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Abstract: This article addresses the problem of determining the location of pallets carried by forklifts
inside a warehouse, which are recognized thanks to an onboard Radio Frequency IDentification
(RFID) system at the ultra-high-frequency (UHF) band. By reconstructing the forklift trajectory
and orientation, the location of the pallets can be associated with the forklift position at the time of
unloading events. The localization task is accomplished by means of an easy-to-deploy combination
of onboard sensors, i.e., an inertial measurement unit (IMU) and an optical flow sensor (OFS), with a
commercial ultra-wideband (UWB) system through an Unscented Kalman Filter (UKF) algorithm,
which estimates the forklift pose over time. The proposed sensor fusion approach contributes to
the localization error mitigation by preventing drifts in the trajectory reconstruction. The designed
methos was at first evaluated by means of a simulation framework and then through an experimental
analysis conducted in a large warehouse with a size of about 4000 m2.

Keywords: Cyber-Physical System; Industry 4.0; UWB; sensor fusion; tracking; indoor; localization

1. Introduction

Locating robots and other vehicles has become a key topic in recent years in the
Industry 4.0 framework [1]. Locating industrial vehicles, such as forklifts or laser-guided
vehicles (LGVs), is critical to improve the management of large warehouses [2]. It was
observed that the sequence in which products are picked and transported by forklifts may
account for 55% of the total cost of warehouse operations [3,4]. Therefore, optimizing this
process through a continuous monitoring of forklift routes can contribute significantly
to the plant efficiency. Additionally, localization of forklifts or other vehicles is the first
necessary requirement to implement autonomous vehicles [5].

As field practitioners are now aware, the lack of a reliable Global Navigation Satellite
System (GNSS) signal in indoor environments, such as industrial plants and warehouses,
makes it necessary to develop localization solutions based on alternative technologies [6].
In many applications, the vehicle coordinates, together with the vehicle orientation, i.e.,
the vehicle pose, must be estimated [7]. A vehicle can be theoretically localized through
proprioceptive sensors that measure its ego-motion parameters, such as inertial measurement
units (IMUs) [8], rotary encoders [9], or optical flow sensors [10,11], through a dead reckoning
process [12]. However, such a solution is not applicable in the long-term, as the nature of
these sensors leads to an accumulation of localization error and a consequent drift of the
estimated trajectory. Therefore, to bind the localization uncertainty, proprioceptive sensor
data are usually merged with exteroceptive sensor data, providing information about the
surrounding environment [13,14].

Several technologies exist that can be adopted as providers of external information in
the sound [15–17], optical [18–23], and electromagnetic domains [24–56].
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The sound domain is particularly suitable for performing vehicle localization through
rotating sonars equipped on the vehicle [17], but it suffers from several problems, such as
noise pollution, which could be significant in industrial environments.

Particularly interesting is the optical domain, which is widely represented in the
state-of-the-art [19–23]. The optical domain concerns both solutions with 2D infrared [19]
and 3D rotating Light Detection And Ranging (LiDAR) [20] or computer vision (CV)
techniques in the visible light domain [21–23]. The first type of solutions can achieve
accurate localization performance thanks to the recent improvements in localization and
simultaneous localization and mapping (SLAM) algorithms for mobile robots [19]. Rotating
LiDARs are able to reconstruct the environment map and to measure the trajectory of the
vehicle contextually, but they suffer from the problem of moving obstacles in their field of
view, which may cause the map-creation process to fail. Therefore, a crowded or dynamic
environment could not be suitable for these systems. The CV techniques based on visible-
light cameras are robust, but indeed suffer similar issues. Moreover, the computational
burden of these methods is high; poor light conditions may invalidate the quality of
the gathered images, and privacy issues can be raised if the camera gets images/videos
of people.

Some technologies in the electromagnetic domain, instead, provide a more robust
way to release from the environmental effects. For example, if the area to be monitored
is small, magnetic systems can be used [24–26]. Magnetic fields are also useful in vehicle
localization for magnetometers contained in IMUs, used to calibrate gyroscope biases and
to improve the robot tracking performance [27].

Radio frequency (RF) technologies are more suitable for several distance-measurement
strategies depending on the available bandwidth. For solving the localization task, most
widespread radio wave technologies require an infrastructure of devices installed at known
locations, namely anchors. Then, onboard equipment exchanges a signal with the anchors
to measure the vehicle–anchor distance, which is then exploited to compute the vehicle loca-
tion through multilateration algorithms [28]. The vehicle–anchor distance can be measured
by leveraging the received signal power [29], or the Time Of Flight (TOF) if the available
communication bandwidth is enough [30]. Wi-Fi signals at 2.4 GHz are very widespread,
as they can usually take advantage of a pre-existing infrastructure for data exchange inside
the plant/warehouse. The Wi-Fi service bandwidth is limited to 85 MHz, which is not
sufficient to perform TOF measurements; therefore, distance measurements are done by
retrieving electromagnetic path loss models, which aim at linking the received power with
the distance from two devices [31,32]. Unfortunately, received power measurements are
strongly affected by the multipath propagation phenomena. Indeed, Wi-Fi fingerprinting
techniques can be used to circumvent this problem by avoiding to perform distance mea-
surements with path loss models, at the expense of long calibration procedures, which are
hard to make in large industrial environments [33].

Recently, Radio Frequency IDentification (RFID) technology has become popular
for mobile robot localization [34], especially passive RFID technology at an ultra-high
frequency (UHF) band. Such systems have the advantage of not requiring any power
supply to the anchors, but their reading range is limited to few meters; therefore, it could be
difficult to implement such a system in a large industrial environment, unless a low-density
deployment of RFID anchors is achieved [35].

Ultra-wideband (UWB) systems were expensive in the past; however, nowadays,
commercial solutions exist at a reduced cost, by effectively introducing this technology as
one of the most promising for performing radio wave-based ranging measurements [36,37].
The large bandwidth allows for precise and accurate ranging measurements based on the
time of arrival (TOA) and time difference of arrival (TDOA) schemes, with a few cm error
and with a 20–30 m signal distance coverage for each anchor. Therefore, by deploying a
fine-grained infrastructure of UWB anchors, the vehicle location can be estimated through
a multilateration algorithm, which leverages the estimated distances from an onboard
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UWB tag [38–40]. With a pair of UWB tags installed onboard, the vehicle orientation might
be measured, too, at the expense of a more complex signal processing [41].

UWB systems suffer from multipath phenomena, and they are not insensitive to the
environment [42]. However, thanks to machine learning and other techniques [43–47], the
effect of detrimental multipath or non-line-of-sight (NLOS) conditions can be mitigated.
Alternatively, multi-sensor data fusion, also known as sensor fusion, can be used to help
the UWB system in the localization task, as proposed in this paper [48–56].

By generally speaking, sensor fusion localization schemes foresee combining the
sensed data from different technologies to obtain a more accurate and reliable location
estimation. The fused sensors can be of different natures, and it is common to find in the
literature solutions that combine together several exteroceptive sensors [49–54]. However,
the installation of multiple exteroceptive sensor systems can be wasteful, in terms of time,
cost, and computational burden. Therefore, the fusion of proprioceptive sensors and a single
exteroceptive sensor is preferable [55,56]. Most of these kinds of schemes rely on the usage
of recursive dynamic state system estimators, such as the Kalman Filter (KF) and its
variants [57], or Monte Carlo estimators, such as the Particle Filter (PF) and its variants [58].
These methods foresee two stages: (i) the prediction step, where the proprioceptive sensors are
used to compute a first hypothesis on the vehicle motion; (ii) the update step, where the
exteroceptive sensors are used to correct the first hypothesis on the vehicle motion and to
reduce the error by preventing trajectory drifts and unbounded growths of the localization
uncertainty.

In this paper, we will show an RFID Smart Forklift designed to operate within a
Warehouse 4.0 for tissue paper storage. The products are organized in pallets, which are
tagged with passive UHF-RFID tags that allow their identification. The forklift is equipped
with a series of sensors that enable its self-localization thanks to an on-site processing unit.
In particular, the smart forklift is equipped with a UWB tag, which receives the signal
from a set of UWB anchors installed at the warehouse ceiling, an IMU, an optical flow
sensor (OFS) [10,11], and four short-range time-of-flight laser-ranging distance sensors
used to monitor the height above ground of the optical sensor. The OFS consists of a
small infrared camera pointing to the floor to measure the forklift ego-motion, so it is
not affected by environmental issues, such as poor light conditions or moving people
and obstacles. In addition, the forklift is equipped with a UHF-RFID reader connected
to four UHF-RFID antennas for pallet recognition, and an ultrasonic sensor to verify the
forklift loaded/unloaded status. Through a sensor fusion tracking algorithm based on
the Unscented Kalman Filter (UKF) [59], the trajectory and orientation of the forklift are
reconstructed by fusing together the data acquired by the UWB system and the onboard
sensors. The position of the pallets is then simply associated with the one of the forklift at
the time of unloading events. All loading/unloading events and the position of the forklift
over time are sent via a Wi-Fi connection to a central server for the operations management.
In this way, it is possible to trace the movements of all the goods inside the warehouse. The
focus of the work is to show how the proposed tracking algorithm is able to ensure good
localization accuracy and a correct estimation of the vehicle orientation, which is essential
to accurately determine the exact position of the unloaded pallets. The advantages of the
proposed tracking methods are as follows: (i) a single UWB tag and the onboard kinematic
sensors allow to correctly reconstruct the forklift orientation; (ii) the optical flow sensor,
considered here as a proprioceptive sensor, is used in combination with the UWB technology
to obtain high-accuracy tracking performance; (iii) the sensor fusion scheme only foresees
a single exteroceptive sensor technology for providing environmental external data (i.e., the
UWB system), so it is simple and easy to install; (iv) the computational burden is low and
the method can be fruitfully exploited for real-time tracking.

The paper is structured as follows: Section 2 provides an algebraic explanation of the
proposed localization method, by describing the UKF design and the UWB localization
technique. Section 3 shows a simulated analysis to verify the localization algorithm
capability. Section 4 presents a detailed description of the experimental equipment, the
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performed trials, and the experimental results. Finally, Section 5 states conclusions and
future works.

2. UWB Forklift Localization Method
2.1. Forklift Motion Model

In this section, we present the forklift 2D tracking method based on the integration
of IMU, OFS, and UWB sensors in a sensor-fusion algorithm. The tracking method is
based on the dynamic system state estimation theory and relies on an UKF estimator. A
forklift is usually a heavy vehicle with relatively high inertia, and can be modeled as a
rigid body with size L×W × H, being L, W, H the length, width, and height of the vehicle,
respectively. In this analysis, we suppose that the IMU and OFS are located at the same
location, whereas the onboard UWB tag is in another location. This configuration will also
be adopted in the experimental analysis in Section 4.

First, we define a right-handed local reference frame 〈N〉 = {On, Xn, Yn, Zn} as the
reference frame of the target area, which could be a plant or a warehouse (we will refer
to 〈N〉 as the plant/warehouse reference frame). On indicates the origin of the reference
frame and Xn, Yn, and Zn are the x-, y- and z-axes, respectively.

We define at each timestep k a body reference frame 〈B(k)〉 = {O(k)
b , X(k)

b , Y(k)
b , Z(k)

b }
where O(k)

b is the origin of the reference frame, which is centered on the IMU/OFS location,

whereas X(k)
b , Y(k)

b , and Z(k)
b are the local x-, y- and z-axes at timestep k, respectively. The

IMU and the OFS sensor reference frames are considered oriented as the forklift body
frame. The local forklift reference frame and the plant/warehouse reference frame are
then linked by a rigid roto-translational transformation, which depends on the location
[xk, yk]

T and orientation θk of the forklift at each timestep k, as described in Figure 1,
where [xk, yk]

T corresponds with O(k)
b , and θk is the angle between X(k)

b and Xn. The UWB

tag has a constant displacement in the body frame, with respect to O(k)
b , which can be

defined as ∆pUWB = [∆xUWB, ∆yUWB, ∆zUWB]
T . This offset must be translated in the

plant/warehouse frame according to the estimated orientation θk.

𝑋𝑛

𝑌𝑛

𝑋𝑏
(𝑘)

𝑌𝑏
(𝑘)

• IMU

• OFS

UWB

TAG

𝜽

Δ𝑥𝑈𝑊𝐵

Δ𝑦𝑈𝑊𝐵

RFID Smart Forklift

Figure 1. Schematic representation of the RFID Smart Forklift equipped with IMU, OFS, and UWB
tag along with the plant/warehouse reference frame and the local body frame.

The UWB tag location is estimated through a multilateration algorithm, which is
supposed to involve a maximum of four UWB anchors at once, as the case of the experi-
mental analysis. Without loss of generality, we suppose that the UWB system measures
each UWB tag coordinate with an additive white Gaussian error with zero-mean value
and standard deviation σUWB, namely νxk ∼ N (0, σ2

UWB), and νyk ∼ N (0, σ2
UWB) for the x-

and y-coordinates, respectively. The noise standard deviation σUWB increases when the tag
anchor distance increases due to a lower signal quality. However, as it will be shown in
the experimental-analysis section, the anchors are attached at the ceiling, and the forklift is
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constrained to travel in such a way that the distances of the four closest UWB anchors are
always similar; consequently, the noise parameters can be considered as constant.

The onboard sensors measure kinematic quantities with respect to the body frame. In
particular, since the forklift is constrained to move on the ground, we consider the 2D accel-
eration ak = [axk , ayk ]

T , the angular speed ωk, and the 2D forklift velocity vk = [vxk , vyk ]
T .

The accelerations are measured through the IMU and they are considered as affected by a
zero-mean additive white Gaussian noise, named as νaxk

∼ N (0, σ2
a ), and νayk

∼ N (0, σ2
a ),

where σa is the acceleration-noise standard deviation. Similarly, the angular speed noise
is νωk ∼ N (0, σ2

ω), where σω is the angular speed-noise standard deviation. Consider
that, since the forklift is a rigid body, the angular speed can be measured in any point
of the vehicle, and it is not mandatory to measure it at the rotation center of the vehicle.
The OFS measures the displacement of the forklift among two consecutive timesteps,
thanks to a computer vision algorithm that analyzes floor images acquired at different
timesteps. The velocity measurements can be computed by dividing the displacement
for the sampling time ∆t. For the OFS, the quantization noise is preponderant with re-
spect to other noise sources, so the velocity measurements can be considered affected
by two uniformly distributed random variables named qvxk

∼ U ([−r/(2∆t), r/(2∆t)]),
and qvyk

∼ U ([−r/(2∆t), r/(2∆t)]), where r is the sensor spatial resolution and ∆t is the
sampling time.

The dynamic state vector is sk = [xk, yk, vxk , vyk , axk , ayk , ωk, θk]
T ∈ R8×1. The dynamic

state vector at timestep k + 1, sk+1, can be written as a non-linear function of sk through
the following state transition model:

sk+1 = f(sk) =



xk+1
yk+1
vxk+1

vyk+1

axk+1

ayk+1

ωk+1
θk+1


=



xk + ∆t(vxk cos(θk)− vyk sin(θk))
yk + ∆t(vxk sin(θk) + vyk cos(θk))

vxk + ∆taxk

vyk + ∆tayk

axk

ayk

ωk
θk + ∆tωk

(1)

The high inertia of the forklift makes reasonable the assumption of a quasi-constant
velocity motion model between two consecutive timesteps. Therefore, we can suppose that
the process noise only applies on the acceleration quantities and the angular speed. Without
loss of generality, we will assume that the process noise statistics have the same statistics of
the measurement noise for the same variable. The process noise is not additive. In (2), we
made explicit the presence of the state noise vector wk = [νaxk

, νayk
, νωk , q̂vxk

, q̂vyk
]T in the

state transition model:

sk+1 = f(sk, wk) =



xk+1
yk+1
vxk+1

vyk+1

axk+1

ayk+1

ωk+1
θk+1


=



xk + ∆t[(vxk + q̂vxk
) cos(θk)− (vyk + q̂vyk

) sin(θk)]

yk + ∆t[(vxk + q̂vxk
) sin(θk) + (vyk + q̂vyk

) cos(θk)]

vxk + q̂vxk
+ ∆t(axk + ν̂axk

)

vyk + q̂vyk
+ ∆t(ayk + ν̂ayk

)

axk + ν̂axk
ayk + ν̂ayk
ωk + ν̂ωk

θk + ∆t(ωk + ν̂ωk )

(2)
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where with the symbol “·̂” we indicate the corresponding process noise variable. At each
timestep k, the following set of measurements zk = h(sk, nk) ∈ R7×1 is available, where
nk represents the set of measurement noises:

zk = h(sk, nk) =



x̃k
ỹk
˜vxk
˜vyk
˜axk
˜ayk

ω̃k


=



xUWB
k − ∆xUWB cos(θk) + ∆yUWB sin(θk) + νxk

yUWB
k − ∆xUWB sin(θk)− ∆yUWB cos(θk) + νyk

vxk + qvxk
vyk + qvyk
axk + νaxk
ayk + νayk
ωk + νωk

(3)

where xUWB
k and yUWB

k are the UWB tag coordinates measured in the plant/warehouse
frame through the UWB system and which will be described in the next section. Thanks
to these two sets of Equations (2) and (3), a UKF can be adopted to estimate the forklift
location in the plant/warehouse reference frame and its orientation. The UKF filter needs,
for several initial parameters, to run, for instance, the parameters α, K, and β [59]. α and K
size the spread of the sigma-points, whereas the parameter β must be chosen according
to the data distribution. Typical recommendation is α = 10−3, K = 0, and β = 2 [60]. The
initial covariance matrix P0 ∈ R8×8 is set to the following:

P0 =



σ2
UWB 0 0 0 0 0 0 0
0 σ2

UWB 0 0 0 0 0 0

0 0
r2

12∆t2 0 0 0 0 0

0 0 0
r2

12∆t2 0 0 0 0

0 0 0 0 σ2
a 0 0 0

0 0 0 0 0 σ2
a 0 0

0 0 0 0 0 0 σ2
ω 0

0 0 0 0 0 0 0 σ2
θ


(4)

where σθ is the standard deviation of the forklift initial orientation error.

2.2. UWB Positioning

Several UWB anchors are deployed in the target area to perform the forklift localization
through a simple multilateration algorithm. Since the commercial system adopted in the
experimental analysis can use up to four anchors per each timestep, the following method
is described by considering only four anchors, even if more of them are detected.

Let us consider a set of NUWB UWB anchors deployed in the warehouse at known
locations pu,j = [xu,j, yu,j, zu,j]

T , j ∈ [1, . . . , NUWB], as outlined in Figure 2. At each timestep

k, we can write the vector rk of NUWB elements, in which the j-th element r(j)
k ∈ {0, 1} is

1 if the j-th UWB anchor data are available at the timestep k, and it is 0 otherwise. Let us
assume that, at each timestep, at least four anchors are detected by the onboard UWB tag,
and a distance measurement di is available for each anchor, where i represents the index of
an anchor in the set of available anchors at the timestep k. For simplicity, let us assume that
the set of indexes i = [1, 2, 3, 4] is always chosen for each timestep.

At each timestep, the following equations system can be written:
(xu,1 − xUWB

k )2 + (yu,1 − yUWB
k )2 + ∆z2 = d2

1
(xu,2 − xUWB

k )2 + (yu,2 − yUWB
k )2 + ∆z2 = d2

2
(xu,3 − xUWB

k )2 + (yu,3 − yUWB
k )2 + ∆z2 = d2

3
(xu,4 − xUWB

k )2 + (yu,4 − yUWB
k )2 + ∆z2 = d2

4

(5)



Appl. Sci. 2021, 11, 10607 7 of 22

where we consider ∆z = zu,j − zUWB
k a constant for each timestep and for each anchor. The

system can be linearized if we subtract the first row to all the others. With such an operation,
all of the quadratic unknown terms are canceled. After some algebraic manipulations,
we obtain:(xu,2 − xu,1) (yu,2 − yu,1)

(xu,3 − xu,1) (yu,3 − yu,1)
(xu,4 − xu,1) (yu,4 − yu,1)

[xUWB
k

yUWB
k

]
=

(d2
1 − d2

2) + (x2
u,1 + y2

u,1)− (x2
u,2 + y2

u,2)

(d2
1 − d2

3) + (x2
u,1 + y2

u,1)− (x2
u,3 + y2

u,3)

(d2
1 − d2

4) + (x2
u,1 + y2

u,1)− (x2
u,4 + y2

u,4)

 (6)

which is an over-determined linear equation system of the form

Ax = b (7)

which can be solved by computing the Moore–Penrose pseudo-inverse matrix A† to get a
measurement of [xUWB

k , yUWB
k ]T :[

xUWB
k

yUWB
k

]
= x = (ATA)−1ATb = A†b (8)

Figure 2. RFID Smart Forklift in the Smart Warehouse, along with part of the UWB infrastructure for
its localization.

3. Numerical Analysis

The performance of the proposed UKF algorithm are here demonstrated through
a numerical analysis. We consider an indoor environment, where NUWB = 35 UWB
anchors are deployed according to a regular 7 × 5 grid in a 40 m × 25 m area at the
ceiling and at a height h = 6 m. The spacing along the x-coordinate of each anchor is
6.6 m, whereas along the y-coordinate is 6.25 m. The forklift is here considered as a single
point with all of the sensor payloads (IMU, OFS, and UWB tag) placed at the same point.
Therefore, ∆xUWB = ∆yUWB = 0 m. The height of the UWB tag is 2 m, so ∆z = 4 m.
The sampling time ∆t is set to 10 ms. At each timestep k, the algorithm exploits the
measured distance between the UWB tag and the four closest UWB anchors to perform
the multilateration. At the same time, the IMU and the OFS generate acceleration, angular
speed, and velocity data. In accordance to the data sheet of the sensors that will be used
for the experimental analysis, we set σa = 16.7 mm/s2, σω = 2.4 mrad/s, r = 2.3 cm,
σUWB = 0.15 m, and σθ = 0.1 rad . The forklift starts a “square wave-shaped” path from
location [x0, y0]

T = [0, 0]T m with an orientation θ0 = π/2 rad, and travels with a speed of
0.75 m/s until the location [xNc , yNc ]

T = [32.6, 15]T m after Nc = 10, 000 algorithm steps.
The path-length is approximately 75 m. The UKF filter is run with α = 10−3, β = 2, and
K = 0.

A top view of the performed simulated trajectory is depicted in Figure 3. The UWB
anchors are the gray squared markers, and the ground truth trajectory is depicted as a
continuous gray line. We represent, with a continuous blue line, the trajectory estimated
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with the UWB system only. The output of the dead-reckoning process by using only IMU
and OFS is instead depicted as a dashed red line, whereas the output of the proposed
UKF-based algorithm is the pointed green line.

START

END

Figure 3. Top view of the simulated trajectory along with the UWB anchors (gray squared markers).
Ground truth trajectory (continuous gray line), UWB (continuous blue line), IMU + OFS (dashed red
line), and UKF (pointed green line) estimated trajectories of the forklift are also represented.

As can be seen, the UWB system alone is not affected by drifts, but the output trajectory
is not smooth; therefore, is not easy to accurately estimate the vehicle orientation. The
output of the dead-reckoning process (dashed red line) is a smooth curve, but since only
proprioceptive sensors are involved, it is affected by a detrimental drift, especially caused
by the errors on the measured angular speed, which have a great impact on the vehicle
orientation estimation. The output of the UKF (pointed green line) is a smooth trajectory
without drifts, meaning that the filter converges. As expected, the trajectory of the vehicle
gets further from the ground truth trajectory along the curves, but the algorithm is able
to recover the track in few steps. In Figure 4, we depict the localization errors along the
x-coordinate εx (Figure 4a), along the y-coordinate εy (Figure 4b), and the distance error

εd =
√

ε2
x + ε2

y (Figure 4c). From the figures, an initial transient stage is clearly observable,
where the UKF must achieve the convergence, which is indeed reached in a few seconds.

To better investigate the method performance, a Monte Carlo analysis with M = 100 test
cases with similar features as the one represented in Figure 3 was conducted. The results
of the cumulative distribution function of the distance error εd for the different tracking
methods is represented in Figure 5. As apparent, the error of the UKF is bound to 0.5 m.
Figure 6, instead, shows the histogram of the orientation error σθ . It can be noticed that
the orientation error is lower for the UKF. In particular, the global mean orientation errors
are ε̄θUWB = 0.31 rad, ε̄θIMU+OFS = −0.26 rad, and ε̄θUKF = −0.01 rad, whereas the standard
deviations are σθUWB = 2.11 rad, σθIMU+OFS = 0.11 rad, and σθUKF = 0.05 rad. This means
that the accuracy of UWB system alone with a single tag is not enough to correctly retrieve
the forklift orientation.
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(a)

(b)

(c)

Figure 4. Localization errors for the different considered localization methods for the simulated
trajectory of Figure 3: (a) x-coordinate, (b) y-coordinate, (c) distance error.

Figure 5. Cumulative distribution function of the distance error εd for M = 100 test cases with
similar trajectories as the one represented in Figure 3.
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Figure 6. Histogram of the orientation error εθ for M = 100 test cases with similar trajectories as the
one represented in Figure 3.

3.1. Effect of Forklift Speed

The forklift speed might impact the UKF performance. To check it, we simulated the
forklift trajectory as that depicted in Figure 3, but we changed the forklift speed among
the values v = [0.75, 1.11, 1.67, 2.22, 2.75] m/s. The number of samples for each trajectory
was then resized in order to keep unchanged the path length to 75 m for all trials. For
each speed value, we performed 100 test cases and then we computed the mean value
of εd, named here as ε̄d. We show the results in Figure 7. The UWB performance is here
unchanged due to the assumed simulation model. Instead, the mean distance error for the
dead-reckoning process (circular red markers) increases with the forklift speed, and so, also,
the mean distance error of the UKF, due to the fact that the sensor fusion approach relies on
both UWB and proprioceptive sensor data. On the other hand, the UKF keeps “bounded”
the increasing of the mean distance error, which is lower than the error committed by the
UWB system, even when the forklift travels at 2.75 m/s. Given the fact that forklifts usually
cannot travel faster than 2–3 m/s for safety reasons, we can conclude that the UKF is robust
with respect to the increase of the forklift speed.

Figure 7. Mean distance error ε̄d as a function of the forklift speed v. For each value of v, 100 test
cases were conducted with similar trajectories as the one represented in Figure 3.

3.2. Effect of Initial Uncertainty

Tracking algorithms should be robust with respect to errors in the filter initialization.
Positioning systems as the UWB systems are not affected by this problem. Dead-reckoning,
instead, is invalidated by large initialization error. A sensor fusion algorithm based on
sequential estimators such as the UKF, should converge even if an initial error on the
dynamic state estimation is present. For this purpose, we performed an analysis of the
method performance when the matrix P0 changes. We considered different values of σUWB
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and σθ to perform the method with 11 different configurations of the initial error standard
deviation. The values of the changed parameters in each configuration are shown in Table 1.
For each configuration, we ran the UKF 100 times and we observed the mean distance
error ε̄d.

Table 1. Values of σUWB and σθ for the analysis of the UKF performance.

Trial σUW B [m] σθ [rad]

A 0.1 0.1
B 0.2 0.1
C 0.4 0.14
D 0.6 0.21
E 0.8 0.28
F 1 0.35
G 1.2 0.42
H 1.4 0.49
I 1.6 0.56
J 1.8 0.63
K 2 0.7

The results are depicted in Figure 8, for a forklift speed of v = 0.75 m/s. As it can be
noticed, the UKF performance is not influenced by the initial error uncertainty because the
mean localization error does not change with different initial conditions.

Figure 8. Mean distance error ε̄d as a function of the initial uncertainty matrix P0. For each configu-
ration described by Table 1, 100 test cases with similar features as the one represented in Figure 3
were conducted.

4. Experimental Analysis
4.1. The RFID Smart Forklift

This section aims at describing the sensors installed on the forklift. Forklifts are
electrically driven vehicles and exist with either three wheels or four. The employed forklift
is a four-wheel OM Still RX 20-18P/Li-Ion. It has a front wheel drive, so traction is carried
out by the two front wheels, which can also rotate for the vehicle steering.

The odometry data were not available and, therefore, we could not adopt the unicycle
or bicycle vehicle model. However, thanks to the presence of the IMU and the OFS, it is
still possible to reconstruct the dynamic state model of the vehicle.

The sizes of the vehicle are L = 2.78 m, W = 1.14 m, H = 2.08 m. The onboard
hardware is the following:

• Decawave DWM1001 UWB module [61] configured as tag;
• A box containing the kinematic proprioceptive sensors: one Agilent ADNS3080

Optical Flow Sensor [62], four STMicroelectronics VL53L0X Time-of-Flight laser-
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ranging distance sensors [63], STMicroelectronics LSMDS3 inertial measurement unit
platform [64];

• a RENESAS SK-S7G2 microcontroller [65];

The forklift also has, installed, onboard, the RFID hardware for the detection of the
loaded pallets:

• UHF-RFID reader Impinj Speedway Revolution R420 [66];
• two UHF-RFID Keonn Advantenna−p11 antennas for loaded pallet recognition [67];
• two UHF-RFID Alien A0501 antennas for stocked pallet detection and localization [68];

A picture of the RFID Smart Forklift is shown in Figure 9. The box containing the OFS,
the four Time-of-Flight laser-ranging distance sensors, and the IMU was installed close to
the right-front wheel of the forklift at a height of 15.5 cm, in such a way that the OFS camera
pointed towards the floor. The box is assumed as the origin of the body reference frame
O(k)

b . The OFS and the IMU were jointly used for the sensor fusion localization algorithm
together with the UWB data, whereas the Time-of-Flight laser-ranging distance sensors
were used to accurately measure the height of the OFS from the floor and keep track of
possible height variations of the sensor. Such measurements are necessary to calibrate the
sensor measurements, which turns out to have a spatial resolution of r = 2.3 cm when the
sensor is placed at a 15.5 cm height. According to the datasheet of the LSMDS3 IMU, the
acceleration noise has a standard deviation σa = 16.7 mm/s2, whereas the angular speed
noise exhibits a standard deviation σω = 2.4 mrad/s.

Considering that the UWB anchors will be installed at the room ceiling, the UWB tag
is instead positioned on the roof of the forklift, to ensure its visibility. The smart forklift is
equipped with a Decawave DWM1001 UWB module of the MDEK1001 development kit
placed on the forklift roof with a displacement of ∆pUWB = [∆xUWB, ∆yUWB, ∆zUWB]

T =
[−0.61, 0.56, 2.04]T m, with respect to the box containing the IMU and the OFS. Due to
forklift structure reasons, it was not possible to place the UWB tag directly above the IMU
and OFS, so it also necessary to foresee that the 2D position measured by the UWB system
does not correspond to that of the other two sensors. All onboard sensors are properly
time-synchronized together through the RENESAS SK-S7G2 microcontroller, which sets
the sampling time at ∆t = 10 ms.

𝑿𝒃
(𝒌)

𝒀𝒃
(𝒌)

𝒁𝒃
(𝒌)

• IMU

• OFS • UWB TAG

• RFID reader

• Microcontroller

RFID antennas

Figure 9. The RFID Smart Forklift with all the equipped sensors. The body local reference frame is
also depicted centered on the box containing IMU and OFS.

4.2. UWB Anchors

During the project, a demonstrator of the system was developed in one of the Sofidel
S.p.a. large warehouses, by selecting a target area of size 4560 m2, divided in two corridors.
Thirty UWB Decawave anchors were installed at the ceiling of the warehouse designed
area, by taking advantage of the presence of six metallic bars at a height of around 6 m
oriented along the y-direction of the warehouse and spaced along the x-direction of around
10 m. A total of 30 UWB Decawave (Figure 10) DWM1001 modules configured to work
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as UWB anchors were installed on the bars (Figure 10a). The map of their deployment
is shown in Figure 10b, where each UWB anchor is denoted as a blue asterisk. The
location of UWB anchors was measured through the Leica Flexline TS03 manual total
station [69]. It is a device equipped with lasers and a high-precision orientation meter that
can provide a measurement of three-dimensional coordinates of a point within the space,
with millimeter accuracy.

Metallic bar

UWB 

anchor

(a) (b)

Figure 10. (a) A UWB anchor installed at a metallic bar. (b) Position of UWB anchors in the warehouse
area (blue asterisks).

4.3. Results

To test the effectiveness of the UKF localization for the RFID Smart Forklift, tests were
carried out in the warehouse. An adhesive tape was placed on the ground to create a refer-
ence path for the forklift dirver during the trials. By analyzing the estimated trajectories
and comparing them with the reference path, it was possible to evaluate the localization
performance of the UWB system alone, of the dead-reckoning process (IMU + OFS), and
of the UKF. It must be highlighted that, the method used by the Decawave UWB system
to estimate the tag location is not known to users, but it is known that no more than
four UWB anchors at the same time are employed (this is why we performed the simu-
lations in Section 3 by considering only four anchors per timestep when computing the
multilateration).

Figure 11 shows a photo of a part of the reference path indicated by the adhesive
tape stuck on the ground. To make sure that the forklift was following the reference path
accurately, the OFS mounted on the forklift was used. In fact, this sensor projects on the
ground a red-light beam footprint, which can be used to check if the reference points
marked with the tape are correctly crossed during the forklift motion.

Red-light beam

RFID Smart Forklift

Reference path

Figure 11. Part of the reference path for the forklift indicated by the adhesive tape (left) and red light
beam (right) projected by the OFS to make sure the forklift was actually following the path.
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Nine forklift trajectories were performed with different speeds. The main features of
the performed test case trajectories were resumed in Table 2 in terms of forklift forward
speed v, path-length L, path shape, and starting location and orientation.

Table 2. Main features of the performed test case trajectories.

Test Case Forklift Speed v [m/s] Path-Length L [m] Path Shape [x0, y0]T [m] θ0 [rad]

I 0.75 ∼100 Closed-loop path [11.5, 74.4]T −π/2
II 0.75 ∼100 Closed-loop path [11.5, 74.4]T −π/2
III 1.6 ∼100 Closed-loop path [11.5, 74.4]T −π/2
IV 1.6 ∼100 Closed-loop path [11.5, 74.4]T −π/2
V 2.75 ∼100 Closed-loop path [11.5, 74.4]T −π/2
VI 2.75 ∼100 Closed-loop path [11.5, 74.4]T −π/2
VII 1.2 ∼137 Rectilinear path with U-turn [41.7, 74.4]T −π/2
VIII 1.2 ∼137 Rectilinear path with U-turn [41.7, 74.4]T −π/2
IX 1.28 ∼289 Closed-loop path [11.5, 74.4]T −π/2

In Figure 12, we represent two test-case trajectories about the cases IV (Figure 12a)
and IX (Figure 12b), respectively, which have comparable forklift speeds (1.2 m/s and
1.6 m/s, respectively), but different path-lengths (∼100 m and ∼289 m, respectively). The
ground truth trajectory (continuous gray line) is the pre-determined reference path built
by using the adhesive tape. The measured path with the UWB is depicted as continuous
blue line, and it is the output of the Decawave commercial system after a mobile-median
filter that filters out the outliers. The measured trajectory with IMU and OFS only is the
dashed red line, and the estimated trajectory by using the UKF is the pointed green line.
As it can be seen, the dead-reckoning and the UKF localization methods, thanks to the
use of onboard kinematic sensors, outputs very smooth trajectories, which are therefore
realistic due the high inertia of heavy industrial vehicles, such as forklifts. On the contrary,
the UWB localization system exploiting multilateration can have some large oscillations
around the reference path, as, for example, in the “straights” portions of the trajectory
represented in Figure 12b. However, for long trajectories, and consequently during the
regular running of forklift operations in the warehouse where the localization system
must never be interrupted, the dead-reckoning suffers from drifts. An example of this
phenomenon can be seen in Figure 12b, when the forklift performs a closed-loop path, but
the dashed red line does not close itself to its starting point.

(a) (b)

Figure 12. Top view of the estimated trajectories along with the UWB anchors (gray squared markers).
Ground truth trajectory (continuous gray line), UWB (continuous blue line), IMU + OFS (dashed red
line), and UKF (pointed green line) measured trajectories of the forklift are represented, too: (a) Test
Case IV, (b) Test Case IX by referring to Table 2.
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To better highlight the tracking performance improvement given by the employment
of the proposed UKF algorithm in this two test cases, Figure 13 shows the boxplot of the
errors along the x-coordinate (Figure 13a for test case IV and Figure 13b for test case IX),
the y-coordinate (Figure 13c for test case IV and Figure 13d for test case IX), the distance
error (Figure 13e for test case IV and Figure 13f for test case IX), and the orientation error
εθ (Figure 13g for test case IV and Figure 13h for test case IX).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Boxplots of the errors by considering the three different tracking systems (UWB, IMU + OFS, and UKF) (a) of
the x-coordinate for test case IV, (b) of the x-coordinate for test case IX, (c) of the y-coordinate for test case IV, (d) of the
y-coordinate for test case IX, (e) of the distance error for test case IV, (f) of the distance error for test case IX, (g) of the
orientation error for test case IV, and (h) of the orientation error for test case IX.
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From the boxplots, it is possible to retrieve the mean localization errors in terms of
distance error. Such errors are reported in Table 3. As it can be seen, the UKF is able to
reduce both localization and orientation errors.

Table 3. Mean distance localization errors for test cases IV and IX in Table 2.

Test Case ε̄dUW B (m) ε̄dIMU+OFS (m) ε̄dUKF (m) ε̄θUW B (rad) ε̄θIMU+OFS (rad) ε̄θUKF (rad)

IV 3.84 2.81 2.13 −0.04 −0.04 0.02
IX 1.77 2.43 1.17 0.06 0.06 0.01

4.4. Effect of Forklift Speed

As expected, the forklift speed might impact the UKF performance. Therefore an
error analysis with varying forklift speed was conducted also via experimental tests. By
considering test case trajectories I-VI, the forklift speed assumes the values 0.75 m/s (test
case I and test case II), 1.6 m/s (test case III and test case IV), and 2.75 m/s (test case V
and test case VI), and the path length is around 100 m. Figure 14 shows the mean distance
error ε̄d when the forklift speed varies. Different from the analysis conducted with the
numerical simulations (Figure 7), the error given by the UWB system varies with the speed,
but it decreases until the forklift speed reaches 1.6 m/s (IV) and then rises again. This effect
could be explained by considering that for low speeds the forklift spends more time by
doing maneuvers and curves, in which the UWB system does not perform well. When the
forklift travels fast, instead, as in test cases V and VI, the UWB system performs worse. The
onboard kinematic sensors, however, perform better for low-speed trajectories, and their
error increases with the forklift speed. Hence, by looking at Figure 14, it can be concluded
that low forklift speeds are preferred by the proposed system, which is able anyway to
reduce the localization error to values always lower than those guaranteed by the UWB
system only, or by the kinematic sensors (IMU + OFS). The minimum obtained error with
the UKF is around 1 m in for the test cases I and II.

Figure 14. Mean distance error ε̄d in function of the forklift speed v by analyzing the test case
trajectories I–VI.

4.5. Effect of Initial Uncertainty

This section aims at investigating whether the proposed UKF-based tracking algorithm
is robust with respect to errors in the initialization of the filter. We performed an analysis of
the method performance by artificially introducing an error on the initial state sk, namely
by changing the initial error covariance matrix P0 according to the same values reported
in Table 1. For each configuration, we ran the UKF and we observed the mean distance
error ε̄d when the forklift performed the test-case trajectory IX. The results are depicted
in Figure 15. As it can be noticed, as well as in real situations, the UKF performance is not
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influenced by the initial error uncertainty. The trajectory reconstruction with the onboard
sensors only, instead, is greatly influenced by the initial uncertainty error, as typical for
dead-reckoning approaches.

Figure 15. Mean distance error ε̄d as a function of the initial uncertainty matrix P0 computed for test
case IX.

4.6. Global Performance

Figure 16 shows the cumulative distribution function of the distance error εd for
the different tracking methods (UWB, IMU + OFS, UKF) by considering all the test
cases I–IX. As it can be noticed, the error of the UKF is bound to 4 m, which is accept-
able for a tracking method in an industrial scenario of 4560 m2 by also considering the
forklift sizes. The forklift orientation, indeed, is better reconstructed with the UKF as
shown in the histogram in Figure 17. In particular the global mean orientation errors are
ε̄θUWB = 0.1 rad, ε̄θIMU+OFS = 0.18 rad, and ε̄θUKF = 0.014 rad, whereas the standard devia-
tions are σθUWB = 0.85 rad, σθIMU+OFS = 1.12 rad, and σθUKF = 0.22 rad. Accordingly to what
was observed in the simulated analysis, the UWB system with a single tag is still not able
to correctly retrieve the forklift orientation, but it has a better behavior with respect to the
simulated analysis. This effect is obtained thanks the data processing implemented by the
UWB system. The small orientation error committed with the UKF allows for determining
the forklift orientation at the time of pallet unloading and, therefore, to better recognize the
location in which the pallet is unloaded.

Figure 16. Cumulative distribution function of the distance error εd for the test cases I–IX.
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Figure 17. Histogram of the orientation error εθ for the test cases I–IX.

4.7. Computational Burden

Finally, before installing the localization algorithm on the onboard microcontroller,
we demonstrated the relatively low computational burden of the proposed method. For
such an analysis, the elaboration time of the test cases I–IX has been measured when the
processing was done on a laptop with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz
and 16 GB RAM through a MATLAB code. The trajectory processing time is reported
in Table 4. By considering the number of UKF timesteps, we can observe that the average
processing time for each timestep is 0.82 ms. By considering a sampling time of ∆t = 10 ms,
we can therefore conclude that the method is suitable for real-time applications, even with
less performing CPUs. Indeed, the proposed system might also be considered in the future
to be tested for safety applications to prevent forklift-to-forklift and forklift-to-human
collisions [70].

Table 4. Elaboration Time compared to trial duration for the test cases I–IX.

Test Case Trial Duration [s] Total Elaboration Time [s] Number of Samples Elaboration Time for Sample [ms]

I 136 10.81 13,641 0.79
II 132 10.05 13,265 0.75
III 63 5.23 6369 0.82
IV 64 5.18 6432 0.8
V 36 3.43 3606 0.95
VI 36 3.34 3611 0.92
VII 114 9.28 11,346 0.81
VIII 110 9.05 11,038 0.82
IX 225 17.09 22,563 0.75

5. Conclusions

In this paper, a system consisting of an RFID-equipped forklift that is able to recognize
the loaded pallets and to self-localize was addressed for a tissue paper factory warehouse.
Thanks to the forklift trajectory and orientation reconstruction, the location of the pallets
can be associated with the forklift position at the time of unloading events. The forklift
self-localization was conducted through a sensor fusion algorithm that combined data
acquired from an onboard inertial measurement unit (IMU) and an onboard optical flow
sensor (OFS) with a commercial ultra-wide band (UWB) system through an unscented
Kalman filter (UKF) estimator. The proposed method is relevant to the state-of-the-art
because of the usage of the optical flow sensor as an onboard proprioceptive sensor to
measure the forklift ego-motion, which allows the employment of an optical domain sensor
without the disadvantage of the dependence from environmental light conditions. After a
first numerical investigation of the method performance, the whole system was evaluated
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in a 4560 m2 warehouse where thirty Decawave commercial UWB anchors were installed
at the ceiling, at known locations. Nine different test case trajectories were performed with
different paths and forklift speed in order to investigate the sensor robustness to different
operating conditions. The experimental analysis showed a decrease of the performance
of onboard kinematic sensors and the UWB system with increasing forklift speed, which
can be mitigated by the usage of the UKF. Indeed, the proposed method achieved a global
experimental mean localization error of 1 m, with a maximum error of 4 m, and the
orientation of the forklift was reconstructed with a mean error of 0.014 rad. Moreover, the
UKF resulted in being “robust”, with respect to different initialization conditions, even
for long paths (almost 300 m). An analysis of the UKF computational burden suggests
the real-time feasibility of the proposed method. The achieved localization performance
together with a limited computational burden makes the proposed low-cost, robust, and
easy-to-deploy system suitable, not only for real-time monitoring of the warehouse status,
but also as a potential candidate to be tested for collision avoidance systems.
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