Metabolomics of Pseudomonas aeruginosa Treated by Atmospheric-Pressure Cold Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Generation and Detection
2.2. Culture and Detection of Bacteria
2.2.1. Bacterial Culture Conditions
2.2.2. Activity Testing of Bacteria
2.2.3. Sample Preparation
2.2.4. GC-TOF-MS Mass Spectrometry
2.3. Data Analysis and Processing Methods
2.3.1. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA)
2.3.2. Univariate Statistical Analysis (UVA)
3. Results
3.1. Testing the Discharge Performance of the Device
3.2. Detection and Analysis of Bacterial Metabolites
3.2.1. Data Analysis
- Data Pre-Analysis
- OPLS-DA was used for the unsupervised evaluation of metabolite characteristics
- UVA
3.2.2. Analysis of Differential Metabolites
3.2.3. Pathway Analysis of Differential Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saleh, M.M.; Abbas, H.A.; Askoura, M.M. Repositioning secnidazole as a novel virulence factors attenuating agent in Pseudomonas aeruginosa. Microb. Pathog. 2019, 127, 31–38. [Google Scholar] [CrossRef]
- El-Mowafy, S.A.; El Galil, K.H.A.; El-Messery, S.M.; Shaaban, M.I. Aspirin is an efficient inhibitor of quorum sensing, virulence and toxins in Pseudomonas aeruginosa. Microb. Pathog. 2014, 74, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, J.; Gao, J. Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms. J. Electrost. 2009, 67, 646–651. [Google Scholar] [CrossRef]
- Xu, D.; Ning, N.; Xu, Y.; Wang, B.; Cui, Q.; Liu, Z.; Wang, X.; Liu, D.; Chen, H.; Kong, M.G. Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells. Cancer Cell Int. 2019, 19, 135. [Google Scholar] [CrossRef]
- Xu, D.; Ning, N.; Xu, Y.; Xia, W.; Liu, D.; Chen, H.; Kong, M.G. Effect of He Plasma Jet Versus Surface Plasma on the Metabolites of Acute Myeloid Leukemia Cells. Front. Oncol. 2021, 11, 552480. [Google Scholar] [CrossRef]
- Shimizu, T. Wound treatment by low-temperature atmospheric plasmas and issues in plasma engineering for plasma medicine. Jpn. J. Appl. Phys. 2020, 59, 120501. [Google Scholar] [CrossRef]
- Lawton, J. Technological uses of low temperature plasmas. Phys. Technol. 1975, 6, 190–196. [Google Scholar] [CrossRef]
- Tonmitr, N.; Mori, T.; Takami, M.; Yonesu, A.; Hayashi, N. Time-Modulated LF-Microwave Hybrid Plasma for Surface Sterilization. IEEE Trans. Plasma Sci. 2020, 49, 154–161. [Google Scholar] [CrossRef]
- Zhdanov, A.E.; Pahomov, I.M.; Ulybin, A.I. Low-Temperature Plasma Sterilization: Using a Sterilizing Agent Based on Organic Acids. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), E-Health and Bioengineering Conference, Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar]
- Liu, K.; Yang, Z.; Liu, S. Study of the Characteristics of DC Multineedle-to-Water Plasma-Activated Water and Its Germination Inhibition Efficiency: The Effect of Discharge Mode and Gas Flow. IEEE Trans. Plasma Sci. 2020, 48, 969–979. [Google Scholar] [CrossRef]
- Fang, L.I.U.; Haitao, H.; Shaosong, H. Research Advance of Low-temperature Plasma Sterilization. J. Environ. Health 2007, 24, 367–369. [Google Scholar]
- Tseng, S.; Abramzon, N.; Jackson, J.O.; Lin, W.-J. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Appl. Microbiol. Biotechnol. 2012, 93, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.; Scherrer, M.; Daschner, F. Costs of low-temperature plasma sterilization compared with other sterilization methods. J. Hosp. Infect. 1998, 40, 125–134. [Google Scholar] [CrossRef]
- Boudam, M.K.; Moisan, M.; Saoudi, B.; Popovici, C.; Gherardi, N.; Massines, F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J. Phys. D Appl. Phys. 2006, 39, 3494–3507. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, D.; Pang, B.; Wang, S.; Wang, S.; Gao, Y.; Peng, S.; Chen, H.; Kong, M.G. Evaluation of microbial species inactivation and purification of pond sewage by a custom-built air surface discharge plasma. Plasma Process. Polym. 2021, 18, e2100004. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Wang, H.; Liu, L.; Wang, S.; Yang, S.-Z. Highly Effective Inactivation of Pseudomonas sp HB1 in Water by Atmospheric Pressure Microplasma Jet Array. Plasma Chem. Plasma Process. 2012, 32, 949–957. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, H.; Xu, Z.; Zhang, Z.; Cheng, C.; Ni, G.; Lan, Y.; Meng, Y.; Xia, W.; Chu, P.K. Preferential production of reactive species and bactericidal efficacy of gas-liquid plasma discharge. Chem. Eng. J. 2019, 362, 402–412. [Google Scholar] [CrossRef]
- Shahzad, S.; Willcox, M.; Shahzad, A. Identification of novel in vitro antibacterial action of cloprostenol and evaluation of other non-antibiotics against multi-drug resistant A. baumannii. J. Antibiot. 2019, 73, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Chengliu, L.; Wenzheng, L.; Mingui, S. Generation of plasma jet and its application to medical sterilization. In Proceedings of the 2009 IEEE 35th Annual Northeast Bioengineering Conference NEBEC, Cambridge, MA, USA, 3–5 April 2009. [Google Scholar]
- Shintani, H.; Shimizu, N.A.; Imanishi, Y.; Sakudo, A.; Uyama, T.; Hotta, E. Current Progress in Advanced Technology of Nitrogen Gas Plasma for Remote Sterilization and Clari-fication of Sterilization. In Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives; Caister Academic Press: Norfolk, UK, 2016; pp. 25–39. [Google Scholar]
- Tonmitr, N.; Yonesu, A.; Hayashi, N. Effect of gas composition on surface sterilization by using LF-microwave hybrid plasma source. Jpn. J. Appl. Phys. 2019, 59, SAAB02. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Kaushik, N.; Bhartiya, P.; Gurmessa, S.K.; Kim, H.J.; Nguye, L.Q. Plasma-synthesized mussel-inspired gold nanoparticles promote autophagy-dependent dam-age-associated molecular pattern release to potentiate immunogenic cancer cell death. J. Ind. Eng. Chem. 2021, 100, 99–111. [Google Scholar] [CrossRef]
- Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A. Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells. Int. J. Biol. Macromol. 2021, 182, 1724–1736. [Google Scholar] [CrossRef] [PubMed]
- Semmler, M.L.; Bekeschus, S.; Schäfer, M.; Bernhardt, T.; Fischer, T.; Witzke, K.; Seebauer, C.; Rebl, H.; Grambow, E.; Vollmar, B. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers 2020, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- Freund, E.; Liedtke, K.R.; Van Der Linde, J.; Metelmann, H.-R.; Heidecke, C.-D.; Partecke, L.-I.; Bekeschus, S. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef]
- Dewolf, W.E.; Dewolf, W.E.; Payne, D.J.; Seefeld, M.A.; Wallis, N.G.; West, J.M.; Brandt, M.; Keller, P.M.; Patel, A.H.; Reed, S.L.; et al. Treating a Bacterial Infection or Modulating Bacterial Metabolism Using an Agonist or Antagonist of FabK Polypeptide. Patent WO200231128-A1, 27 June 2019. [Google Scholar]
- Guo, J.; Liu, S.; Yang, Z.; Zhang, S.; Sun, B. Lignite Deashing Reverse Flotation Method Involves Grinding Lignite Coal, Obtaining Slurry, Adding Paenibacillus Polymyxa or Yeast, Processing, Adding Inhibitor, Polysaccharide and Amine Collector, Subjecting to Floatation and Foaming. Patent CN105363563-A, 2 November 2015. [Google Scholar]
- Vaidyanathan, R.; Rajbhandary, U.L. New Eukaryotic Cells Containing Bacterial Formylase, Useful in Identifying Inhibitors of Formylase for Preventing Bacterial Growth, Replication, Metabolism and Survival. Patent WO200155351-A, 24 January 2011. [Google Scholar]
- KIST Korea Institute of Science and Technology. Device for Real-Time Measurement of Bacteria by Atp Detection. U.S. Patent 10,920,266, 16 February 2021. [Google Scholar]
- Monica, S.; Bancalari, E.; Castellone, V.; Rijkx, J.; Wirth, S.; Jahns, A.; Bottari, B. ATP Bioluminescence for Rapid and Selective Detection of Bacteria and Yeasts in Wine. Appl. Sci. 2021, 11, 4953. [Google Scholar] [CrossRef]
- Alice Longobardi, G. Flow Cytometry: First Principles; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 2. [Google Scholar]
- Duan, S.-G.; Hong, K.; Tang, M.; Tang, J.; Liu, L.-X.; Gao, G.-F.; Shen, Z.-J.; Zhang, X.-M.; Yi, Y. Untargeted metabolite profiling of petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS/MS. Phytochemistry 2021, 184, 112655. [Google Scholar] [CrossRef] [PubMed]
- Raftery, D.E.; Shi, X.; Yin, X.; Zhang, X.; Walker, J.M.E.-I.-C. Methods in Molecular Biology: Methods and Protocols 99; Humana Press: New York, NY, USA, 2014. [Google Scholar]
- Gao, Y.; Liu, Z.; Wang, S.; Pang, B.; Xu, D.; Liu, D.; Kong, M.G. The investigation of RONS permeation in plasma-activated oil–water mixed system. Plasma Process. Polym. 2021, 18, e2100038. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, S.; Li, B.; Wang, S.; Zhang, H.; Li, Q.; Liu, Z.; Guo, B.; Liu, D.; Xu, D. Systematic Safety Evaluation of Cold Plasma-Activated Liquid in Rabbits. Front. Phys. 2021, 9. [Google Scholar] [CrossRef]
- Burns, D.T.; Walker, M.J. Origins of the method of standard additions and of the use of an internal standard in quantitative instrumental chemical analyses. Anal. Bioanal. Chem. 2019, 411, 2749–2753. [Google Scholar] [CrossRef] [Green Version]
- Horinaka, A.; Kim, Y.-H.; Kimura, A.; Iwamoto, E.; Masaki, T.; Ichijo, T.; Sato, S. Changes in the predicted function of the rumen bacterial community of Japanese Black beef cattle during the fattening stages according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. J. Veter-Med. Sci. 2021, 83, 21–0121. [Google Scholar] [CrossRef]
- Kihara, D.E.; Kanehisa, M.; Walker, J.M.S.E. Methods in Molecular Biology 135; Humana Press: New York, NY, USA, 2017. [Google Scholar]
- Lybbert, A.; Williams, J.; Raghuvanshi, R.; Jones, A.; Quinn, R. Mining Public Mass Spectrometry Data to Characterize the Diversity and Ubiquity of P. aeruginosa Specialized Metabolites. Metabolites 2020, 10, 445. [Google Scholar] [CrossRef]
- Kyoto Encyclopedia of Genes and Genomes. Available online: https://www.kegg.jp/.2021 (accessed on 1 October 2021).
- Shi, Y.; Pan, C.; Cen, S.; Fu, L.; Cao, X.; Wang, H.; Wang, K.; Wu, B. Comparative metabolomics reveals defence-related modification of citrinin by Penicillium citrinum within a synthetic Penicillium -Pseudomonas community. Environ. Microbiol. 2019, 21, 496–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, M.; Han, M.-L.; Zhu, Y.; Zhou, Q.; Lin, Y.-W.; Hancock, R.E.W.; Hoyer, D.; Creek, D.J.; Li, J.; Velkov, T. Metabolomics Study of the Synergistic Killing of Polymyxin B in Combination with Amikacin against Polymyxin-Susceptible and -Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 64, e01587-19. [Google Scholar] [CrossRef] [PubMed]
- Mielko, K.A.; Jabłoński, S.J.; Wojtowicz, W.; Milczewska, J.; Sands, D.; Łukaszewicz, M.; Młynarz, P. Possible metabolic switch between environmental and pathogenic Pseudomonas aeruginosa strains: 1H NMR based metabolomics study. J. Pharm. Biomed. Anal. 2020, 188, 113369. [Google Scholar] [CrossRef] [PubMed]
The Name of the Reagent | CAS | Purity | Manufacturer |
---|---|---|---|
Methanol | 67-56-1 | HPLC | CNW Technologies |
Chloroform | 67-66-3 | HPLC | Adamas |
Pyridine | 110-86-1 | HPLC | Adamas |
Methoxyamine hydrochloride | 593-56-6 | AR | TCI |
2-Chloro-l-phenylalanine | 103616-89-3 | ≥98% | Shanghai Hengbai Biotechnology |
BSTFA (with 1% TMCS, v/v) | -- | -- | REGIS Technologies |
FAMEs | -- | -- | Dr. Ehrenstorfer |
Type | A | N | R2X (cum) | R2Y (cum) | Q2 (cum) | Title |
---|---|---|---|---|---|---|
OPLS-DA | 1 + 1 + 0 | 10 | 0.584 | 0.968 | 0.667 | 1T VS C |
Name of Metabolite | Kyoto Encyclopedia of Genes and Genomes (KEGG) ID | 1T | C | VIP | p | Fold Change | Variation Trend |
---|---|---|---|---|---|---|---|
Monostearin | ----- | 0.01078 | 0.00780 | 1.87020 | 0.00942 | 1.38200 | up |
1-Monopalmitin | ----- | 0.01756 | 0.01171 | 2.32257 | 0.00019 | 1.50025 | up |
Melatonin | C01598 | 0.60762 | 0.13105 | 2.43275 | 0.00004 | 4.63664 | up |
Thioctamide | C00579 | 0.70170 | 0.15122 | 2.42728 | 0.00005 | 4.64036 | up |
Xanthotoxin | C01864 | 0.03646 | 0.00905 | 2.42773 | 0.00001 | 4.03036 | up |
Androsterone | C00523 | 0.03348 | 0.00734 | 2.42492 | 0.00001 | 4.56092 | up |
Putrescine | C00134 | 0.04506 | 0.02701 | 1.68454 | 0.04890 | 1.66810 | up |
Leucine | C00123 | 0.07612 | 0.03049 | 1.32756 | 0.02636 | 2.49651 | up |
Elaidic acid | C01712 | 0.00815 | 0.00348 | 2.33537 | 0.00113 | 2.34486 | up |
d-(glycerol 1-phosphate) | C00093 | 0.00459 | 0.00268 | 2.06144 | 0.00654 | 1.71301 | up |
1,4-Cyclohexanedione | C08063 | 0.00604 | 0.00767 | 1.83149 | 0.02327 | 0.78668 | down |
Cellobiose | C06422 | 0.00153 | 0.00330 | 1.13819 | 0.00447 | 0.46277 | down |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Zhang, X.; Zhang, J.; Feng, R.; Wang, S.; Yang, Y. Metabolomics of Pseudomonas aeruginosa Treated by Atmospheric-Pressure Cold Plasma. Appl. Sci. 2021, 11, 10527. https://doi.org/10.3390/app112210527
Xu D, Zhang X, Zhang J, Feng R, Wang S, Yang Y. Metabolomics of Pseudomonas aeruginosa Treated by Atmospheric-Pressure Cold Plasma. Applied Sciences. 2021; 11(22):10527. https://doi.org/10.3390/app112210527
Chicago/Turabian StyleXu, Dehui, Xinying Zhang, Jin Zhang, Rui Feng, Shuai Wang, and Yanjie Yang. 2021. "Metabolomics of Pseudomonas aeruginosa Treated by Atmospheric-Pressure Cold Plasma" Applied Sciences 11, no. 22: 10527. https://doi.org/10.3390/app112210527
APA StyleXu, D., Zhang, X., Zhang, J., Feng, R., Wang, S., & Yang, Y. (2021). Metabolomics of Pseudomonas aeruginosa Treated by Atmospheric-Pressure Cold Plasma. Applied Sciences, 11(22), 10527. https://doi.org/10.3390/app112210527