Evaluation of Non-Encapsulated and Microencapsulated Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Isolation and Phenotypical Identification of Lactic Acid Bacteria
2.3. Molecular Identification of Lactic Acid Bacteria
2.4. Preservation of Bacterial Strains and Viability Determination
2.5. pH Low Tolerance
2.6. Bile Salts Tolerance
2.7. Hemolysis Test
2.8. Antibiotic Susceptibility
2.9. Bioreactor Batch and Fermentation Process
2.10. Spray Drying Technique Using Maltodextrin and Glucose and Cell Viability
2.11. Probiotic Powder Storage
2.12. Total Coliforms Count
2.13. Statistical Analysis
3. Results
3.1. Isolation and Phenotypical Identification of Lactic acid Bacteria
3.2. Molecular Identification of Lactic Acid Bacteria
3.3. Preservation of Bacterial Strains
3.4. pH Low Tolerance
3.5. Bile Salts Tolerance
3.6. Hemolysis Test
3.7. Antibiotic Susceptibility
3.8. Bioreactor Batch and Fermentation Process
3.9. Spray Drying Technique Using Maltodextrin and Glucose and Cell Viability
3.10. Probiotic Powder Storage
3.11. Total Coliforms Count
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO Food Nutrition. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live. In Health and Nutrition Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; FAO: Rome, Italy, 2006; p. 85. [Google Scholar]
- Fuller, R. History and development of probiotics. In Probiotics; Springer: Dordrecht, The Netherlands, 1992; pp. 1–8. [Google Scholar] [CrossRef]
- Dumitru, M.; Ciurescu, G.; Sorescu, I. In Vitro Evaluation of Some Probiotic Properties of Lactobacillus Strains Isolates from Chickens’ gut. Sci. Pap. Anim. Sci. Biotechol. 2020, 53, 44–51. [Google Scholar]
- Shehata, M.; El Sohaimy, S.; El-Sahn, M.A.; Youssef, M. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann. Agric. Sci. 2016, 61, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Bujnakova, D.; Strakova, E.; Kmet, V. In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves. Anaerobe 2014, 29, 118–127. [Google Scholar] [CrossRef]
- A De Melo, W.C.M.; Avci, P.; De Oliveira, M.N.; Gupta, A.; Vecchio, D.; Sadasivam, M.; Chandran, R.; Huang, Y.; Yin, R.; Perussi, L.R.; et al. Photodynamic inactivation of biofilm: Taking a lightly colored approach to stubborn infection. Expert Rev. Anti-Infect. Ther. 2013, 11, 669–693. [Google Scholar] [CrossRef] [Green Version]
- Pradipta, M.S.I.; Harimurti, S.; Widodo, W. Feed Supplementation with Encapsulated Indigenous Probiotic Lactic Acid Bacteria Increased Broiler Chicken Performance. ASEAN J. Sci. Technol. Dev. 2019, 36, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Harimurti, S.; Hadisaputro, W. Effect of Indigenous Probiotics Lactic Acid Bacteria on Performance, Intestinal Length and Weight of Internal Organs of Broiler Chicken. In Proceedings of the International Conference on Beneficial Microbes, Penang, Malaysia, 27–29 May 2014; pp. 179–181. [Google Scholar]
- Mahmoud, M.; Abdallah, N.A.; El-Shafei, K.; Tawfik, T.N.; El-Sayed, H. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon 2020, 6, e03541. [Google Scholar] [CrossRef]
- Pop, O.L.; Diaconeasa, Z.; Thorsten, B.; Ciuzan, O.; Pamfil, D.; Vodnar, D.C.; Socaciu, C. Effect of Glycerol, as Cryoprotectant in the Encapsulation and Freeze Drying of Microspheres Containing Probiotic Cells. Bull. Univ. Agric. Sci. Vet.-Med. Cluj-Napoca Food Sci. Technol. 2015, 72, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Sahadeva, R.P.K.; Leong, S.F.; Chua, K.H.; Tan, C.H.; Chan, H.Y.; Tong, E.V.; Wong, S.Y.; Chan, H.K. Survival of commercial probiotic strains to pH and bile. Int. Food Res. J. 2011, 18, 1515–1522. [Google Scholar]
- Tripathi, M.; Giri, S. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Canadian Food Inspection Agency (CFIA). Probiotic Claims. 2009. Chapter 8, Section 8.7. Available online: http://www.inspection.gc.ca/english/fssa/labeti/guide/ch8ae.html200 (accessed on 12 October 2021).
- El-Salam, M.H.A.; El-Shibiny, S. Preparation and properties of milk proteins-based encapsulated probiotics: A review. Dairy Sci. Technol. 2015, 95, 393–412. [Google Scholar] [CrossRef] [Green Version]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.D.J.; Fisk, I.D. Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food Bioproces. Technol. 2013, 7, 1255–1268. [Google Scholar] [CrossRef]
- Mu, R.-J.; Yuan, Y.; Wang, L.; Ni, Y.; Li, M.; Chen, H.; Pang, J. Microencapsulation of Lactobacillus acidophilus with konjac glucomannan hydrogel. Food Hydrocoll. 2018, 76, 42–48. [Google Scholar] [CrossRef]
- Chew, S.C.; Tan, C.H.; Pui, L.P.; Chong, P.N.; Gunasekaran, B.; Nyam, K.L. Encapsulation technologies: A tool for func-tional foods development. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 154–160. [Google Scholar]
- Bhagwat, A.; Bhushette, P.; Annapure, U.S. Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef] [Green Version]
- Song, C.E.; Shim, H.H.; Kuppusamy, P.; Jeong, Y.-I.; Lee, K.D. Potential Sustainable Properties of Microencapsulated Endophytic Lactic Acid Bacteria (KCC-42) in In-Vitro Simulated Gastrointestinal Juices and Their Fermentation Quality of Radish Kimchi. BioMed Res. Int. 2018, 2018, 6015243. [Google Scholar] [CrossRef] [Green Version]
- Harimurti, S.; Huda, M.; Kristiani, A.D. The dynamics of indigenous lactic acid bacteria probiotics on carcass yield, ab-dominal fat and intestinal morphology of broilers. In Proceedings of the 3rd AINI International Seminar, Padang, Indonesia, 24–25 September 2013; Indonesian Association of Nutrition and Feed Science: Padang, Indonesia, 2013; pp. 185–188. [Google Scholar]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Sorescu, I.; Dumitru, M.; Ciurescu, G. Lactobacillus spp. and Enterococcus faecium strains isolation, identification, preservation and quantitative determinations from turkey gut content. Rom. Biotechnol. Lett. 2019, 24, 41–49. [Google Scholar] [CrossRef]
- Dumitru, M.; Tabuc, C.; Jurcoane, S. Obtaining a feed additive based of Lactobacillus plantarum strain. Sci. Pap. Ser. A Agron. 2018, 61, 115–122. [Google Scholar]
- Vanhoutte, T.; Huys, G.; De Brandt, E.; Swings, J. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol. Ecol. 2004, 48, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Al Kaabi, H.K.J.; Al-Yassari, A.K.S. 16SrRNA sequencing as tool for identification of Salmonella spp. isolated from human diarrhea cases. J. Phys. Conf. Ser. 2019, 1294, 062041. [Google Scholar] [CrossRef] [Green Version]
- Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Liang, J.B.; Alitheen, N.B.; Jahromi, M.F.; Ho, Y.W. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains. BioMed Res. Int. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.C.; Paula, A.; Correa, F.; Veras, F.F.; Brandelli, A. Characterization of Bacillus subtilis available as probiotics. J. Microbiol. Res. 2018, 8, 23–32. [Google Scholar] [CrossRef]
- Dumitru, M.; Sorescu, I.; Habeanu, M.; Tabuc, C.; Idriceanu, L.; Jurcoane, S. Preliminary characterisation of Bacillus subtilis strain use as a dietary probiotic bio-additive in weaning piglet. Food Feed. Res. 2018, 45, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Dumitru, M.; Sorescu, I.; Habeanu, M.; Tabuc, C.; Jurcoane, S. Preliminary characterization in vitro of Bacillus licheniformis strain for used as dietary probiotic. Sci. Bull. Ser. F. Biotechnol. 2019, 23, 64–172. [Google Scholar]
- Salman, A.M.A.; Hamad, M. Enumeration and identification of Coliform bacteria from raw milk in Khartoum State, Sudan. J. Cell Anim. Biol. 2011, 5, 121–128. [Google Scholar]
- Sorescu, I.; Dumitru, M.; Ciurescu, G. Lactobacillus spp. Strains Isolation, Identification, Preservation and Quantitative Determinations from Gut Content of 45-Day-Old Chickens Broilers. Braz. J. Poult. Sci. 2021, 23, 1–8. [Google Scholar] [CrossRef]
- Saumitou-Laprade, P.; Vernet, P.; Vekemans, X.; Castric, V.; Barcaccia, G.; Khadari, B.; Baldoni, L. Controlling for genetic identity of varieties, pollen contamination and stigma receptivity is essential to characterize the self-incompatibility system of Olea europaea L. Evol. Appl. 2017, 10, 860–866. [Google Scholar] [CrossRef]
- Musikasang, H.; Tani, A.; H-Kittikun, A.; Maneerat, S. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microbiol. Biotechnol. 2009, 25, 1337–1345. [Google Scholar] [CrossRef]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Tambekar, D.H.; Bhutada, S.A. Studies on antimicrobial activity and characteristics of bacteriocins produced Lactobacillus strains isolated from milk of domestic animals. Internet J. Microbiol. 2010, 8, 1–6. [Google Scholar]
- Noohi, N.; Papizadeh, M.; Rohani, M.; Talebi, M.; Pourshafie, M.R. Screening for probiotic characters in lactobacilli isolated from chickens revealed the intra-species diversity of Lactobacillus brevis. Anim. Nutr. 2020, 7, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Ciurescu, G.; Dumitru, M.; Gheorghe, A.; Untea, A.; Drăghici, R. Effect of Bacillus subtilis on growth performance, bone mineralization, and bacterial population of broilers fed with different protein sources. Poult. Sci. 2020, 99, 5960–5971. [Google Scholar] [CrossRef]
- Gheorghe, A.; Lefter, N.A.; Idriceanu, L.; Ropotă, M.; Hăbeanu, M. Effects of dietary extruded linseed and Lactobacillus acidophilus on growth performance, carcass traits, plasma lipoprotein response, and caecal bacterial populations in broiler chicks. Ital. J. Anim. Sci. 2020, 19, 822–832. [Google Scholar] [CrossRef]
- Guo, X.-H.; Kim, J.-M.; Nam, H.-M.; Park, S.-Y.; Kim, J.-M. Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 2010, 16, 321–326. [Google Scholar] [CrossRef]
- Sayan, H.; Assavacheep, P.; Angkanaporn, K.; Assavacheep, A. Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli. Asian-Australas. J. Anim. Sci. 2018, 31, 1308–1314. [Google Scholar] [CrossRef] [Green Version]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Avellaneda, M.C.; Velázquez-Martí, B. In Vitro Characterization of Indigenous Probiotic Strains Isolated from Colombian Creole Pigs. Animals 2020, 10, 1204. [Google Scholar] [CrossRef]
- Reuben, R.; Roy, P.; Sarkar, S.; Alam, A.R.U.; Jahid, I. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef]
- Shazali, N.; Foo, H.L.; Loh, T.C.; Choe, D.W.; Rahim, R.A. Prevalence of antibiotic resistance in lactic acid bacteria isolated from the faeces of broiler chicken in Malaysia. Gut Pathog. 2014, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- De Araujo-Uribe, N.; Ruiz-Villadiego, O.S.; Montoya-Campuzano, O.I.; Ramírez-Gutiérrez, L.A. Viability of probiotic bacteria Bacillus polymyxa, Bacillus megaterium and Lactobacillus delbruekii subsp. bulgaricus microencapsulated under the spray-drying technique. DYNA 2018, 85, 272–276. [Google Scholar] [CrossRef]
- Yonekura, L.; Sun, H.; Soukoulis, C.; Fisk, I. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. J. Funct. Foods 2013, 6, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Dry. Technol. 2012, 30, 1407–1412. [Google Scholar] [CrossRef]
- Fu, N.; Chen, X.D. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int. 2011, 44, 1127–1149. [Google Scholar] [CrossRef]
- Huang, S.; Méjean, S.; Rabah, H.; Dolivet, A.; Le Loir, Y.; Chen, X.D.; Jan, G.; Jeantet, R.; Schuck, P. Double use of concentrated sweet whey for growth and spray drying of probiotics: Towards maximal viability in pilot scale spray dryer. J. Food Eng. 2016, 196, 11–17. [Google Scholar] [CrossRef]
- Boor, K.; Brown, D.; Murphy, S.; Kozlowski, S.; Bandler, D. Microbiological and Chemical Quality of Raw Milk in New York State. J. Dairy Sci. 1998, 81, 1743–1748. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Zhong, Q. Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT 2016, 74, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Calinoiu, L.F.; Vodnar, D.; Precup, G. A Review: The Probiotic Bacteria Viability under Different Conditions. Bull. Univ. Agric. Sci. Vet.-Med. Cluj-Napoca Food Sci. Technol. 2016, 73, 55–60. [Google Scholar] [CrossRef] [Green Version]
Strains/Code IBNA | Area of Intestinal Content and Age of Broiler Chickens |
---|---|
L. acidophilus biotype 3, IBNA | |
26 | Ileum, 26 d-old |
27 | Cecum, 26 d-old |
51 | Ileum, 45 d-old |
L. acidophilus biotype 1, IBNA 64 | Ileum, 45 d-old |
L. brevis biotype 2, IBNA | |
24 | Cecum, 26 d-old |
50 | Ileum, 45 d-old |
L. fermentum biotype 1, IBNA | |
25 | Ileum, 26 d-old |
37 | Cecum, 45 d-old |
56 | |
57 | Ileum, 45 d-old |
L. salivarius, IBNA | |
29 | Cecum, 26 d-old |
33 | |
41 | Ileum, 26 d-old |
L. plantarum biotype 1, IBNA | |
48 | Ileum, 45 d-old |
61 |
Total Number of Isolates | Identification Technique | ||
---|---|---|---|
API 50 CHL | 16S rRNA Gene Fragment Sequencing (Primers Lac1F/Lac1R) | 16S rRNA Gene Fragment Sequencing (Primers 27F/1492R) | |
15 | L. acidophilus biotype 3 IBNA | ||
26 | L. acidophilus | ||
27 | -identified as L.johnsonii | identified as L.johnsonii | |
51 | -identified as L.johnsonii | identified as L.johnsonii | |
L. acidophilus biotype 1, IBNA 64 | L. acidophilus | ||
L. brevis biotype 2, IBNA | |||
24 | Lactobacillus spp. | L. brevis | |
50 | Lactobacillus spp. | L. brevis | |
L. fermentum biotype 1, IBNA | |||
25 | Lactobacillus spp. | L. fermentum | |
37 | L. fermentum | ||
56 | Lactobacillus spp. | L. fermentum | |
57 | Lactobacillus spp. | L. fermentum | |
L. salivarius, IBNA | |||
29 | L. salivarius | ||
33 | L. salivarius | ||
41 | L. salivarius | ||
L. plantarum biotype 1, IBNA | |||
48 | Lactobacillus spp. | L. plantarum | |
61 | Lactobacillus spp. | L. plantarum |
Strains | Exposure Time (h) | |||||
---|---|---|---|---|---|---|
pH 3.0 | pH 2.0 | |||||
0 h | 1:30 h | 3 h | 0 h | 1:30 h | 3 h | |
L.acidophilus IBNA 26 | 8.16 a | 8.22 a | 6.56 a | 5.26 a | 0.00 a | 0.00 a |
L. acidophilus IBNA 64 | 8.41 a | 8.07 a | 7.14 b | 6.67 b | 5.54 b | 5.12 b |
L. fermentum IBNA 37 | 8.34 a | 9.04 b | 8.79 c | 7.73 c | 6.51 b | 5.13 b |
L. salivarius IBNA 29 | 9.31 b | 9.09 b | 8.50 c | 7.26 bc | 6.12 b | 5.26 b |
L. salivarius IBNA 33 | 8.99 b | 8.13 a | 7.64 b | 8.16 c | 7.92 c | 7.72 c |
L. salivarius IBNA 41 | 9.63 c | 9.38 c | 9.85 d | 9.29 d | 8.18 c | 8.02 c |
Main effect | ||||||
SEM | 0.14 | 0.13 | 0.26 | 0.30 | 0.66 | 0.63 |
p value | <0.0001 | <0.0001 | 0.001 | <0.0001 | 0.001 | 0.002 |
Strains | Time (h) | ||
---|---|---|---|
0 h | 1:30 h | 3 h | |
L. acidophilus IBNA 26 | 8.04 a | 0.00 a | 0.00 a |
L. acidophilus IBNA 64 | 7.42 b | 7.59 b | 7.55 b |
L. fermentum IBNA 37 | 7.59 b | 0.00 a | 0.00 a |
L. salivarius IBNA 29 | 9.98 c | 9.04 c | 9.07 c |
L. salivarius IBNA 33 | 8.07 a | 9.85 d | 9.82 d |
L. salivarius IBNA 41 | 9.80 cd | 9.79 d | 8.79 e |
SEM | 0.20 | 1.05 | 1.04 |
p value | <0.001 | <0.0001 | <0.0001 |
Antibiotics Susceptibility | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strains | AMX | GN | K | MY | TE | P | VA | CT | DA | E | AK | C | OT | ENR | S | TIL |
1 | I | R | R | R | R | S | I | I | R | I | R | R | S | R | R | I |
2 | I | R | R | R | R | S | I | I | R | I | R | I | S | R | R | I |
3 | S | R | R | R | S | S | I | R | I | I | R | S | S | R | R | R |
4 | R | R | S | R | I | S | I | R | I | I | S | I | R | R | R | R |
5 | R | R | S | R | I | S | I | R | I | I | S | I | R | R | R | R |
6 | R | R | S | R | I | S | I | R | I | I | S | I | R | R | R | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitru, M.; Vodnar, D.C.; Elemer, S.; Ciurescu, G.; Habeanu, M.; Sorescu, I.; Georgescu, S.E.; Dudu, A. Evaluation of Non-Encapsulated and Microencapsulated Lactic Acid Bacteria. Appl. Sci. 2021, 11, 9867. https://doi.org/10.3390/app11219867
Dumitru M, Vodnar DC, Elemer S, Ciurescu G, Habeanu M, Sorescu I, Georgescu SE, Dudu A. Evaluation of Non-Encapsulated and Microencapsulated Lactic Acid Bacteria. Applied Sciences. 2021; 11(21):9867. https://doi.org/10.3390/app11219867
Chicago/Turabian StyleDumitru, Mihaela, Dan Cristian Vodnar, Simon Elemer, Georgeta Ciurescu, Mihaela Habeanu, Ionut Sorescu, Sergiu Emil Georgescu, and Andreea Dudu. 2021. "Evaluation of Non-Encapsulated and Microencapsulated Lactic Acid Bacteria" Applied Sciences 11, no. 21: 9867. https://doi.org/10.3390/app11219867
APA StyleDumitru, M., Vodnar, D. C., Elemer, S., Ciurescu, G., Habeanu, M., Sorescu, I., Georgescu, S. E., & Dudu, A. (2021). Evaluation of Non-Encapsulated and Microencapsulated Lactic Acid Bacteria. Applied Sciences, 11(21), 9867. https://doi.org/10.3390/app11219867