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Abstract: Gastric cancer is a malignant tumor with high incidence. Computer-aided screening
systems for gastric cancer pathological images can contribute to reducing the workload of specialists
and improve the efficiency of disease diagnosis. Due to the high resolution of images, it is common
to divide the whole slide image (WSI) into a set of image patches with overlap before utilizing
deep neural networks for further analysis. However, not all patches split from the same cancerous
WSI contain information of cancerous issues. This restriction naturally satisfies the assumptions of
multiple instance learning (MIL). Moreover, the spatial topological structure relationships between
local areas in a WSI are destroyed in the process of patch partitioning. Most existing multiple
instance classification (MIC) methods fail to take into account the topological relationships between
instances. In this paper, we propose a novel multiple instance classification framework based on
graph convolutional networks (GCNs) for gastric microscope image classification. Firstly, patch
embeddings were generated by feature extraction. Then, a graph structure was introduced to model
the spatial topological structure relationships between instances. Additionally, a graph classification
model with hierarchical pooling was constructed to achieve this multiple instance classification task.
To certify the effectiveness and generalization of our method, we conducted comparative experiments
on two different modes of gastric cancer pathological image datasets. The proposed method achieved
average fivefold cross-validation precisions of 91.16% and 98.26% for gastric cancer classification on
the two datasets, respectively.

Keywords: gastric pathological images classification; graph convolutional networks; multiple
instance learning

1. Introduction

Among all malignant tumors, the incidence and mortality of gastric cancer is in the
forefront. Clinically, gastroscopy and biopsy for pathological diagnosis are still the gold
standard methods for the examination of early gastric cancer. As the resources of digital
gastric pathology images are being accumulated, many efforts have been made in designing
computer-aided pathological image analysis systems to reduce the workload of pathologists
and improve the efficiency of cancer diagnosis. Among all the pathological image analysis
tasks, the most important is the classification task, which is the cornerstone and bottleneck
of other in-depth studies, such as nuclei localization, gland segmentation, etc.

The early pathological image classification tasks are based on conventional machine
learning algorithms. Common classifiers such as logistic regression (LR), support vector
machine (SVM), K-nearest neighbor (KNN), etc. were used. Due to the high resolution of
pathological images, some pre-processing should be performed prior to applying machine
learning algorithms. The mainstream method is firstly to divide the whole pathological
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slide image into small local patches. Then, feature extraction and classification between
cancer and non-cancer are performed in each local patch. Finally, the prediction results
of these patches are integrated through certain methods, such as majority voting, to
determine the classification results of image level or case level. At the feature extraction
stage, meaningful features such as gray level co-occurrence matrix (GLCM), local binary
pattern (LBP), histogram of oriented gradient (HOG), scale-invariant feature transform
(SIFT), or certain well-designed, handcrafted features related to cell morphology and
density can be utilized for subsequent pathology image analysis tasks.

Due to the high computing requirements in the process of handling high-resolution
WSIs, extracting effective features to reduce data dimension is an important problem.
However, handcrafted feature extraction relies heavily on professional domain knowledge
and cannot guarantee self-discrimination and completeness, which restricts the application
of conventional machine learning algorithms in pathological image analysis tasks. Recently,
due to the remarkable performance of deep learning methods in the field of computer
vision, most of the image recognition techniques have been replaced by deep learning. This
is also true for pathological image analysis. When locations of abnormal or cancerous areas
in WSIs are provided by pathologists, some state-of-the-art convolutional neural networks
(CNNs) can be directly applied in the patch-level classification stage. Sharma et al. [1]
proposed a well-designed CNN model for automatic classification of gastric carcinoma.
Wang et al. [2] proposed a two-stage framework including a fully convolutional location
network for discriminative instance selection and recalibrated multi-instance deep learning
(RMDL) for gastric WSI classification. Additionally, pixel-wise annotations are necessary to
train a representative location network. On the other hand, extracting informative features
based on CNNs pre-trained on the ImageNet has become an effective method of data
pre-processing. Some recent studies suggest ImageNet-trained CNNs are strongly biased
towards recognizing texture information [3]. In a whole pathological slide, clustered cells
with the same structure and function exhibit a similar textured appearance. Therefore, the
pathological image is rather closer to a type of order-less texture-like image [4]. Multiple
typical CNNs architectures have been taken into account to demonstrate that the internal
layers of CNNs can act as feature extractors and generalize well to pathological images [5,6].

However, it is time-consuming and labor-intensive to ask experts to annotate a large
number of high-resolution pathological images in detail. The scarcity of annotations has
been a great challenge for the task of classifying pathological images. Most existing and
available pathological image resources generally only have coarse-grained label informa-
tion. For instance, only the image level label is given for a WSI with resolution of a million
pixels. The benign and malignant tissues may both appear mixed in a complete pathologi-
cal image labeled as cancerous. Thus, not all patches extracted from pathological images
labeled as cancer contain class-specific information. When only a few regions provide the
key information related to the cancerous class of the WSI and the remaining regions are
more related to the benign class, standard supervised learning will fail due to the usage
of a large number of mislabeled patches. Therefore, compared to the supervised method
based on patch-wise classification, modeling the pathological image classification task as
a weakly supervised problem with inexact supervision can be more appropriate [7]. In
our study, the pathological image classification task was viewed as the multiple instance
classification (MIC) problem.

The MIC methods can be categorized into three paradigms: Instance-Space, Bag-Space
and Embedded-Space [8]. In the Embedded-Space paradigm, each bag is mapped to a
single feature vector that represents the whole information about the bag. When the bag-
level embeddings are obtained, the original MIC problem can be converted into a standard
supervised classification problem. Standard classifiers such as SVM, KNN and neural
networks can be applied, where each bag-level feature vector has its own label. To facilitate
comparison, the fully connected layers were adopted as bag-level classifiers in our work.
How to obtain bag-level embeddings that contain the global information is the key step in
the Embedded-Space paradigm. Some studies have introduced multiple instance pooling
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layers to neural networks to solve the tasks related to pathological image analysis [9,10].
The MIL pooling layers integrate instance-level representations into bag-level embedding
to serve the downstream task, such as histopathology image retrieval and classification.
But the drawback of these fixed MIL pooling operators is clearly that they are pre-defined
and unable to adapt to various specific tasks. To address this problem, an attention-based
MIL pooling operator [11] is proposed, which can introduce trainable parameters to weight
different instances and help obtain a more flexible and adaptive global representation.
Yao et al. [12] combined MI-FCN and attention-based MIL pooling to perform the cancer
survival prediction task. Lu et al. [13] selected representative regions according to their
attention scores to train instance-level clustering layers to enhance the interpretability
of the model. Inspired by attention-related works [11], the RMDL network proposed
by Wang et al. [2] achieved image-level classification task by multi-scale feature fusion
and recalibration of instance features according to the importance of each instance to the
image label.

Nevertheless, most existing MIC algorithms including attention-related methods treat
instances in each bag as independent and identically distributed without considering the
spatial topological relationships of instances corresponding to the original bag [14]. The
spatial topological relationships between local areas in a WSI were actually destroyed
when the high resolution WSI was divided into patches. A graph is an important data
structure suitable for processing unstructured data. By way of constructing a series of
objects and their interrelations as nodes and edges, the graph structure has strong modeling
representation for many real scenarios. In this paper, we designed an effective framework
for high-resolution gastric pathological image classification tasks. We introduced graphs
to model the spatial relationships between instances. With spatial topological structure
information retained, the connections between nodes with similar features were constructed
according to their distances in the feature space. We designed a graph convolutional
network to solve this MIC problem. The node embeddings were fused hierarchically
through the multi-layer graph convolution modules, and then a global representation
containing spatial topological structure information and feature-space information between
all instances was finally obtained for final prediction. The experimental results show
that the proposed method achieved promising results on real gastric cancer pathological
datasets compared with several existing MIC methods.

Overall, the main contributions of our work can be summarized as follows:

(1) We present an efficient framework composed of a feature extraction module based
on ImageNet-trained CNNs and a multiple instance classification module based on
GCNs for the classification task of gastric pathological WSIs;

(2) We construct the graph structure according to the similarity between the patch em-
beddings by implicitly fusing the information on their spatial topological structural
relationships between instances. The proposed MIC module based on GCNs achieves
information fusion in both physical space and feature space for all instances;

(3) We conduct experiments on two real high-resolution gastric pathological image
datasets with different imaging mechanisms to prove the effectiveness and robustness
of our proposed framework. To our knowledge, our work is the first to conduct
experiments both on an H&E-stained pathological image dataset and a stimulated
Raman scattering (SRS) microscope image dataset.

2. Background Knowledge
2.1. Multiple Instance Classification

Multiple instance learning (MIL) provides an elegant framework to address the
weakly supervised learning problem with inexact supervision. Different from the gen-
eral fully supervised problem that assumes each sample has a label, training samples
D = {(X1, y1) , (X2, y2), . . . , (Xm, ym)} in MIL are composed of bags, where each bag Xi
bears a label yi and consists of a set of instances

{
xi,1, xi,2, . . . , xi,mi

}
. Bag Xi is assigned a

positive label if there exists at least one positive instance, while it is assigned a negative
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label if it only contains negative instances. The goal of the classification task in MIL is to
predict the labels for unseen bags, where bag labels are observed and instance labels are
not observed in the training dataset.

yi =

{
1 ∃xi,k : xi,k = 1
0 ∀xi,k : xi,k = 0

(1)

The MIC framework is naturally suitable for handling high-resolution pathological
image classification tasks. For example, an alternative mapping is to regard the pathological
images for malignant/benign patients as positive/negative bags and patches (or features of
patches) extracted from the same image as instances in each bag. All the patches extracted
from a pathological image with the negative label can be considered to contain benign
tissue information. On the other hand, in a pathological image with the positive label,
there must exist at least several patches containing malignant tissue information. The
properties of pathological image classification are consistent with the assumption of the
MIC framework.

2.2. Graph Convolutional Networks and Graph Classification

Inspired by the theories related to the graph convolution in graph signal processing, a
set of graph neural networks (GNNs) based on graph convolution operations have been
developed in recent years. Earlier methods based on spectral domain need to process
the whole graph simultaneously and have high time complexity in matrix decomposi-
tion. Thus, recently, spatial graph convolution has been proposed and widely used. For
the input/output graph signal matrix X/X′, the graph convolution operation can be
expressed as Equation (2), where θ are trainable filters, U is the orthogonal matrix com-
posed of eigenvectors of the Laplacian matrix of the graph, and σ(·) represents nonlinear
activation function.

X′ = σ
(

Udiag(θ)UTX
)
= σ(θX) (2)

Considering that the effective information in real graphs is usually contained in the
low frequency band, a local filtering method was proposed [15]. It used the Chebyshev
polynomial to approximate the graph filter coefficients and simplify the learnable param-
eters. The graph convolution layer is defined in Equation (3), where L̃sym is symmetric
normalized laplacian matrix. The calculation of L̃symX is equivalent to the first-order
aggregation of the eigenvectors of neighboring nodes. Additionally, the parameterized
weight matrix W is introduced to enhance the network fitting capability. Stacking multiple
graph convolution layers can achieve the filtering ability of frequency response function in
high order polynomial form.

X′ = σ
(

L̃symXW
)

(3)

Specifically, tasks related to the graph data can be divided into node level, edge level
and graph level. As an important graph level task, graph classification aims to learn a
model from the graph to the corresponding label with consideration for the attributes of
each node and the overall structure information of the graph. In graph classification tasks,
the graph readout operation is usually adopted to generate the whole graph representation
after the multi-layer message passing and state updating of each node. The standard
approach based on the global pooling operator is to generate embedding for all nodes
using a simple aggregation. However, common global pooling methods treat all the nodes
equally, and thus are more suitable for handling small-scale graph data. Recently, many
hierarchical pooling operators [16–18] have been developed that are suitable for more
complex graph structures by compressing the information gradually to obtain the whole
graph representation.
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2.3. Differentiable Pooling

As one kind of hierarchical pooling method, differentiable pooling (DIFFPOOL) is a
pooling mechanism based on graph collapse, which fuses the nodes in the same cluster to
form the signal of a super-node in the next layer. Compared with global pooling methods,
the DIFFPOOL method can capture the rich structure information better in various graph
architectures. Real-world graphs tend to be more complex ones; hierarchical pooling
methods can extract the complex hierarchical structure and generate a better modeling of
the entire graph structure for downstream tasks.

An illustration of a DIFFPOOL module is shown in Figure 1. Nodes with the same
color are divided into the same cluster. The graph collapses hierarchically into more and
more sparse subgraphs, and eventually one super-node is formed that contains the whole
graph information. Given the cluster assignment matrix S(l), adjacency matrix A(l) and
node embedding matrix Z(l), a new coarsened adjacency matrix A(l+1) and a new matrix
of embeddings H(l+1) for each of the nodes/clusters in the coarsened graph is generated as
described in Equations (4) and (5), where nl+1 represents the number of nodes (or clusters)
in the l + 1 layer.

H(l+1) = S(l)T
Z(l) ∈ Rnl+1×d (4)

A(l+1) = S(l)T
A(l)S(l) ∈ Rnl+1×nl+1 (5)
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Two independent GNN modules are used to generate S(l) and Z(l), as defined in
Equations (6) and (7). Notice that two GNN modules input the same graph, but training
parameters and execution functions are different. One GNN module is used to generate the
node embedding, while the other GNN module is used to generate the probability that the
input nodes assign to the nl+1 clusters. In the last DIFFPOOL module of the networks, the
number of clusters is fixed as 1, and a final embedding is generated for downstream tasks.

Z(l) = GNNl,embed

(
A(l), H(l)

)
(6)

S(l) = so f tmax
(

GNNl,pool

(
A(l), H(l)

))
(7)

3. Materials and Methods
3.1. Datasets

Our experiment was conducted on two different modes of gastric cancer pathological
image datasets. The first dataset was sampled from the gastric cancer SRS image database,
which was established in a joint project with Zhongshan Hospital and the Department
of physics in Fudan University. As a novel label-free chemical imaging technique, many
studies have proved the feasibility of the SRS microscope for imaging various pathological
tissues. A total of 185 available gastric cancer SRS microscope images were obtained,
including 90 benign tissue images and 95 malignant tissue images. Pixel resolution was
0.385 um/pixel. An example of gastric SRS microscope image is shown in Figure 2a.
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Figure 2. The example of a gastric cancer histopathology image. (a) SRS image. (b) H&E stained
image.

The second dataset (Mars) was an H&E stained gastric cancer pathological image
dataset, from the Jiangsu big data development and application competition on intelligent
diagnosis of cancer risk. An example of H&E stained gastric pathological image in Mars
dataset is shown in Figure 2b. There were 1032 positive samples and 1000 negative samples
in the whole dataset. All images were obtained at 20× field of view. Positive samples
were those in which cancer lesions existed in the image. Negative samples included
normal gastric tissue images and gastritis tissue images. All data were desensitized in strict
accordance with internationally accepted medical information desensitization standards to
effectively guarantee data security and protect the privacy of patients.

3.2. Data Preprocessing

The datasets were split randomly into training, validation and test sets according to
the proportion of 7:2:1. Firstly, we cropped the high-resolution pathological images into
image patches of small size with 50% overlap. The whole structure of the tissue and the
local characteristics of the nucleus should be taken into consideration when setting the size
of image patches. For the SRS dataset, the original image was divided into patches with
size of 450 × 450 pixels. For the Mars dataset, image patch size was set to 224 × 224 pixels.

Since there were background areas in the high-resolution pathological images that
did not contain any tissue information, patches corresponding to those background areas
were discarded. Specifically, original images were converted into binary images through
the OSTU algorithm. The number of pixels containing tissues num_tissue was counted in
the binary image patch of the same size and at the same position of the original image
patch. The patches with the indicator num_tissue smaller than the threshold were filtered
out. After the data preprocessing, the total numbers of available patches from the two
datasets are shown in Table 1.

Table 1. Some indicators in data processing.

Dataset WSI Number Patch Resolution Threshold Patch Number

SRS 185 224 × 224 pixels 35,000 (17.3%) 68,387
Mars 2032 450 × 450 pixels 15,000 (29.9%) 396,539

3.3. Proposed Model of Multiple Instance Classification Based on GCNs

In the framework of multiple instance classification, the WSIs with the malignant/benign
labels can be viewed as positive/negative bags. The patches containing malignant/benign
tissue information can be regarded as positive/negative instances. In our experiment, all
the image patches passed through CNNs for further feature extraction and dimension
reduction. Thus, the instances in the MIC framework are replaced by patch features, which
is illustrated in Figure 3.
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Figure 3. The flowchart of the multiple instance classification.

In order to solve this multiple instance classification problem from the perspective
of graphs, we propose a novel algorithm based on GCNs for gastric cancer pathology
image classification. The whole flowchart is illustrated in Figure 4. The first step is to map
bag space into graph space, converting the multiple instance classification problem into
a graph classification problem. An alternative heuristic strategy is: given a set of bags

[X1, X2, . . . , XN ], each bag contains a different number of instances
[

x1
(i), x2

(i), . . . , xK
(i)
]
.

We regard each bag in MIL as a graph, thus a bag of instances is converted into an
undirected graph. The adjacency matrix can be derived with the following formula:

Amn
(i) =

{
1 i f distance

(
xm

(i), xn
(i)
)
< η

0 otherwise
(8)

where distance
(

xm
(i), xn

(i)
)

is the Euclidean distance between the m-th and n-th instance
in i-th bag. The subscript represents the order of instances in the bag, and also implies that
it corresponds to the spatial position relationships in the original image. η is the threshold
to decide whether there is a connecting edge between two instances based on their distance.
The task is converted to learn a graph classification model that maps from graph to the
corresponding label with the node feature, edges and graph labels given.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14 
 

of graphs. The model based on GCNs can realize the feature fusion and transformation in 
the process of propagating node state, and simultaneously, hierarchically aggregates the 
structural information existing among nodes. Thus, a global representation containing 
feature information of all nodes and topology information of the whole graph can be gen-
erated for downstream tasks. The model adopts cross-entropy loss as loss function, as 
defined by Equation (10): 𝐿(𝑝(𝑦|𝑥), 𝑦) = −𝑦 ∙ 𝑙𝑜𝑔൫𝑝(𝑦|𝑥)൯ − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝(𝑦|𝑥)) (10)

where 𝑦 represents the true label of i-th graph, and 𝑝(𝑦|𝑥) is its probability. 

 
Figure 4. The flowchart of the proposed method. 

4. Results and Discussion 
4.1. Experimental Environment and Setup 

Our experimental platform consisted of a remote server with the Linux operating 
system, and the software and hardware environment included Python 3.6.9, CUDA 10.0, 
Pytorch-GPU 1.4.0, Pytorch-Geometric (PyG) 1.6.1 and a GeForce RTX 2080 Ti GPU. PyG 
is a geometric deep learning extension library based on Pytorch, which is suitable for han-
dling graphs and other irregularly structured data. The construction and training of 
GNNs were implemented on PyG. 

During the training process, the Adam optimization algorithm was used for param-
eter learning. The learning rate was initialized to 1 × 10−4. The weight decay coefficient was 
set to 1 × 10−4, and the batch size was set to 1. In order to avoid the loss curve oscillation 
during the later stage of training, a learning rate decay strategy was adopted with the loss 
on the training set as index. When this indicator did not decrease for two successive 
epochs, the learning rate decreased to half of the original. The maximum epoch number 
was set to 100. 

All experiments adopted five folds and five runs of cross validation. The mean values 
of recall, precision and F1_score were utilized as evaluation indicators and their corre-
sponding variance values were given. Recall rate reflects the probability that a positive 
sample is not missed. Precision rate reflects the probability that a positive sample is not 

Figure 4. The flowchart of the proposed method.

After converting bags of instances into graphs, a classification model based on GCNs
is constructed, as detailed in Figure 4. The network architecture is composed of stacks of
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units consisting of GNN modules and DIFFPOOL modules, one feature embedding GNN
module and two fully connected layers. In the experiment, the GNN module was built
on the GraphSAGE architecture [19]. Compared to a traditional GCN, GraphSAGE is a
framework for inductive representation learning on large graphs. By sampling neighbor
nodes randomly, it resolves the defect of poor flexibility and expansibility of traditional
GCN and achieves the small batch distributed training of large-scale graph data. The node
aggregation and embedding generation are illustrated in the following formula:

hk
v = σ

(
Wk·mean

(
hk−1

u , ∀u ε N (v) ∪ {v}
))

(9)

where hk
v is the representation of node v at the layer k and N (v) represents a set of

neighbors of node v. σ(·) represents the nonlinear activation function; specifically,
LeakyReLU [20] was adopted in the experiment. Additionally, the aggregation function
adopts inductive aggregation.

The advantage of using a graph structure and graph model for the MIL task is the
implicit expression of spatial topological relationships between instances in the process of
constructing the adjacency matrix, which is transformed into the topological expression
of graphs. The model based on GCNs can realize the feature fusion and transformation
in the process of propagating node state, and simultaneously, hierarchically aggregates
the structural information existing among nodes. Thus, a global representation containing
feature information of all nodes and topology information of the whole graph can be
generated for downstream tasks. The model adopts cross-entropy loss as loss function, as
defined by Equation (10):

L(p(yi|x), yi) = −yi·log(p(yi|x))− (1− yi)log(1− p(yi|x)) (10)

where yi represents the true label of i-th graph, and p(yi|x) is its probability.

4. Results and Discussion
4.1. Experimental Environment and Setup

Our experimental platform consisted of a remote server with the Linux operating
system, and the software and hardware environment included Python 3.6.9, CUDA 10.0,
Pytorch-GPU 1.4.0, Pytorch-Geometric (PyG) 1.6.1 and a GeForce RTX 2080 Ti GPU. PyG
is a geometric deep learning extension library based on Pytorch, which is suitable for
handling graphs and other irregularly structured data. The construction and training of
GNNs were implemented on PyG.

During the training process, the Adam optimization algorithm was used for parameter
learning. The learning rate was initialized to 1 × 10−4. The weight decay coefficient was
set to 1 × 10−4, and the batch size was set to 1. In order to avoid the loss curve oscillation
during the later stage of training, a learning rate decay strategy was adopted with the
loss on the training set as index. When this indicator did not decrease for two successive
epochs, the learning rate decreased to half of the original. The maximum epoch number
was set to 100.

All experiments adopted five folds and five runs of cross validation. The mean
values of recall, precision and F1_score were utilized as evaluation indicators and their
corresponding variance values were given. Recall rate reflects the probability that a positive
sample is not missed. Precision rate reflects the probability that a positive sample is not
wrongly classified. F1_score is the harmonic average of these as a comprehensive index.
The detailed definition can be seen in the following formulas:

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)
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F1_score =
2(

1
recall

)
+
(

1
precision

) (13)

where TP represents the number of positive samples that were correctly classified. FN
represents the number of negative samples that were wrongly classified, and FP represents
the number of negative samples that were correctly classified.

4.2. Influence of Model Parameters

We investigated the performance under different settings of model parameters, in-
cluding network depth D and the number of clusters C. A single GNN module contained
a GraphSAGE layer, a batch normalization layer [21] and a LeakyReLU layer. One GNN
module learned the representation of nodes in the graph; the other GNN module achieved
the automatic cluster of nodes. A single layer of DIFFPOOL was added to integrate the
nodes into the same cluster. Two GNN modules and a DIFFPOOL layer could be viewed
as one unit as a whole. The network depth could be defined as the number of units stacked.
Due to the low-pass filtering property of graph convolution, the stack of multiple graph
convolution layers will lead to an over-smooth problem. D was chosen from {1, 2, 3, 4}. The
clustering number of the next unit was selected as 25% of the previous unit. C was defined
as the number of clusters in the last unit of the model. C was chosen from {2, 4, 6, 8, 10}.

Figure 5 shows that the classification performance tends to be saturated and slightly
decreased with the increase in network depth D and number of clusters C. In the experiment,
with the increase in D, the training time also presented an approximate linear growth.
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4.3. Performance Comparison of Different Feature Extractors

The performance of six kinds of features was compared, and the experimental results
are shown in Table 2. Model parameters were set as D = 2, C = 8. Experimental results
were cross-validated by five folds and five runs. Average recall, precision, F1_score and
their standard deviations were given as assessment indices. TX_fea was obtained by
concatenating three typical traditional features: SIFT, LBP and the statistics of GLCM.
VGG-16_fea [22], ResNet18_fea [23], DenseNet-121_fea [24] and EffientNet-B0_fea [25]
were the activation vectors of four different ImageNet-trained CNNs. It can be observed
that the features extracted by ImageNet-trained CNNs showed greater advantages than
the traditional feature descriptors. This indicates that the features extracted by ImageNet-
trained CNNs have better discrimination and integrity, and can be transferred to the
pathological image analysis tasks.
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Table 2. Performance of different features in Mars dataset.

Feature Dimension Recall (%) Precision (%) F1_Score (%)

TX_fea 408 94.78 ± 0.013 94.99 ± 0.013 94.59 ± 0.012
VGG-16_fea 4096 97.24 ± 0.012 97.24 ± 0.013 97.26 ± 0.012

ResNet-18_fea 512 98.14 ± 0.005 98.14 ± 0.005 98.16 ± 0.005
DenseNet-121_fea 1024 98.34 ± 0.009 98.34 ± 0.009 98.35 ± 0.008

EfficientNet-B0_fea 1280 97.69 ± 0.010 97.69 ± 0.010 97.70 ± 0.010

4.4. Comparisons with Other Multiple Instance Methods

To demonstrate the effectiveness of the proposed method, the algorithm was tested
and compared with existing MIC methods on SRS and Mars datasets, respectively. The
flowchart of different MIC methods is shown in Figure 6. To facilitate subsequent com-
parisons, all available patches were passed through the ImageNet-pretrained ResNet-18
model to obtain 512-d feature vectors. In the Embedded-Space paradigm MIC method, the
crucial step was to fuse these instance level embeddings to obtain a bag level embedding
that was suitable for applying to downstream tasks.
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In Tables 3 and 4, MIP (mean/max) represents utilizing common fixed MIL pooling
operators. Bag level embedding was generated by operating mean or max pooling on each
dimension for all instances in the same bag, as seen in Equations (14) and (15). Similarly,
MIP (attention) represented utilizing an attention-based MIL pooling operator, which
introduced trainable parameters w and v to allocate weights automatically for each instance
by end-to-end training, as seen in Equation (16). Besides these classic MIP operators, we
further compared with the RMDL network proposed by Wang et al. [2], which consists
of local-global feature fusion, instance recalibration and multi-instance pooling modules.
After the MIL pooling layer, the bag embedding was sent into fully connected layers for
final classification. Compared with fixed ones, the attention-based MIL pooling method
can be more flexible. It provides information about the contribution of each instance to
the final prediction, which can help to find key instances. However, due to the scarcity of
patch label information, extra errors may be introduced if the classifier cannot be trained
sufficiently, which was confirmed in our experimental results. On the Mars dataset with
more data, the performance of the attention-based MIL pooling method was 2% worse than
that of the fixed max pooling method. This suggests that with the increase in the number
of instances, the classifier becomes harder to train, resulting in the final performance
degradation. Compared with the attention-based MIL pooling method, the RMDL method
achieved almost the same performance on the SRS dataset and a slight improvement on the
Mars dataset. Essentially, the RMDL method also adaptively assigned weights to instances
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by end-to-end training and fused instance features according to their scores. For these
various existing methods, topological structural information is not considered to integrate
into the final bag-level embedding in the process of instance feature fusion.

MIP(max) : z = max
(
hj
)

j = 1, 2, . . . , K (14)

MIP(mean) : z =
1
K

K

∑
j=1

hj j = 1, 2, . . . , K (15)

MIP(attention) : z =
K

∑
j=1

ajhj aj =
exp

{
wTtan h

(
VhT

j

)}
∑K

i=1 exp
{

wTtan h
(

VhT
i

)} (16)

Table 3. Performance of different MIL methods on SRS dataset.

Method Recall (%) Precision (%) F1_Score (%)

MIP (mean) 82.10 ± 0.051 82.70 ± 0.051 81.83 ± 0.051
MIP (max) 83.65 ± 0.044 84.82 ± 0.041 83.81 ± 0.046

MIP (attention) 84.37 ± 0.042 85.34 ± 0.038 84.47 ± 0.041
RMDL 84.47 ± 0.044 85.29 ± 0.042 84.23 ± 0.045

GCN (mean_pool) 89.08 ± 0.038 89.88 ± 0.033 89.67 ± 0.033
GCN (max_pool) 89.13 ± 0.046 90.20 ± 0.042 88.96 ± 0.049

GCN + DIFFPOOL 90.40 ± 0.032 91.16 ± 0.032 90.75 ± 0.034

Table 4. Performance of different MIL methods on Mars dataset.

Method Recall (%) Precision (%) F1_Score (%)

MIP (mean) 92.40 ± 0.013 92.45 ± 0.013 92.40 ± 0.014
MIP (max) 95.48 ± 0.011 95.52 ± 0.011 95.45 ± 0.011

MIP (attention) 93.11 ± 0.009 93.15 ± 0.009 93.13 ± 0.009
RMDL 93.76 ± 0.008 93.81 ± 0.008 93.74 ± 0.009

GCN(mean_pool) 95.81 ± 0.008 95.83 ± 0.008 95.81 ± 0.008
GCN (max_pool) 97.70 ± 0.007 96.73 ± 0.007 97.70 ± 0.007

GCN + DIFFPOOL 98.24 ± 0.004 98.26 ± 0.004 98.24 ± 0.004

As mentioned in Section 2.2, pooling methods in the graph classification task include
standard global pooling and hierarchical pooling methods. In order to compare with the
GCN model with the standard global pooling method, extra experiments were conducted.
As shown in Tables 3 and 4, GCN (mean_pool/max_pool) and GCN+DIFFPOOL methods
refer to introducing a graph structure to solve the histopathological image classification
problem. The former is based on a graph classification model with global pooling, which
consists of three GCN layers and one global pooling layer, specifically. The latter adopts
the network architecture proposed in the previous experiments, which is based on a graph
classification model with DIFFPOOL module, one hierarchical pooling method. Similarly,
fully connected layers were added for final bag level classification.

Experimental results show that classification performance of the proposed method
has been evaluated. The proposed graph-based method showed superior performance
compared with several MIL methods on two different gastric cancer pathological image
datasets. Compared to the RMDL method, the graph-based method (GCN+DIFFPOOL)
showed at least an increase of 4.5% in the final classification indicators. The proposed
GCN+DIFFPOOL method achieved an average F1_score of 90.75% and 98.24% on the SRS
and Mars datasets, respectively. When applying MIL to the pathological image analysis
tasks, the overlapping patches were viewed as instances in bags. Therefore, there must exist
underlying structural information between instances in the same bag. The structure of the
graph can model the relationships between the instances, and the GNNs can capture this
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structure information better in a non-independent, identically distributed MIL problem.
Compared with the general MIL method, MIL based on graphs showed better results on the
different modes of gastric cancer pathological image datasets, which further demonstrates
the feasibility and versatility of the proposed method.

To validate the introduction of spatial topological relationships between instances in
the process of graph construction, extra experiments were conducted by randomly chang-
ing the corresponding relationships between the order of instances and the subscript of
adjacency matrix AN×N . Experiment results are shown in Table 5. After randomly shuffling
the order of instances in the process of graph construction, the F1_score indicator decreased
by 2.4% and 1.7% on the SRS and Mars datasets, respectively. Since the order of instances
reflects the spatial position relations of patches in the original image, the corresponding
relationships between the order of instances and the subscript of adjacency matrix AN×N
were randomly changed, which was equivalent to destruction of the topological relation-
ships between instances. The experiment reversibly verified that the proposed graph-based
MIC model implicitly incorporates the spatial topological structure information between
the instances when obtaining the global representation of the bag, thus leading to the
improvement in overall classification performance.

Table 5. Validation experiments for spatial topological structure information.

Dataset Shuffle Recall (%) Precision (%) F1_Score (%)

SRS
Before 90.40 ± 0.032 91.16 ± 0.032 90.75 ± 0.034
After 88.86 ± 0.036 88.30 ± 0.032 88.33 ± 0.035

Mars
Before 98.24 ± 0.004 98.26 ± 0.004 98.24 ± 0.004
After 96.54 ± 0.005 96.59 ± 0.005 96.51 ± 0.005

5. Conclusions

In this paper, we proposed a multiple instance classification framework for gastric
cancer pathological image classification. The proposed framework was composed of
ImageNet-pretrained CNNs and GCNs. The former was utilized to extract patch features
in the light of its superior ability in tackling diverse datasets and obtaining effective global
features. The latter achieved information fusion in both physical space and feature space
for all instances in the same bag. The features extracted by ImageNet-pretrained CNNs had
better representation and generalization ability compared with traditional operators. The
GCNs with hierarchical pooling module can fuse node features hierarchically and implicitly
combine the spatial topological information of instances into the global representation of the
bag. The framework can effectively integrate the spatial topological relationships between
patches, alleviating the problem that some existing multiple instance classification methods
cannot take advantage of the structural information between instances. The experimental
results tested on two real gastric cancer pathology image datasets showed that graph-
based methods achieved superior performances compared with several currently available
MIL approaches.

However, our method had limitations in providing instance-level predictions which is
necessary for these classifiers to be translated into clinical practice. We envisage incorpo-
rating the instance-level prediction module into the whole framework while maintaining
the superior classification performance of the proposed model in the future. Instance-level
evaluation could further help specialists locate the areas crucial to final predictions, and
enhance the interpretability of models based on deep learning algorithms.
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