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Abstract: Relative to standard red/green/blue (RGB) imaging systems, hyperspectral imaging
systems offer superior capabilities but tend to be expensive and complex, requiring either a mechan-
ically complex push-broom line scanning method, a tunable filter, or a large set of light emitting
diodes (LEDs) to collect images in multiple wavelengths. This paper proposes a new methodol-
ogy to support the design of a hypothesized system that uses three imaging modes—fluorescence,
visible/near-infrared (VNIR) reflectance, and shortwave infrared (SWIR) reflectance—to capture
narrow-band spectral data at only three to seven narrow wavelengths. Simulated annealing is applied
to identify the optimal wavelengths for sparse spectral measurement with a cost function based
on the accuracy provided by a weighted k-nearest neighbors (WKNN) classifier, a common and
relatively robust machine learning classifier. Two separate classification approaches are presented,
the first using a multi-layer perceptron (MLP) artificial neural network trained on sparse data from
the three individual spectra and the second using a fusion of the data from all three spectra. The
results are compared with those from four alternative classifiers based on common machine learning
algorithms. To validate the proposed methodology, reflectance and fluorescence spectra in these
three spectroscopic modes were collected from fish fillets and used to classify the fillets by species.
Accuracies determined from the two classification approaches are compared with benchmark values
derived by training the classifiers with the full resolution spectral data. The results of the single-layer
classification study show accuracies ranging from ~68% for SWIR reflectance to ~90% for fluorescence
with just seven wavelengths. The results of the fusion classification study show accuracies of about
95% with seven wavelengths and more than 90% even with just three wavelengths. Reducing the
number of required wavelengths facilitates the creation of rapid and cost-effective spectral imaging
systems that can be used for widespread analysis in food monitoring/food fraud, agricultural, and
biomedical applications.

Keywords: classification; hyperspectral imaging; food fraud; simulated annealing; machine learning;
spectroscopy

Appl. Sci. 2021, 11, 10628. https://doi.org/10.3390/app112210628 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5785-358X
https://orcid.org/0000-0003-1044-349X
https://orcid.org/0000-0003-4390-5734
https://orcid.org/0000-0003-3953-2007
https://doi.org/10.3390/app112210628
https://doi.org/10.3390/app112210628
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210628
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210628?type=check_update&version=1


Appl. Sci. 2021, 11, 10628 2 of 20

1. Introduction

Over the past 20 years, hyperspectral imaging (HSI) has become an invaluable tool
for food safety and quality applications [1,2]. Spoilage and contamination of food and
agricultural products are ongoing concerns for the food industry. Recent applications of
hyperspectral imaging for food safety include detection of mold in peanuts [3,4], lead pol-
lution in lettuce leaves [5], and Fusarium head blight in wheat kernels and wheat flour [6].
Food fraud, the intentional misrepresentation of food or food ingredients for economic gain,
is another major food safety issue that has been addressed with hyperspectral imaging.
For example, this technology has been applied for identifying fillets of less expensive
species of fish that have been marketed and sold as more expensive red snapper (Lutjanus
campechanus) fillets [7,8].

Hyperspectral imaging has been a staple of agriculture monitoring, with initial appli-
cations dating back to the 1970s. Early applications include large-scale remote monitoring
of land and agriculture from the Landsat-I satellite [9], monitoring of crop yield [10],
and detection of plant disease and invasive species [11]. While agriculture applications
have remained constant since these early examples, the methods have changed with new
technologies enabling more localized analysis. Unmanned aerial vehicles (UAVs) have
become attractive survey platforms for local, detailed aerial monitoring efforts [12] and
advancements in computing technology and miniaturization of HSI devices have enabled
the construction of new systems for in-field crop analysis [13].

Hyperspectral imaging devices are complex systems that can be characterized by
the method with which the full spatial-spectral data cube is obtained. Data cubes can be
acquired by spatial scanning, spectral scanning, or by a combination of these methods [14].
With spatial scanning imagers, light is collected at a point or along a line and dispersed
into its spectral components by a dispersive optic such as prism or diffraction grating. This
point or line is then scanned over the target area through the physical motion of the sensor,
reflection from a scanning mirror, or physical motion of the target object. With spectral
scanning imagers, the full spatial content is collected by the image sensor for individual
wavelengths in sequence. Collection of the wavelengths is typically accomplished by
switching wavelengths through filter wheels, electronically controlled liquid crystal tunable
filters (LCTF), or acousto-optic tunable filters (AOTF) [15].

Despite successes in the food safety and agriculture industries, hyperspectral imaging
does have disadvantages, mostly due to the data cube being constructed from individual
components collected in a time-sequential manner. This can be an error-prone process,
especially for high-speed imaging applications. Another category of the hyperspectral
imager, the snapshot imager, overcomes these issues by combining an array of optics to
collect both the spatial and spectral information simultaneously. Usually, this means some
compromise in either the spectral or spatial domain. All of these solutions tend to be both
complex and costly [16]. In research and discovery, it is unknown which wavelengths will
be significant and which are redundant. In many cases, once the spectral characteristics for
a particular targeted application are understood, there can be a significant reduction in the
complexity of the spectral imaging system.

Issues common to all hyperspectral imager types are the significant computing power
required and the large file sizes of the data cubes, especially in applications involving
larger fields of view. Attempts to address these issues have included the application of
compressive sensing [17–19], deep neural networks [20], and methods centered around
principal component analysis (PCA) [21]. Each of these solutions has its own limitations in
terms of heavy computational requirements and large file sizes for data cube analysis.

This paper shows proof of concept for a new method for selecting narrow wavelengths
for the classification of material samples. This method could support the design of a
hypothetical rapid spectral imaging system consisting of a focal plane array covered with a
mosaic color filter array or illumination by selected wavelength LEDs. These can collect
full spatial resolution images at a small number of narrow wavelengths for visible/near-
infrared (VNIR), shortwave infrared (SWIR) reflectance, and fluorescence. The proposed
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method has the potential to be applied in a hand-held, mobile device for rapid scanning
of food products in wholesale or retail marketplaces or configured as a drone-deployable
payload for low-altitude aerial scanning of crops and vegetation.

The aim of this study was to evaluate the potential of this new method for use in an
application combating food fraud by determining the correct species of fish fillets that
are often mislabeled to justify a higher selling price [8,22]. Specific objectives were to (1)
develop and evaluate a heuristic wavelength selection algorithm, (2) develop and evaluate
methods for classifying the species of a fillet using classifiers designed for both single-mode
spectroscopy and a fusion of spectroscopy modes, and (3) compare the relative effectiveness
of each spectral mode for this classification task.

2. Materials and Methods
2.1. Hyperspectral Imaging Systems

Full-resolution reflectance and fluorescence images were collected using an in-house
developed visible and near-infrared (VNIR) hyperspectral imaging system [23]. The
light source for the VNIR reflectance was a 150 W quartz tungsten lamp (Dolan Jenner,
Boxborough, MA, USA). For fluorescence imaging, two UV narrowband light sources were
used, each with four 10 W, 365 nm, LEDs (LED Engin, San Jose, CA, USA). VNIR reflectance
images in 125 wavelengths within the 419–1007 nm spectral range and fluorescence images
in 60 wavelengths within the 438–718 nm range were acquired using a 23 mm focal length
lens, an imaging spectrograph (Hyperspec-VNIR, Headwall Photonics, Fitchburg, MA,
USA), and a 14-bit electron-multiplying charge-coupled device (EMCCD) camera (Luca DL
604M, Andor Technology, South Windsor, CT, USA).

A separate hyperspectral imaging system was used to acquire reflectance images in
the SWIR region. The illumination source for this system was a custom-designed two-unit
lighting system, each with four 150 W gold-coated halogen lamps with MR16 reflectors. The
detection unit included a 25 mm focal length lens and a hyperspectral camera, including a
16-bit mercury cadmium telluride array detector and an imaging spectrograph (Hyperspec-
SWIR, Headwall Photonics, Fitchburg, MA, USA). The SWIR reflectance images were
acquired in a wavelength range of 842–2532 nm (287 wavelengths).

2.2. Simulated Annealing

Rather than sensing the full resolution spectra in each of the three modes, the proposed
method uses just a small number of narrow wavelength bands (referred to simply as “wave-
lengths” in this paper) that are specifically chosen to yield accurate species classifications.
Simulated annealing, a heuristic optimization method modeled after the metallurgical
annealing process in which the metal undergoes controlled cooling to remove defects and
toughen it, was used to select the wavelengths. The simulated annealing algorithm consists
of a discrete-time inhomogeneous Markov chain with current state s(i) and a cooling
schedule defined by a starting temperature, Tmax, a final temperature, Tmin < Tmax, and a
total number of steps, n [24]. The goal of the algorithm is to determine the minimum of a
user-defined energy function, E(i).

At each iteration i ∈ 1, · · · , n, a new trial state is determined by randomly selecting a
“neighbor” of the previous state and calculating its energy. If the resulting energy is less
than the energy from the previous iteration, the trial state becomes the new state of the
system. If the resulting energy exceeds the energy of the previous energy, the algorithm
adopts the trial state with probability given by:

P(E(i), E(i− 1)) = e−
1

T(i) [E(i)−E(i−1)] (1)

where T(i) is the temperature at iteration i. Note that this equation allows the algorithm
to occasionally accept states that result in an increase in energy. This can benefit the
optimization by preventing it from becoming stuck in local minima. The probability of
accepting such states is high at the beginning of the process when the temperature is high
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but gradually decreases with decreasing temperature. The output of the algorithm is the
state with the lowest energy encountered throughout the annealing schedule. Figure 1
provides a summary of this algorithm.
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For this wavelength selection problem, we define the state as an array of binary
elements indicating the presence or absence of each wavelength in the full-resolution
spectrum. Because the collected spectra may contain artifacts at the lowest and highest
wavelengths, we institute a fixed buffer of size m at either end of the spectrum. Thus, the
state at iteration i can be expressed as

s(i) = I(j) f or j ∈ m + 1, · · · , N −m− 1 (2)

where I(j) is 1 to indicate that the jth wavelength is selected and 0 to indicate it is not, and
N is the total number of wavelengths in the spectrum. Furthermore, because consecutive
wavelengths are highly correlated and thus offer little additional information if both are
selected, we institute a minimum separation of q wavelength indices between selected
wavelengths. Finally, we set a limit, k, on the number of wavelengths selected such that:

N−m−1

∑
j=m+1

I(j) = k (3)

Under these three restrictions, we update the state for each iteration by generating
a “neighbor” of the current system state. This is done by randomly de-selecting one
wavelength index from the current state and selecting a new one. The energy of the trial
state is then calculated as 1− a(i) where a(i) is the average 4-fold cross validation accuracy
(see Section 2.5) as determined using the weighted k-nearest neighbors (WKNN) classifier.
WKNN is a variation of the familiar k-nearest neighbors algorithm where the training
data points are weighted based on the squared inverse of their distances from the query
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point. It was chosen as the basis for the energy calculation because of its relatively high
classification performance and its rapid training time. Accuracy, in this sense, is calculated
as the percentage of correct classifications, weighted by the number of samples per class in
the test sets to ensure equal contribution from each class.

The simulated annealing algorithm was implemented in Python 3.7 using the siman-
neal 0.5.0 library [25]. The temperature parameters were set to Tmax = 25 and Tmin = 0.05
and the number of steps was set to n = 5000. These temperature values were selected to
ensure nearly 100% selection of new states in the initial steps, regardless of whether the
energy decreased or increased, and nearly 0% selection of states that increased the energy
during the final steps. The number of steps was chosen to balance the desire for rapid
processing with the need for algorithm convergence.

We compared the performance of the proposed simulated annealing approach for
wavelength selection with three common feature selection methods: analysis of variance
(ANOVA), recursive features elimination (RFE), and Extremely Randomized Trees (i.e., Ex-
tra Tress) [26] classifier feature importance. The ANOVA method selects features based on
their ability to provide separation between the target classes in a linear manner. The RFE
method is a standard linear regression method which takes as inputs the desired number
of features to select and the linear classification method (in this case, the linear discrimi-
nant classifier was used). Finally, the nonlinear Extra Trees method assigns a quantitative
importance to each feature based on its relevance to correct classification. Performance
comparison was conducted using the same WKNN classifier featured in the simulated
annealing algorithm.

2.3. Classification of Fish Species

To evaluate the success of the optimal wavelength selection algorithm, a pair of
classification studies were conducted with the goal to determine the correct species of a
fillet based on spectral information from a single sample point on the fillet represented
by one 10 × 10 pixel block (i.e., voxel). For both studies, a multi-layer perceptron (MLP)
neural network served as the primary classifier. In the first study, each spectral mode
(i.e., VNIR, fluorescence, and SWIR) was investigated separately and the results of the
MLP classifier were compared with results from a collection of common machine learning
classifiers. The classifiers were trained on the spectral values from the selected wavelengths
and evaluated using 4-fold cross-validation. In the second study, the selected wavelengths
from the three spectral modes were combined in the input layer of the MLP classifier, and
this spectral fusion method was again evaluated with 4-fold cross-validation. Both studies
were repeated for numbers of selected wavelengths k = 3, 4, 5, 6, and 7. Results using all
available wavelengths were included as a benchmark for comparison.

2.3.1. Multi-Layer Perceptron (MLP) Classifier

An MLP neural network is a common feed-forward artificial neural network that
determines its weight values through supervised learning to yield a nonlinear decision
boundary designed to minimize a cost function. In this case, the cost function was defined
as the complement of the multiclass classification accuracy (weighted by the number of
samples per class). For each of the studies described in the subsequent sections, the same
two-layered MLP network shown in Figure 2 was used. To protect against overfitting,
dropout with a probability of 50% was applied to both hidden layers [27]. Additionally, L2
kernel regularization (with factor λ = 0.0001) was applied to both hidden layers to protect
against overfitting by adding a term to the loss function that increases with the magnitude
of the network’s weight vector. The input and hidden layers featured the rectified linear
unit (ReLU) activation function, and the output layer included the softmax activation
function to yield the classification decision.
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2.3.2. Single-Mode Classification Study

In addition to the MLP classifier, four common machine learning classifiers—including
support vector machine with a linear kernel (SVM), WKNN, linear discriminant (LD), and
Gaussian Naïve Bayes (GNB)—were used to perform classification separately for each of
the VNIR, fluorescence, and SWIR data. As with the first study, feature sets consisted of the
k spectral samples with no further attempt at feature selection. A 4-fold cross-validation
was conducted for each study as a robust estimation of multiclass classification accuracy
(weighted by the number of samples per class).

SVM determines the set of maximum-margin hyperplanes to separate the classes in
the feature space. WKNN, as explained above, is a variation on the k-nearest neighbors
algorithm that weights the training points by the inverse square of their distances from the
query point. LD classification makes simplifying assumptions about the data (i.e., Gaussian
distributed with the same covariance matrix for all classes) to determine the separating
hyperplanes. Finally, GNB combines the probabilities of obtaining the measured value
for each input given each specific class and selects the class with the highest resulting
probability. GNB assumes statistical independence between the inputs [28]. SVM was
included due to its reputation as a high-performance classifier. WKNN, another robust
classifier, was included for its performance and because of its use in the simulated annealing
algorithm. LD was included for comparison to evaluate any performance degradation
that might result from the expected violation of the Gaussian or identical covariance
assumptions. GNB was included for comparison to evaluate performance degradation due
to the expected violation of independence among the inputs (i.e., the selected wavelengths).

Each classifier was trained with the k = 3, 4, 5, 6, and 7 wavelengths selected by
the simulated annealing algorithm for each of the three spectral modes. To place the
resulting classification accuracy values in context, the results of this study were compared
with benchmark classification accuracies determined using all wavelengths in the full-
resolution spectra.
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2.3.3. Spectral Fusion Classification Study

For this study, the wavelengths were selected for each of the three spectral modes
independently, as discussed in the previous section, and then concatenated into a single
vector, which formed a new input layer for the MLP classifier. This classifier was then
trained and evaluated (using 4-fold cross-validation) for k = 3, 4, 5, 6, and 7 wavelengths
and the results were compared with a benchmark determined by including all wavelengths
from the full-resolution spectra. Due to concerns about the usefulness of the SWIR data for
species classification, we also evaluated fusion with just the VNIR and fluorescence modes.

2.4. Fish Fillet Data Collection

Figure 3 shows an overview of the data acquisition and processing steps for the
studies represented in this paper. The database for this study consisted of VNIR and SWIR
reflectance and fluorescence spectra collected from 133 fish fillets representing a total of
25 different species groups (Table 1). The species for each fillet was verified using DNA
barcoding [8]. Each fillet was placed in a 150 × 100 × 25 mm sample holder created with
a 3D printer (Fortus 250mc, Stratasys, Eden Prairie, MN, USA) using production-grade
black thermoplastic. Image acquisition was conducted by the pushbroom method, where
a linear motorized translation stage was used to move the sample holder incrementally
across the scanning line of the imaging spectrograph. The length of the instantaneous field
of view (IFOV) was made slightly longer than the length of the sample holder (150 mm) by
adjusting the lens-to-sample distance. The resulting spatial resolution along this dimension
was determined as 0.4 mm/pixel. Each fillet was sampled along the width direction
(100 mm) of the holder with a step size of 0.4 mm to match the spatial resolution of the
length direction [8].
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Table 1. Fish fillet database summary.

Species Number of Fillets
Number of Valid Voxels

VNIR Fluorescence SWIR

Almaco Jack (Seriola rivoliana) 4 1157 1169 1992
Atlantic Cod (Gadus morhua) 4 1322 1391 1508
Bigeye Tuna (Thunnus obesus) 4 831 572 2416

California Flounder (Paralichthys californicus) 4 1016 1113 2416
Char (Salvelinus sp.) 4 1165 1156 1508

Chinook Salmon (Oncorhynchus tshawytscha) 4 1630 1570 2416
Cobia (Rachycentron canadum) 4 1235 1170 1508

Coho Salmon (Oncorhynchus kisutch) 4 894 887 2416
Gilthead Bream (Sparus aurata) 4 1314 1275 1362

Goosefish (Lophiidae sp.) 4 1304 1356 1508
Haddock (Melanogrammus aeglefinus) 4 1193 1375 1508
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Table 1. Cont.

Species Number of Fillets
Number of Valid Voxels

VNIR Fluorescence SWIR

Malabar Blood Snapper (Lutjanus malabaricus) 12 5530 4750 7248
Opah (Lampris sp.) 4 913 875 2416

Pacific Halibut (Hippoglossus stenolepis) 4 1943 2120 2416
Pacific Cod (Gadus macrocephalus) 4 1619 1723 2416

Petrale Sole (Eopsetta jordani) 6 2253 2427 3624
Rainbow Trout (Oncorhynchus mykiss) 11 4263 3606 4806
Red Snapper (Lutjanus campechanus) 18 9482 7351 10,872

Rockfish (Sebastes sp.) 4 1230 1310 2416
Sablefish (Anoplopoma fimbria) 4 954 963 2416

Sockeye Salmon (Oncorhynchus nerka) 4 1033 909 2416
Swordfish (Xiphias gladius) 4 789 786 2416

Tuna (Thunnus sp.) 6 1473 1314 3170
Winter Skate (Leucoraja ocellata) 4 1839 1815 1860

Yelloweye Rockfish (Sebastes ruberrimus) 4 1197 1216 2416

Flat-field corrections were applied to the VNIR and SWIR reflectance images and the
fluorescence images to convert the original absolute intensities in CCD counts to relative
reflectance and fluorescence intensities [29]. An initial spatial mask was then created
for each imaging mode to separate the fish fillets from the background. To filter out
inaccurate measurements around the thinner edges and portions of the fillets near the
bone structure, an outlier removal scheme was instituted. Outliers were handled by first
calculating the mean (µ) and standard deviation (σ) of the fish pixel intensities over the
entire fillet. Voxels of 10 × 10 pixels were considered to mimic independent fish fillet
spectral point measurements using the field of view of a fiber optic spectrometer. Exclusion
occurred if ≥10% of the constituent pixels in a voxel exceeded µ ± 2 σ to eliminate outliers.
Figure 4 shows an example result of voxel processing where most of the excluded voxels
are concentrated near the fillet edges. This approach produced a final set of spatial masks,
one each for the VNIR and SWIR reflectance and fluorescence images, which determined
the blocks to be used for analysis. Finally, the fluorescence spectra were scaled by a constant
factor of 6000, the approximate maximum of fluorescence spectral values in the database.
This was done to set the range of fluorescence values to between zero and one. Alternative
normalization methods such as z-score and area under the curve (AUC) normalization
were tried as well and produced similar results. However, this simple scaling was chosen
because, unlike these alternatives, it requires no knowledge of the entire spectrum and
is thus consistent with the concept of collecting only a small number of wavelengths for
analysis. Table 1 provides a summary of this database with the numbers of fillets per
species and the number of valid voxels for each fillet and each collection mode.

The reflectance and scaled fluorescence spectra for each of the 25 fish species are
shown in Figure 5. The significant differences in the shapes and positions of the spectral
averages for the various species and the homogeneous nature of the spectra (as indicated
by the relatively short error bars) suggest that high classification accuracies can be achieved
with this spectral information.
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shown in white.

2.5. Cross-Validation Train and Test Datasets

For both the single-mode and the spectral fusion studies, 4-fold cross-validation was
conducted by dividing the complete dataset (as described in Table 1) into four disjoint test
sets, each of which contained voxels from at least one fillet of each of the 25 species. The
corresponding training set for each test set was then composed of all data not in the test
set. Four-fold cross-validation (as opposed to the more common 5- or 10-fold versions)
was chosen because there was greater variability between fillets of the same species than
between voxels of the same fillet. Thus, we wanted to ensure that each test set contained
entire fillets that were not included in the corresponding training set. For those species
with more than four fillets in the complete dataset (e.g., Malabar blood snapper), the fillets
were divided into the four test sets with the goal of having the total number of fillets in
each test set as equal as possible.

2.6. Data Imbalance Correction

To prevent classification biases due to data imbalances between the various species,
we applied sampling with replacement to each training set to produce 8000 voxel samples
per species for a total of 200,000 samples in each training set. No resampling was applied
to the test sets, but the measured multiclass classification accuracies were weighted by the
number of voxel samples per class to ensure an equal contribution from each species.
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3. Results and Discussion
3.1. Wavelength Selection

The purpose of wavelength selection is to enable classification with a limited number
of wavelengths (3–7) that can be created using optical filters, LEDs, etc. to produce a
simple, low-cost classification device. The robustness of the proposed simulated annealing
approach was evaluated by running 10 iterations of the algorithm with the VNIR data
for the k = 7 cases and examining the variation in the resulting selected wavelengths and
the associated WKNN classification accuracies. Figure 6a shows the wavelengths selected
for each of the 10 iterations, with each row of similarly colored dots representing a single
iteration. Although some variability in the selected wavelengths is noticeable, the plot of
multiclass classification accuracies for these iterations in Figure 6b shows little variability
in the resulting accuracy. The standard deviation over these 10 accuracy values was 0.13%.

Figure 7 shows the average VNIR reflectance spectrum for a red snapper fillet with
the k = 3, 4, 5, 6, and 7 optimal wavelengths selected by the simulated annealing algorithm.
For all k values, the selected wavelengths correspond to interesting peaks, valleys, and
inflection points of the spectrum. Clearly, the region of wavelengths <600 nm is favored
along with the trough near 950 nm.

The wavelength selections for the fluorescence data in relation to the average spectrum
for one of the red snapper fillets are shown in Figure 8. For this mode, the initial wavelength
selections are concentrated at the minima of the spectrum with no wavelengths near the
large peak around 670 nm selected until the k = 6 case.
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Figure 7. Average VNIR reflectance spectrum for one of the red snapper fillets with the optimal k = 3, 4, 5, 6, 7 wave-
length selections.

Figure 9 shows the wavelength selections for the SWIR reflectance data. The selections
for each of the k values are concentrated near the trough around 1000 nm and the inflection
point near 1160 nm. No wavelengths above 1200 nm are selected.

Table 2 shows the results of the comparison between the proposed simulated annealing-
based wavelength selections method and the three alternative methods. For each combi-
nation of spectral mode and number of selected wavelengths, the simulated annealing
method yields the set of wavelengths that produces the highest 4-fold cross validated
classification accuracy with the WKNN classifier.
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length selections.

3.2. Classification
3.2.1. Results of the Single-Mode Study

Average cross-validated (4-fold) classification accuracies for the VNIR reflectance data
are given in Table 3. The column labeled “Benchmark” gives the results for the case where
all wavelengths are included. The set of columns under “Selected Wavelengths” list the
resulting accuracies based on the spectral values at the k = 3, 4, 5, 6, 7 optimal wavelengths.
Results for the fluorescence data are provided in a similar manner in Table 4 and for the
SWIR reflectance data in Table 5. Values in bold denote the highest accuracy for each
number of selected wavelengths.
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Table 2. Results of comparison between wavelength selection methods. Values represent 4-fold cross
validation accuracies resulting from training the WKNN classifier with the selected wavelengths.

Mode k Simulated Annealing ANOVA RFE Extra Trees

VNIR

3 48.23% 31.42% 27.09% 14.09%
4 57.90% 35.20% 28.00% 23.95%
5 63.49% 36.28% 31.87% 25.93%
6 67.08% 39.74% 37.04% 26.62%
7 68.10% 41.21% 43.42% 29.58%

Fluorescence

3 71.75% 59.71% 44.18% 54.96%
4 75.90% 62.95% 48.21% 64.09%
5 77.94% 65.83% 49.64% 63.51%
6 78.08% 66.80% 51.95% 65.20%
7 78.27% 68.05% 58.47% 66.30%

SWIR

3 40.15% 20.30% 15.13% 11.56%
4 46.55% 21.20% 19.81% 17.13%
5 51.21% 37.39% 20.15% 17.32%
6 51.77% 38.24% 30.75% 17.39%
7 52.01% 39.26% 32.28% 16.82%

Table 3. Single-mode classification accuracies (4-fold cross-validation) for the VNIR reflectance data.

Benchmark Selected Wavelengths

All Wavelengths k = 3 k = 4 k = 5 k = 6 k = 7

MLP 87.7% 50.4% 60.1% 72.7% 79.7% 82.7%
SVM 89.8% 50.6% 59.9% 68.7% 74.5% 77.6%

WKNN 69.8% 45.6% 56.0% 61.7% 65.1% 67.4%
LD 91.7% 45.0% 51.2% 54.6% 58.4% 61.3%

GNB 33.1% 26.8% 31.2% 27.3% 28.6% 31.7%

Table 4. Single-mode classification accuracies (4-fold cross-validation) for the fluorescence data.

Benchmark Selected Wavelengths

All Wavelengths k = 3 k = 4 k = 5 k = 6 k = 7

MLP 92.9% 78.9% 84.3% 86.2% 89.4% 89.9%
SVM 82.5% 66.7% 71.7% 70.8% 79.5% 79.5%

WKNN 79.2% 71.1% 75.2% 77.3% 77.1% 77.3%
LD 84.1% 59.0% 62.2% 65.4% 65.5% 68.5%

GNB 51.0% 40.2% 45.2% 44.0% 49.0% 49.0%

Table 5. Single-mode classification accuracies (4-fold cross-validation) for the SWIR data.

Benchmark Selected Wavelengths

All Wavelengths k = 3 k = 4 k = 5 k = 6 k = 7

MLP 75.8% 46.1% 56.1% 66.4% 67.7% 67.6%
SVM 63.2% 44.5% 53.0% 62.1% 64.2% 64.1%

WKNN 41.0% 38.7% 46.3% 50.9% 52.1% 52.6%
LD 80.7% 38.2% 45.2% 51.1% 53.3% 54.5%

GNB 20.3% 14.4% 14.5% 14.8% 14.7% 14.6%

Looking first at the accuracies for the benchmark cases, MLP yields the highest
accuracy for the fluorescence data but comes in second for the SWIR data and third for the
VNIR data. The superior performance of LD, a relatively simple classifier, for the VNIR
and SWIR benchmark cases suggests that overfitting is a significant problem for these cases.
Accuracies for the SWIR data are far lower, with LD yielding the highest accuracy at just
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80.7%. GNB yields the lowest accuracies for all three modes, reinforcing the notion that
classification performance is not dependent upon the values from the selected wavelengths
themselves but upon their values in relation to one another. The independence assumption
of GNB results in low performance.

Looking next at the “Selected Wavelengths” cases, MLP outperforms the other clas-
sifiers for all k values and spectral modes (except for the k = 3 case with the VNIR data).
Accuracies >85% are possible given spectral values at just seven or fewer wavelengths for
the fluorescence data and >80% for the VNIR reflectance data. Most importantly, with MLP
trained on only seven spectral values, the resulting accuracies are within 10 percentage
points of the benchmark case for all three spectral modes. The highest performance (89.91%)
is seen for the fluorescence data.

Figure 10, Figure 11, and Figure 12 show confusion matrices for the k = 7 MLP results
from the single-mode VNIR, fluorescence, and SWIR data, respectively. The classification
performance is clearly best with the fluorescence data with accuracies >95% for many
species. However, the accuracies for some other species are much lower. For example,
goosefish has the lowest accuracy at 62.5%, being misclassified as rockfish 28.2% of the
time. This is an indication that nearly an entire goosefish fillet was misclassified as rockfish
in one of the folds. The overall classification performance is a little lower with the VNIR
data. Winter skate shows the lowest classification accuracy at 39.4% in this case, being
misclassified as goosefish 26.0% of the time and as almaco jack 13.0% of the time. Much
worse performance is seen with the SWIR data, where we find a larger variety of misclassifi-
cations. Rockfish has the lowest classification accuracy at just 15.7% with high percentages
of misclassification (>14%) as Atlantic cod, haddock, Pacific halibut, and Pacific cod.
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Figure 12. Confusion matrix for the single-mode SWIR results with the k = 7 MLP (overall classification accuracy = 67.6%).

The variability of these single-mode classification results with each of the four cross-
validation folds can be seen in Figure 13. The lower and upper limits of the error bars in
each plot represent the minimum and maximum accuracies, respectively, for the four-folds.
The red dashed line in each plot represents the benchmark accuracy obtained by MLP
using all wavelengths in the spectrum.
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The results of the single-mode classification study prove that high accuracies can be
obtained (especially with the MLP classifier) with just seven or fewer wavelengths. The
best benchmark performance (92.9%) using all wavelengths was seen with the fluorescence
mode with MLP followed by VNIR reflectance (91.7%) and then SWIR reflectance (80.7%),
both with LD. The superior performance of LD in these cases suggests the inclusion of all
wavelengths significantly increases the potential for overfitting. With seven wavelengths
in the fluorescence case, the MLP accuracy came within ~3% of the benchmark accuracy.
Review of the confusion matrices from this study reveal that although high overall accura-
cies can result from these single-mode classifications, each spectroscopic mode has its own
unique set of strengths and weaknesses. Furthermore, highly concentrated misclassification
results were seen in a few cases, suggesting that entire fillets in the test sets were sometimes
misclassified. This is likely a consequence of the somewhat small size of our current dataset.
We believe these misclassifications can be alleviated in future studies as we increase the
number of fillets per species to better represent the within-species variability of the spectra.

3.2.2. Results of the Fusion Classification Study

Table 6 gives the resulting average 4-fold cross-validation accuracies for the MLP
classifier with the spectral modes fused at the input layer. As with the single-mode study,
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the value in the “Benchmark” column is the accuracy obtained by fusing all wavelengths
from the various modes. We present results from the fusion of all three modes as well as
results of fusion without the SWIR mode. This latter iteration was included due to the
poor performance with the SWIR data in the single-mode study. By fusing the modes,
MLP is able to produce classification accuracies that exceed the highest accuracies from
the single-mode study by >10% for k = 3 and by >4% at k = 7. An accuracy of >90% is
obtained even with only three wavelengths. The fusion accuracies with all three spectral
modes exceed the accuracies without the SWIR data only by 1–2 percentage points for the
k = 3, 4, 5, 6, 7 cases (and is lower for the benchmark case), indicating that SWIR, in fact,
does not contribute independent information for species classification. Figure 14 shows
the confusion matrix for the fusion of all three modes with k = 7. Note that although the
rates of correct classification are >99% for many species and >90% for 20 species, the large,
concentrated misclassification errors seen in the single-mode study were found here as well.
Tuna has the lowest classification accuracy at 61.8%, with 27.8% of the misclassifications as
Malabar blood snapper. In this case, less than 8% of the voxels from the two tuna fillets in
one of the test sets were classified correctly.

Table 6. Resulting average 4-fold cross-validation accuracies for the fusion of spectral modes in the
input layer of the MLP classifier. The values in the “Benchmark” column refer to accuracies obtained
using all wavelengths in each spectral mode.

Fusion Benchmark k = 3 k = 4 k = 5 k = 6 k = 7

VNIR-Fluor-SWIR 94.9% 90.4% 92.3% 93.8% 94.8% 94.5%
VNIR-Fluor 95.5% 88.9% 90.2% 92.4% 94.7% 94.0%
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These results support the hypothesis that individual strengths of different spectro-
scopic modes can be combined to form a classifier with superior accuracy. Stated another
way, the failure modes of each spectroscopic mode can be mitigated by the other two
modes to significantly reduce all misclassification rates. Furthermore, Table 6 and Figure
14 reveal that significant improvements in accuracy are possible even with just three se-
lected wavelengths from each mode. However, the low accuracies found for certain fish
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species suggest the need for an expansion to the proposed methodology to enable high
classification accuracy for large numbers of fish species. We are currently investigating a
cascading multiple-model approach that will be the subject of a future publication. Future
work with a larger dataset will also include hyperparameter optimization to identify the
optimal MLP architectures for each of the single-mode and fusion cases.

4. Conclusions

This effort was designed to evaluate the potential of a new methodology for selecting
narrowband wavelengths from multiple spectroscopic modes and combining the spectral
values at these wavelengths to enable the accurate classification of materials under investi-
gation. The simulated annealing algorithm was found to robustly produce optimal sets of
k wavelengths for k = 3, 4, 5, 6, 7. The results of the two classification studies confirm proof
of concept for the proposed methodology to support the design of inexpensive hyperspec-
tral imaging devices to classify fish species featuring homogenous spectral data. Future
work will include a larger database of fillets for this same food fraud application and will
consider agricultural and biomedical applications where the data is expected to be more
heterogeneous. Both the optimization and the classification components of the algorithm
will be revised and improved to meet the challenges of these more complex applications.
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