 
polycarbonate membrane extrusion using 100 nm membranes with an average pore di-
ameter of 100 nm. The proteoliposomes obtained had diameters of about 50 nm (or even 
smaller), and they could be used successfully for the determination of the structure of 
AcrB at 3.9 Å resolution by “single particle cryo-electron microscopy, without any need 
for protein crystallization; see Figure 40 [527]. AcrB is a homo-trimer (with M ~ 350 kDa), 
with a well known crystal structure, [528]. The challenge of the proteoliposome work was 
to gain insight into the conformation of AcrB in a membrane-mimicking environment, i.e., 
a lipid vesicle membrane. Interestingly, roughly 98% of the ArcB proteins had the same 
orientation in POPC vesicle membranes, with the water-soluble part of the protein facing 
into the aqueous interior of the vesicles [527]. This remarkable work provides the grounds 
for future structural investigations of (large enough) reconstituted membrane proteins, 
for example in the presence of transmembrane gradients. 

Figure 39. Membrane protein reconstitution in GUVs. Schematic representation of the methods currently used for the
preparation of GUVs containing membrane-embedded proteins (“proteo GUVs”), as summarized by Jørgensen et al.
(2017) [523]. Some of the methods sketched are related to the methods summarized in Figure 17b for the preparation of
membrane protein-free GUVs (drawing is not to scale). (1a) Spontaneous swelling and (1b) electroformation: Rehydration
of dehydrated or partially hydrated biological membranes, use of pre-formed “proteoliposomes” or lipid/protein solutions
without (1a) or with (1b) applying an external alternating electric field. (2) Vesicle fusion between a preformed GUV and
“proteoliposomes” containing membrane fusion-inducing peptides. (3) Addition of a lipid/detergent/protein complex to
preformed GUVs. (4) Spontaneous fusion of “proteoliposomes” with preformed GUVs. (5) Application of the “droplet-
transfer method” with the membrane protein being dissolved in the aqueous interior volume of the initial w/o-droplets or
dissolved in the “oil”. (6) Application of the “microfluidic jetting method” involving the use of “proteoliposomes”. See [523]
for details. Reproduced with permission from [523], Springer Nature, 2017.

In the work of Yao et al. (2020) [527], the multidrug-resistant transporter AcrB from
Escherichia coli was reconstituted in POPC vesicles by using the detergent n-decyl-β-D-
maltopyranoside and size exclusion chromatography for detergent removal, followed
by polycarbonate membrane extrusion using 100 nm membranes with an average pore
diameter of 100 nm. The proteoliposomes obtained had diameters of about 50 nm (or even
smaller), and they could be used successfully for the determination of the structure of
AcrB at 3.9 Å resolution by “single particle cryo-electron microscopy, without any need for
protein crystallization; see Figure 40 [527]. AcrB is a homo-trimer (with M ~ 350 kDa), with
a well known crystal structure, [528]. The challenge of the proteoliposome work was to
gain insight into the conformation of AcrB in a membrane-mimicking environment, i.e.,
a lipid vesicle membrane. Interestingly, roughly 98% of the ArcB proteins had the same
orientation in POPC vesicle membranes, with the water-soluble part of the protein facing
into the aqueous interior of the vesicles [527]. This remarkable work provides the grounds
for future structural investigations of (large enough) reconstituted membrane proteins, for
example in the presence of transmembrane gradients.
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Yao et al. (2020) [527]. Left: Cryo-TEM image of POPC vesicles containing membrane-embedded 
multidrug-resistant transporter AcrB from Escherichia coli, prepared with the help of the detergent 
n-decyl-β-D-maltopyranoside and polycarbonate membrane extrusion; see text and [527]. Middle: 
Example for the selection from a total of 5757 recorded movies of AcrB protein particles embedded 
in the vesicle membranes that could be used for the analysis of the protein structure. Right: Visuali-
zation of the structure of AcrB within the bilayer of a vesicle with the localization of the vesicle 
bilayer. See [527] for details. Reproduced from [527], copyright © Yao et al.  
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type of extracellular vesicles with average diameters in the size range of LUVs [535–539]. 

Depending on the analytical methods used for analyzing the structure and activity 
of reconstituted membrane proteins, bicelles [540–542], or cubic phases [543–546] instead 
of vesicles can also be used successfully as alternative biomembrane-mimicking lipid ag-
gregates. 

Proteins and other functional biomacromolecules (DNA, RNA) and small molecules 
can be entrapped inside GUVs, including entire cell-free ribosomal gene expression sys-
tems [33,37,39,543–545]. A somewhat logical next step would be to prepare—from bottom-
up—functionalized, cell-like vesicle systems, which also host membrane proteins. Alt-
hough this is a very ambitious goal, it attracts the attention of a lot of research groups 
[34,38,546–557]. Although the preparation of living “synthetic cells” (also called “artificial 
cells) is not (yet) possible, this field of research often is placed within the area of “synthetic 
biology”, with the aim of preparing a minimal system—a “minimal cell”—which one 
would call living. Despite the building of a “bottom-up” system that one would consider 
as alive not having been achieved (yet), one of the critical issues is the difficulty of formu-
lating a generally accepted definition of a “living system”, of “life” at large. Nevertheless, 
more and more sophisticated, functionalized vesicles are being prepared that have certain 
characteristic features of biological cells; see Figure 41 [37,550,558–560]. Although those 
experiments in which “synthetic cells” are obtained by a “top-down approach”, i.e., by 
putting together selected components present in contemporary cells, or by modifying ex-
isting cells (engineering the genome) [561], certainly are remarkable, the making of cells 
from a mixture of molecules that spontaneously assemble into a functioning cell-like sys-
tem (i.e., “bottom-up”) is, however, much more demanding. 

Figure 40. Application of LUVs for the reconstitution of membrane proteins. Determination of the structure of a vesicle
membrane-embedded protein by cryo-electron microscopy, as published by Yao et al. (2020) [527]. Left: Cryo-TEM image of
POPC vesicles containing membrane-embedded multidrug-resistant transporter AcrB from Escherichia coli, prepared with
the help of the detergent n-decyl-β-D-maltopyranoside and polycarbonate membrane extrusion; see text and [527]. Middle:
Example for the selection from a total of 5757 recorded movies of AcrB protein particles embedded in the vesicle membranes
that could be used for the analysis of the protein structure. Right: Visualization of the structure of AcrB within the bilayer of
a vesicle with the localization of the vesicle bilayer. See [527] for details. Reproduced from [527], copyright © Yao et al.

To provide a lipidic environment that is as similar as possible to the native lipid
matrix of the biomembrane in which a membrane protein of interest is localized, membrane
protein reconstitutions can be made by using mixture of lipids to mimic the lipid matrix
of the native plasma membrane as close as possible, or cell-derived LUVs or GUVs can
be prepared [529–534]. In the latter case, the vesicle membrane will consist not only of an
ill-defined mixture of lipids but also of membrane proteins and other components (e.g.,
cholesterol) that are associated to the membrane. Another possibility is to use exosomes, a
type of extracellular vesicles with average diameters in the size range of LUVs [535–539].

Depending on the analytical methods used for analyzing the structure and activity
of reconstituted membrane proteins, bicelles [540–542], or cubic phases [543–546] instead
of vesicles can also be used successfully as alternative biomembrane-mimicking lipid
aggregates.

Proteins and other functional biomacromolecules (DNA, RNA) and small molecules
can be entrapped inside GUVs, including entire cell-free ribosomal gene expression
systems [33,37,39,543–545]. A somewhat logical next step would be to prepare—from
bottom-up—functionalized, cell-like vesicle systems, which also host membrane pro-
teins. Although this is a very ambitious goal, it attracts the attention of a lot of research
groups [34,38,546–557]. Although the preparation of living “synthetic cells” (also called
“artificial cells) is not (yet) possible, this field of research often is placed within the area of
“synthetic biology”, with the aim of preparing a minimal system—a “minimal cell”—which
one would call living. Despite the building of a “bottom-up” system that one would
consider as alive not having been achieved (yet), one of the critical issues is the difficulty of
formulating a generally accepted definition of a “living system”, of “life” at large. Never-
theless, more and more sophisticated, functionalized vesicles are being prepared that have
certain characteristic features of biological cells; see Figure 41 [37,550,558–560]. Although
those experiments in which “synthetic cells” are obtained by a “top-down approach”, i.e.,
by putting together selected components present in contemporary cells, or by modifying
existing cells (engineering the genome) [561], certainly are remarkable, the making of
cells from a mixture of molecules that spontaneously assemble into a functioning cell-like
system (i.e., “bottom-up”) is, however, much more demanding.
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Figure 41. Attempts to prepare vesicle-based cell-like compartment systems “bottom-up”. Left, top: 
Conceptual comparison of a biological cell and a cell-like vesicle system for possible in vivo appli-
cations, as published by Trantidou et al. (2017) [550]. The membrane of the cell-like vesicle system 
is engineered by specific functionalization on the surface (PEGylation and targeting units; see Fig-
ures 16b and 22. The insertion of protein pores act as gateways, and membrane-bound subcompart-
ments inside the vesicle can segregate content and perform distinct functions, such as in vitro tran-
scription and translation. Left, bottom: Schematic representation of intra-vesicular DNA self-replica-
tion and the transformation of the genetic information from DNA to mRNA, which results in the 
expression of proteins for which the DNA sequence codes (the genome of bacteriophage Φ29), 
achieved with the cell-free protein expression system PURE (“protein synthesis using recombinant 
elements) system [562,563], as published by van Nies et al. (2018) [37]. Right: The “chemoton” min-
imal model for the chemical organization of a living system, as proposed and published by Gánti 
(1997) [560,561]. The “chemoton” model consists of two coupled intra-vesicular cycles, a metabolic 
cycle (left) and a genetic cycle (right), and a membranous boundary. Reproduced with permission 
from [550], American Chemical Society, 2017; from [37], Springer Nature, 2018; and from [558], Else-
vier, 1997. 
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cannot be built “bottom-up”. It is not the structural complexity and the molecular compo-
sition as such that is difficult to build from the components, even if one would have all 
molecules required at hand; it is the dynamics of all living cells. There are constantly 
chemical transformations that occur with high specificity in a spatially and timely highly 
controlled way, and it is the growth and division propensity of dividing cells and the 
ability to mutate and to grow and divide in a mutated state. 

Although there is no generally accepted definition of life [564–569], there are a num-
ber of features that are common to all known forms of life [35]. One of these features is 
that life is cell-based. Therefore, the overall structural feature of all cells corresponds to 
the characteristics of a (giant) unilamellar vesicle. For this reason, vesicles not only are the 
most cell-like compartment system that are used for trying to prepare “artificial cells”, but 
they are also considered as likely precursor structures of the first living cells (so-called 
“protocells” [35,67,354,357,359–361,363]) that might have formed in prebiotic times and 
then transformed into the first living cells, at the origin of life. Whether the first cells in-
deed emerged from pre-biological vesicular systems is not known at all and certainly will 
remain a fundamental research question and experimental challenge for the future. Only 
if one would be able to convincingly show that a simple form of a living system can be 
made “bottom-up”, one would have a reasonable idea about how first life may have 
emerged from non-living forms of matter. It seems that we are still very far away from 
this. A valuable conceptual framework to consider when moving towards the ultimate 

Figure 41. Attempts to prepare vesicle-based cell-like compartment systems “bottom-up”. Left, top: Conceptual comparison
of a biological cell and a cell-like vesicle system for possible in vivo applications, as published by Trantidou et al. (2017) [550].
The membrane of the cell-like vesicle system is engineered by specific functionalization on the surface (PEGylation
and targeting units; see Figures 16b and 22. The insertion of protein pores act as gateways, and membrane-bound
subcompartments inside the vesicle can segregate content and perform distinct functions, such as in vitro transcription and
translation. Left, bottom: Schematic representation of intra-vesicular DNA self-replication and the transformation of the
genetic information from DNA to mRNA, which results in the expression of proteins for which the DNA sequence codes
(the genome of bacteriophage Φ29), achieved with the cell-free protein expression system PURE (“protein synthesis using
recombinant elements) system [562,563], as published by van Nies et al. (2018) [37]. Right: The “chemoton” minimal model
for the chemical organization of a living system, as proposed and published by Gánti (1997) [560,561]. The “chemoton”
model consists of two coupled intra-vesicular cycles, a metabolic cycle (left) and a genetic cycle (right), and a membranous
boundary. Reproduced with permission from [550], American Chemical Society, 2017; from [37], Springer Nature, 2018; and
from [558], Elsevier, 1997.

The complexity of all known contemporary biological cells is so high that such cells
cannot be built “bottom-up”. It is not the structural complexity and the molecular com-
position as such that is difficult to build from the components, even if one would have
all molecules required at hand; it is the dynamics of all living cells. There are constantly
chemical transformations that occur with high specificity in a spatially and timely highly
controlled way, and it is the growth and division propensity of dividing cells and the ability
to mutate and to grow and divide in a mutated state.

Although there is no generally accepted definition of life [564–569], there are a number
of features that are common to all known forms of life [35]. One of these features is that
life is cell-based. Therefore, the overall structural feature of all cells corresponds to the
characteristics of a (giant) unilamellar vesicle. For this reason, vesicles not only are the
most cell-like compartment system that are used for trying to prepare “artificial cells”, but
they are also considered as likely precursor structures of the first living cells (so-called
“protocells” [35,67,354,357,359–361,363]) that might have formed in prebiotic times and
then transformed into the first living cells, at the origin of life. Whether the first cells
indeed emerged from pre-biological vesicular systems is not known at all and certainly
will remain a fundamental research question and experimental challenge for the future.
Only if one would be able to convincingly show that a simple form of a living system can
be made “bottom-up”, one would have a reasonable idea about how first life may have
emerged from non-living forms of matter. It seems that we are still very far away from this.
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A valuable conceptual framework to consider when moving towards the ultimate goal
certainly is the one developed by Gánti [558,559]—called “chemoton”, Figure 41, right)—
and the theory of autopoiesis formulated by Maturana and Varela [570] and extended to
chemical systems by Luisi [360,571,572].

7. Concluding Remarks

In this review we wanted to recall that the aggregation behavior of amphiphilic lipids
in the presence of small or large amounts of an aqueous solution not only is fascinating,
often complex and challenging to investigate, and relevant for a better understanding of
certain features of living forms of matter; dispersed aqueous aggregates of amphiphilic
lipids are integral parts in many applications, most notably in biomedical and cosmetic
products.

Many applications of lipid aggregates emerged from detailed fundamental investi-
gations. They made it obvious that chemical, physical, biological, as well as engineering
aspects need to be taken into account in highly interdisciplinary approaches. Without
considering details of the chemical structure of amphiphilic lipids present in biological
membranes, for example, and without trying to understand why the particular chemical
structures of these lipids are suitable for the function the lipids have in the membrane, or
without understanding how such lipidic compounds could be modified chemically for
obtaining compounds that have improved properties for a desired application, it is difficult
to find reasonable solutions for challenges that one might encounter in application-oriented
research. The same can be said about the importance of the physico-chemical properties of
lipids (for example, the acidity or basicity of functional groups or the melting temperature),
the interaction with biological systems and the environment (e.g., biocompatibility and
sustainability), and the way a desired lipid aggregate system is prepared, i.e., how the
components of a desired system are assembled reproducibly and most efficiently (the
engineering part). Finally, knowledge about the many methods that can be used for analyz-
ing lipid aggregates in dispersed states is important in terms of physical principle of the
method, practical use and strength as well as limitations.

Although the focus of the review is on biological amphiphilic lipids, the key concepts
concerning the aggregation behavior of fully synthetic, non-natural amphiphiles, including
amphiphilic block copolymers, are the same as the ones of biological amphiphiles. Further
complexity may originate (i) from amphiphiles that have chemical structures that clearly
deviate from the ones present in biological systems; (ii) from complex mixtures of am-
phiphiles, independent from whether they are of biological origin or non-natural; or (iii)
from mixtures of biological and non-natural amphiphiles. Although increased complexity
is expected to result in increased economic challenges, it remains to be seen whether the
development of the many innovative ideas for applications will ever end in products that
can be commercialized for the benefit of the society and the environment.
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100. Kučerka, N.; Tristram-Nagle, S.; Nagle, J.F. Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains.
J. Membr. Biol. 2005, 208, 193–202. [CrossRef]

101. Koynova, R.; Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta 1998, 1376, 91–145.
[CrossRef]

102. O’Neill, S.D.; Leopold, A.D. An Assessment of Phase Transitions in Soybean Membranes. Plant Physiol. 1982, 70, 1405–1409.
[CrossRef] [PubMed]

103. Barton, P.G.; Gunstone, F.D. Hydrocarbon Chain Packing and Molecular Motion in Phospholipid Bilayers Formed from Unsatu-
rated Lecithins. Synthesis and Properties of Sixteen Positional Isomers of 1,2-Dioctadecenoyl-sn-glycero-3-phosphorylcholine. J.
Biol. Chem. 1975, 250, 4470–4476. [CrossRef]

104. Marsh, D. Thermodynamic Analysis of Chain-Melting Transition Temperatures for Monounsaturated Phospholipid Membranes:
Dependence on cis-Monoenoic Double Bond Position. Biophys. J. 1999, 77, 953–963. [CrossRef]

105. Ipsen, J.H.; Mouritsen, O.G.; Zuckermann, M.J. Theory of thermal anomalies in the specific heat of lipid bilayers containing
cholesterol. Biophys. J. 1989, 56, 661–667. [CrossRef]

106. Tieleman, D.P.; Berendsen, H.J.C. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer
with different macroscopic boundary conditions and parameters. J. Chem. Phys. 1996, 105, 4871–4880. [CrossRef]

107. Rappolt, M.; Pabst, G.; Rapp, G.; Kriechbaum, M.; Amenitsch, H.; Krenn, C.; Bernstorff, S.; Laggner, P. New evidence for gel-liquid
crystalline phase coexistence in the ripple phase of phosphatidylcholines. Eur. Biophys. J. 2000, 29, 125–133. [CrossRef] [PubMed]

108. de Vries, A.H.; Yefimov, S.; Mark, A.E.; Marrink, S.J. Molecular structure of the lecithin ripple phase. Proc. Natl. Acad. Sci. USA
2005, 102, 5392–5396. [CrossRef] [PubMed]

109. El Jastimi, R.; Edwards, K.; Lafleur, M. Characterization of Permeability and Morphological Perturbations Induced by Nisin on
Phosphatidylcholine Membranes. Biophys. J. 1999, 77, 842–852. [CrossRef]

110. Farkuh, L.; Hennies, P.T.; Nunes, C.; Reis, S.; Barreiros, L.; Segundo, M.A.; Oseliero Filho, P.L.; Oliveira, C.L.P.; Cassago, A.;
Portugal, R.V.; et al. Characterization of phospholipid vesicles containing lauric acid: Physicochemical basis for process and
product development. Heliyon 2019, 5, e02648. [CrossRef]

111. Matviykiv, S.; Deyhle, H.; Kohlbrecher, J.; Neuhaus, N.; Zumbuehl, A.; Müller, B. Small-Angle Neutron Scattering Study of
Temperature-Induced Structural Changes in Liposomes. Langmuir 2019, 35, 11210–11216. [CrossRef] [PubMed]
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510. Łukawski, M.; Dałek, P.; Borowik, T.; Foryś, A.; Langner, M.; Witkiewicz, W.; Przybło, M. New oral liposomal vitamin C

formulation: Properties and bioavailability. J. Liposome Res. 2020, 30, 227–234. [CrossRef] [PubMed]
511. Prantl, L.; Eigenberger, A.; Gehmert, S.; Haerteis, S.; Aung, T.; Rachel, R.; Jung, E.M.; Felthaus, O. Enhanced Resorption of

Liposomal Packed Vitamin C Monitored by Ultrasound. J. Clin. Med. 2020, 9, 1616. [CrossRef] [PubMed]
512. van Hoogevest, P. Review—An update on the use of oral phospholipid excipients. Eur. J. Pharm. Sci. 2017, 108, 1–12. [CrossRef]

[PubMed]
513. Kayushin, L.P.; Skulachev, V.P. Bacteriorhodopsin as an Electrogenic Proton Pump: Reconstitution of Bacteriorhodopsin Proteoli-

posomes Generating ∆ψ and ∆pH. FEBS Lett. 1974, 39, 39–42. [CrossRef]
514. Eytan, G.D. Use of Liposomes for Reconstitution of Biological Functions. Biochim. Biophys. Acta 1982, 694, 185–202. [CrossRef]
515. Seddon, A.M.; Curnow, P.; Booth, P.J. Membrane proteins, lipids and detergents: Not just a soap opera. Biochim. Biophys. Acta

2004, 1666, 105–117. [CrossRef] [PubMed]
516. Gulik-Krzywicki, T.; Seigneuret, M.; Rigaud, J.L. Monomer-Oligomer Equilibrium of Bacteriorhodopsin in Reconstituted

Proteoliposomes. A Freeze Fracture Electron Microscopy Study. J. Biol. Chem. 1987, 262, 15580–15588. [CrossRef]
517. Rigaud, J.-L.; Lévy, D. Reconstitution of Membrane Proteins into Liposomes. Methods Enzymol. 2003, 372, 65–86.
518. Walde, P.; Ichikawa, S.; Yoshimoto, M. The Fabrication and Applications of Enzyme-Containing Vesicles. In Bottom-Up Nanofabri-

cation; Ariga, K., Nalwa, H.S., Eds.; American Scientific Publishers: Steveson Ranch, CA, USA, 2009; Volume 2, pp. 199–221.
519. Lévy, D.; Gulik, A.; Bluzat, A.; Rigaud, J.-L. Reconstitution of the sarcoplasmic reticulum Ca2+-ATPase: Mechanisms of membrane

protein insertion into liposomes during reconstitution procedures involving the use of detergents. Biochim. Biophys. Acta 1992,
1107, 283–298. [CrossRef]

520. Rigaud, J.-L.; Pitard, B.; Levy, D. Reconstitution of membrane proteins into liposomes: Application to energy-transducing
membrane proteins. Biochim. Biophys. Acta 1995, 1231, 223–246. [CrossRef]

521. Girard, P.; Pécréaux, J.; Lenoir, G.; Falson, P.; Rigaud, J.-L.; Bassereau, P. A New Method for the Reconstitution of Membrane
Proteins into Giant Unilamellar Vesicles. Biophys. J. 2004, 87, 419–429. [CrossRef]

522. Dezi, M.; Di Cicco, A.; Bassereau, P.; Lévy, D. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar
vesicles with controlled physiological contents. Proc. Natl. Acad. Sci. USA 2013, 110, 7276–7281. [CrossRef] [PubMed]

523. Jørgensen, I.L.; Kemmer, G.C.; Pomorski, T.G. Membrane protein reconstitution into giant unilamellar vesicles: A review on
current techniques. Eur. Biophys. J. 2017, 46, 103–119. [CrossRef]

524. Amati, A.M.; Graf, S.; Deutschmann, S.; Dolder, N.; von Ballmoos, C. Current problems and future avenues in proteoliposome
research. Biochem. Soc. Trans. 2020, 48, 1473–1492. [CrossRef] [PubMed]

http://doi.org/10.1016/j.tifs.2010.03.003
http://doi.org/10.1016/j.foodchem.2020.126717
http://www.ncbi.nlm.nih.gov/pubmed/32259734
http://doi.org/10.1007/s11947-018-2184-4
http://doi.org/10.1016/j.foodres.2020.109587
http://www.ncbi.nlm.nih.gov/pubmed/32846615
http://doi.org/10.3390/nano11030792
http://www.ncbi.nlm.nih.gov/pubmed/33808823
http://doi.org/10.1080/17458080.2016.1148273
http://doi.org/10.3389/fmicb.2017.02398
http://www.ncbi.nlm.nih.gov/pubmed/29259595
http://doi.org/10.1002/ejlt.201900105
http://doi.org/10.1007/s13197-020-04360-2
http://www.ncbi.nlm.nih.gov/pubmed/32903987
http://doi.org/10.3390/molecules25030638
http://www.ncbi.nlm.nih.gov/pubmed/32024189
http://doi.org/10.3390/nu7042731
http://www.ncbi.nlm.nih.gov/pubmed/25871489
http://doi.org/10.1016/j.bbamem.2017.04.006
http://www.ncbi.nlm.nih.gov/pubmed/28411170
http://doi.org/10.1016/j.biochi.2019.11.017
http://doi.org/10.3390/ijms22084054
http://www.ncbi.nlm.nih.gov/pubmed/33920015
http://doi.org/10.1080/08982104.2019.1630642
http://www.ncbi.nlm.nih.gov/pubmed/31264495
http://doi.org/10.3390/jcm9061616
http://www.ncbi.nlm.nih.gov/pubmed/32466592
http://doi.org/10.1016/j.ejps.2017.07.008
http://www.ncbi.nlm.nih.gov/pubmed/28711714
http://doi.org/10.1016/0014-5793(74)80011-6
http://doi.org/10.1016/0304-4157(82)90024-7
http://doi.org/10.1016/j.bbamem.2004.04.011
http://www.ncbi.nlm.nih.gov/pubmed/15519311
http://doi.org/10.1016/S0021-9258(18)47766-6
http://doi.org/10.1016/0005-2736(92)90415-I
http://doi.org/10.1016/0005-2728(95)00091-V
http://doi.org/10.1529/biophysj.104.040360
http://doi.org/10.1073/pnas.1303857110
http://www.ncbi.nlm.nih.gov/pubmed/23589883
http://doi.org/10.1007/s00249-016-1155-9
http://doi.org/10.1042/BST20190966
http://www.ncbi.nlm.nih.gov/pubmed/32830854


Appl. Sci. 2021, 11, 10345 80 of 81

525. Garten, M.; Lévy, D.; Bassereau, P. Protein reconstitution in giant vesicles. In The Giant Vesicle Book; Dimova, R., Marques, C.M.,
Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2020; Chapter 3; pp. 37–51.

526. Markones, M.; Fippel, A.; Kaiser, M.; Drechsler, C.; Hunte, C.; Heerklotz, H. Stairway to Asymmetry: Five Steps to Lipid-
Asymmetric Proteoliposomes. Biophys. J. 2020, 118, 294–302. [CrossRef] [PubMed]

527. Yao, X.; Fan, X.; Yan, N. Cryo-EM analysis of a membrane protein embedded in the liposome. Proc. Natl. Acad. Sci. USA 2020, 117,
18497–18503. [CrossRef]

528. Murakami, S.; Nakashima, R.; Yamashita, E.; Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB.
Nature 2002, 419, 587–593. [CrossRef]

529. Baumgart, T.; Hammond, A.T.; Sengupta, P.; Hess, S.T.; Holowka, D.A.; Baird, B.A.; Webb, W.W. Large-scale fluid/fluid phase
separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. USA 2007, 104, 3165–3170. [CrossRef]
[PubMed]

530. Levental, I.; Grzybek, M.; Simons, K. Raft domains of variable properties and compositions in plasma membrane vesicles. Proc.
Natl. Acad. Sci. USA 2011, 108, 11411–11416. [CrossRef] [PubMed]
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