A Survey of the Literature on Order-Picking Systems by Combining Planning Problems
Abstract
:Featured Application
Abstract
1. Introduction
- To allocate the piece to the picker
- Picker assignment for parts
- Which components of OPS examined in the previous literature were effective in reducing costs?
- What is the combination of order picking problems in the past literature that leads to cost reduction?
- What kind of warehouses were examined to evaluate the impact of the OPS system on cost reduction?
2. Order-Picking System Literature Taxonomy
3. Order-Picking System Research Background
4. Methodology of Reviewing OPS Literature
4.1. Database Selection
4.2. Sample Search
4.3. Sample Selection
5. Discussion
5.1. Investigating the Problems of Order-Picking Planning and Their Combination
5.1.1. Study the Warehouse Layout
- Assignment of storage and batching
- Allocating storage and routing location
- Wrapping and routing
5.1.2. Study of the Components of the Order-Picking Process
Auditors | Assignment | Routing | Batching | Sequencing | Tardiness | SUM |
---|---|---|---|---|---|---|
Cheng et al. [30], De Koster et al. [1], Ene & Öztürk [64], Franzke et al. [3], Ho & Lin [83], Hong & Kim [34], Hsieh & Huang [44], Kübler et al. [49], Kulak [53], Matusiak et al. [45], Li et al. [43], Öztürkoğlu & Hoser [41], Valle et al. [8], Valle & Beasley. [47], Van Gils et al. [70] | ✓ | ✓ | 15 | |||
Henn [14], Men´endez et al. [38] | ✓ | ✓ | ✓ | 2 | ||
Scholz et al. [20] | ✓ | ✓ | ✓ | ✓ | ✓ | 1 |
Ardjmand et al. [46] | ✓ | ✓ | ✓ | ✓ | 1 | |
Acimovic & Graves [55], Andriansyah et al. [84], Henn & Wäscher [33], Koch & Wäscher [85], Pan et al. [52], Schleyer & Gue [86], Tang et al. [87], Zulj et al. [5], Henn [37], Muter & Öncan [23] | ✓ | 10 | ||||
Akilbasha & Atarajan [56], Berglund & Batta [40], Chabot et al. [61], Chen et al. [50], Clark & Meller [48], Cortes et al. [31], Elbert et al. [88], Giannikas et al. [86], Glock et al. [78], Grosse et al. [7], Gupta & Kumar [17], Henn et al. [54], Isler [35], Kaur & Kumar [16], Lerher [79], Letchford et al. [89], Leung et al. [90], Lu et al. [91], Mowrey & Parikh [51], Neumann & Medbo [80], Öztürkoğlu et al. [42], Pan & Wu [92], Park & Kim [15], Roodbergen et al. [29], Yu et al. [81], Lee & Murray [82] | ✓ | 26 | ||||
Cergibozan & Tasan [59], Çeven & Gue [60], Feng & Hu [93], Cano et al. [25] | ✓ | ✓ | 4 | |||
Zhang et al. [21] | ✓ | ✓ | ✓ | 1 | ||
Ardjmand et al. [12], Chackelson et al. [62], Chun et al. [71], Matusiak et al. [67] | ✓ | ✓ | ✓ | 4 | ||
Schrotenboer et al. [36] | ✓ | ✓ | 1 | |||
Scholz et al. [19], Theys et al. [39] | ✓ | ✓ | 2 | |||
Cano et al. [24], Chen et al. [22], Scholz & Wäscher [94] | ✓ | ✓ | ✓ | 3 | ||
Kuo et al. [18] | ✓ | 1 | ||||
Azadnia et al. [13] | ✓ | ✓ | ✓ | 1 | ||
Hong [95] | ✓ | ✓ | 1 |
5.2. Performance Measure
5.2.1. Tardiness
5.2.2. Cost
5.2.3. Productivity
- Small size orders are performed with a great variety of parts.
- Some orders will affect the efficiency of the order-picking process due to either the seasonality of the order, the intention of moving the order forward, or various delivery locations based on point-of-sale information. Table 7 shows an overview of the studied articles regarding the maximum productivity of the order-picking process.
5.2.4. Space Optimization
5.2.5. Makespan
5.3. Research and Solution Methods
6. Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Koster, R.; Le Duc, T.; Zaerpour, N. Determining the number of zones in a pick-and-sort order-picking system. Int. J. Prod. Res. 2012, 50, 757–771. [Google Scholar] [CrossRef] [Green Version]
- Van Gils, T.; Ramaekers, K.; Caris, A.; de Koster, R.B. Designing efficient order-picking systems by combining planning problems: State-of-the-art classi- fication and review. Eur. J. Oper. Res. 2018, 267, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Franzke, T.; Grosse, E.H.; Glock, C.H.; Elbert, R. An investigation of the effects of storage assignment and picker routing on the occurrence of picker blocking in manual picker-to-parts warehouses. Int. J. Logist. Manag. 2017, 28, 841–863. [Google Scholar] [CrossRef]
- Battini, D.; Calzavara, M.; Persona, A.; Sgarbossa, F. Additional effort estimation due to ergonomic conditions in order-picking systems. Int. J. Prod. Res. 2017, 55, 2764–2774. [Google Scholar] [CrossRef]
- Žulj, I.; Kramer, S.; Schneider, M. A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem. Eur. J. Oper. Res. 2018, 264, 653–664. [Google Scholar] [CrossRef]
- Grosse, E.H.; Glock, C.; Jaber, M.Y.; Neumann, P. Incorporating human factors in order picking planning models: Framework and research opportunities. Int. J. Prod. Res. 2014, 53, 695–717. [Google Scholar] [CrossRef]
- Grosse, E.H.; Glock, C.H.; Neumann, W.P. Human factors in order picking: A content analysis of the literature. Int. J. Prod. Res. 2016, 55, 1260–1276. [Google Scholar] [CrossRef]
- Valle, C.A.; Beasley, J.E.; da Cunha, A.S. Optimally solving the joint order batching and picker routing problem. Eur. J. Oper. Res. 2017, 262, 817–834. [Google Scholar] [CrossRef] [Green Version]
- Marchet, G.; Melacini, M.; Perotti, S. Investigating order-picking system adoption: A case-study-based approach. Int. J. Logist.-Res. Appl. 2015, 18, 82–98. [Google Scholar] [CrossRef]
- Habazin, J.; Glasnović, A.; Bajor, I. Order Picking Process in Warehouse: Case Study of Dairy Industry in Croatia. Promet-Traffic Transp. 2017, 29, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Ardjmand, E.; Shakeri, H.; Singh, M.; Bajgiran, O.S. Minimizing order picking makespan with multiple pickers in a wave picking warehouse. Int. J. Prod. Econ. 2018, 206, 169–183. [Google Scholar] [CrossRef]
- Azadnia, A.H.; Taheri, S.; Ghadimi, P.; Mat Saman, M.Z.; Wong, K.Y. Order batching in warehouses by minimizing total tardiness: A hybrid approach of weighted association rule mining and genetic algorithms. Sci. World J. 2013, 2013, 246578. [Google Scholar] [CrossRef]
- Henn, S. Order batching and sequencing for the minimization of the total tardiness in picker-to-part warehouses. Flex. Serv. Manuf. J. 2015, 27, 86–114. [Google Scholar] [CrossRef]
- Park, J.; Kim, B.I. The school bus routing problem. Eur. J. Oper. Res. 2010, 202, 311–319. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, A. A new method for solving fuzzy transportation problems using ranking function. Appl. Math. Model. 2011, 35, 5652–5661. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, A. A new method for solving linear multi-objective transportation problems with fuzzy parameters. Appl. Math. Model. 2012, 36, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Kuo, R.; Kuo, P.; Chen, Y.R.; Zulvia, F.E. Application of metaheuristics-based clustering algorithm to item assignment in a synchronized zone order-picking system. Appl. Soft Comput. 2016, 46, 143–150. [Google Scholar] [CrossRef]
- Scholz, A.; Henn, S.; Stuhlmann, M.; Wascher, G. A new mathematical programming formulation for the single-picker routing problem. Eur. J. Oper. Res. 2016, 253, 68–84. [Google Scholar] [CrossRef]
- Scholz, A.; Schubert, D.; Wäscher, G. Order-picking with multiple pickers and due dates simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems. Eur. J. Oper. Res. 2017, 263, 461–478. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, X.; Chan, F.T.S.; Ruan, J. On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Appl. Math. Model. 2017, 45, 271–284. [Google Scholar] [CrossRef]
- Chen, T.L.; Cheng, C.Y.; Chen, Y.Y.; Chan, L.K. An efficient hybrid algorithm for integrated order batching, sequencing and routing problem. Int. J. Prod. Econ. 2015, 160, 158–167. [Google Scholar] [CrossRef]
- Muter, I.; Öncan, T. Order batching and picker scheduling in warehouse order picking. IISE Trans. 2021. [Google Scholar] [CrossRef]
- Cano, J.A.; Correa-Espinal, A.; Montoya, R.A.G. Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order-picking systems. J. King Saud Univ.-Eng. Sci. 2020, 32, 219–228. [Google Scholar] [CrossRef]
- Cano, J.A.; Cortés Achedad, P.; Campo, E.A.; Correa-Espinal, A. Solving the order batching and sequencing problem with multiple pickers: A grouped genetic algorithm. Int. J. Electr. Comput. Eng. IJECE 2021, 11, 2516–2524. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of Pubmed, Scopus, web of science, and Google scholar: Strengths and weaknesses. Faseb. J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Wang, Q.; Waltman, L. Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. J. Informetr. 2016, 10, 347e364. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Goetschalckx, M.; McGinnis, L.F. Research on warehouse design and performance evaluation: A comprehensive review. Eur. J. Oper. Res. 2010, 203, 539–549. [Google Scholar] [CrossRef]
- Roodbergen, K.J.; Vis, I.; Don Taylor, G., Jr. Simultaneous determination of warehouse layout and control policies. Int. J. Prod. Res. 2015, 53, 3306–3326. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Chen, Y.Y.; Chen, T.L.; Yoo, J.W.J. Using a hybrid approach based on the particle swarm optimization and ant colony optimization to solve a joint order batching and picker routing problem. Int. J. Prod. Econ. 2015, 170, 805–814. [Google Scholar] [CrossRef]
- Cortés, P.; Gómez-Montoya, R.A.; Muñuzuri, J.; Correa-Espinal, A. A tabu search approach to solving the picking routing problem for large-and medium-size distribution centres considering the availability of inventory and K heterogeneous material handling equipment. Appl. Soft Comput. 2017, 53, 61–73. [Google Scholar] [CrossRef]
- De Vries, J.; De Koster, R.; Stam, D. Aligning order picking methods, incentive systems, and regulatory focus to increase performance. Prod. Oper. Manag. 2016, 25, 1363–1376. [Google Scholar] [CrossRef] [Green Version]
- Henn, S.; Wäscher, G. Tabu search heuristics for the order batching problem in manual order-picking systems. Eur. J. Oper. Res. 2012, 222, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Kim, Y. A route-selecting order batching model with the S-shape routes in a parallel-aisle order-picking system. Eur. J. Oper. Res. 2017, 257, 185–196. [Google Scholar] [CrossRef]
- Isler, C.; Righetto, G.; Morabito, R. Optimizing the order-picking of a scholar and office supplies warehouse. Int. J. Adv. Manuf. Technol. 2016, 87, 2327–2336. [Google Scholar] [CrossRef]
- Schrotenboer, A.H.; Wruck, S.; Roodbergen, K.J.; Veenstra, M.; Dijkstra, A.S. Order picker routing with product returns and interaction tardiness. Int. J. Prod. Res. 2017, 55, 6394–6406. [Google Scholar] [CrossRef] [Green Version]
- Henn, S. Algorithms for on-line order batching in an order-picking warehouse. Comput. Oper. Res. 2012, 39, 2549–2563. [Google Scholar] [CrossRef]
- Menéndez, B.; Bustillo, M.; Pardo, E.G.; Duarte, A. General variable neighborhood search for the order batching and sequencing problem. Eur. J. Oper. Res. 2017, 263, 82–93. [Google Scholar] [CrossRef]
- Theys, C.; Bräysy, O.; Dullaert, W.; Raa, B. Using a TSP heuristic for routing order pickers in warehouses. Eur. J. Oper. Res. 2010, 200, 755–763. [Google Scholar] [CrossRef]
- Berglund, P.; Batta, R. Optimal placement of warehouse cross-aisles in a picker-to-part warehouse with class-based storage. IIE Trans. 2011, 44, 107–120. [Google Scholar] [CrossRef]
- Öztürkoğlu, Ö.; Hoser, D. A discrete cross aisle design model for order-picking warehouses. Eur. J. Oper. Res. 2019, 275, 411–430. [Google Scholar] [CrossRef]
- Öztürkoğlu, Ö.; Gue, K.R.; Meller, R.D. A constructive aisle design model for unitload warehouses with multiple picking and deposit points. Eur. J. Oper. Res. 2014, 236, 382–394. [Google Scholar] [CrossRef]
- Li, J.; Huang, R.; Dai, J.B. Joint optimization of order batching and picker routing in the online retailer’s warehouse in China. Int. J. Prod. Res. 2017, 55, 447–461. [Google Scholar] [CrossRef]
- Hsieh, L.F.; Huang, Y.C. New batch construction heuristics to optimise the performance of order-picking systems. Int. J. Prod. Econ. 2011, 131, 618–630. [Google Scholar] [CrossRef]
- Matusiak, M.; de Koster, R.; Kroon, L.; Saarinen, J. A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse. Eur. J. Oper. Res. 2014, 236, 968–977. [Google Scholar] [CrossRef]
- Ardjmand, E.; Ghalehkhondabi, I.; Young, W.A., II; Sadeghi, A.; Weckman, G.R.; Shakeri, H. A hybrid artificial neural network, genetic algorithm and column generation heuristic for minimizing makespan in manual order picking operations. Expert Syst. Appl. 2020, 159, 113566. [Google Scholar] [CrossRef]
- Valle, C.A.; Beasley, J.E. Order batching using an approximation for the distance travelled by pickers. Eur. J. Oper. Res. 2020, 284, 460–484. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.A.; Meller, R.D. Incorporating vertical travel into non-traditional cross aisles for unit-load warehouse designs. IIE Trans. 2013, 45, 1322–1331. [Google Scholar] [CrossRef]
- Kübler, P.; Glock, C.H.; Bauernhansl, T. A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses. Comput. Ind. Eng. 2020, 147, 106645. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.; Xie, Y.; Qi, C. An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse. J. Intell. Manuf. 2016, 27, 389–408. [Google Scholar] [CrossRef]
- Mowrey, C.H.; Parikh, P.J. Mixed-width aisle configurations for order-picking in distribution centers. Eur. J. Oper. Res. 2014, 232, 87–97. [Google Scholar] [CrossRef]
- Pan, J.C.H.; Shih, P.H.; Wu, M.H. Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega 2015, 57, 238–248. [Google Scholar] [CrossRef]
- Kulak, O.; Sahin, Y.; Taner, M.E. Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search al-gorithms. Flex. Serv. Manuf. J. 2012, 24, 52–80. [Google Scholar] [CrossRef]
- Henn, S.; Koch, S.; Gerking, H.; Wäscher, G. A U-shaped layout for manual order-picking systems. Logist. Res. 2016, 6, 245–261. [Google Scholar] [CrossRef]
- Acimovic, J.; Graves, S.C. Making better fulfillment decisions on the fly in an online retail environment. Manuf. Serv. Oper. Manag. 2014, 17, 34–51. [Google Scholar] [CrossRef]
- Akilbasha, P.; Atarajan, P.G. An innovative exact method for solving fully interval integer transportation problems. Inform. Med. Unlocked 2018, 11, 95–99. [Google Scholar] [CrossRef]
- Battini, D.; Glock, C.H.; Grosse, E.H.; Persona, A.; Sgarbossa, F. Human energy expenditure in order-picking storage assignment: A bi-objective method. Comput. Ind. Eng. 2016, 94, 147–157. [Google Scholar] [CrossRef]
- Bevan, S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015, 29, 356–373. [Google Scholar] [CrossRef]
- Cergibozan, Ç.; Tasan, A.S. Order batching operations: An overview of classification, solution techniques, and future research. J. Intell. Manuf. 2019, 30, 335–349. [Google Scholar] [CrossRef]
- Çeven, E.; Gue, K.R. Optimal wave release times for order fulfillment systems with deadlines. Transp. Sci. 2015, 51, 52–66. [Google Scholar] [CrossRef]
- Chabot, T.; Lahyani, R.; Coelho, L.C.; Renaud, J. Order-picking problems underweight, fragility and category constraints. Int. J. Prod. Res. 2017, 55, 6361–6379. [Google Scholar] [CrossRef]
- Chackelson, C.; Errasti, A.; Ciprés, D.; Lahoz, F. Evaluating order-picking performance trade-offs by configuring main operating strategies in a retail dis- tributor: A design of experiments approach. Int. J. Prod. Res. 2013, 51, 6097–6109. [Google Scholar] [CrossRef]
- Chien, C.M.; Gong, Y.; De Koster, R.; VanNunen, J. A flexible evaluative framework for order-picking systems. Prod. Oper. Manag. 2010, 19, 70–82. [Google Scholar] [CrossRef]
- Ene, S.; Öztürk, N. Storage location assignment and order-picking opti- mization in the automotive industry. Int. J. Adv. Manuf. Technol. 2012, 60, 787–797. [Google Scholar] [CrossRef]
- Grosse, E.H.; Glock, C.H.; Jaber, M.Y. The effect of worker learning and forgetting on storage reassignment decisions in order-picking systems. Comput. Ind. Eng. 2013, 66, 653–662. [Google Scholar] [CrossRef]
- Manzini, R.; Accorsi, R.; Gamberi, M.; Penazzi, S. Modeling class-based storage assignment over life cycle picking patterns. Int. J. Prod. Econ. 2015, 170, 790–800. [Google Scholar] [CrossRef]
- Matusiak, M.; De Koster, R.; Saarinen, J. Utilizing individual picker skills to improve order batching in a warehouse. Eur. J. Oper. Res. 2017, 263, 888–899. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Boysen, N. Order-picking along a crane-supplied pick face: The SKU switching problem. Eur. J. Oper. Res. 2017, 260, 534–545. [Google Scholar] [CrossRef]
- Tappia, E.; Roy, D.; De Koster, R.; Melacini, M. Modeling, analysis, and design insights for shuttle-based compact storage systems. Transp. Sci. 2017, 51, 269–295. [Google Scholar] [CrossRef] [Green Version]
- Van Gils, T.; Ramaekers, K.; Braekers, K.; Depaire, B.; Caris, A. Increasing order-picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. Int. J. Prod. Econ. 2018, 197, 243–261. [Google Scholar] [CrossRef]
- Chun, C.-C.; Kang, J.-R.; Hou, C.-C.; Cheng, C.Y. Joint order batching and picker Manhattan routing problem. Comput. Ind. Eng. 2016, 95, 164–174. [Google Scholar]
- Calzavara, M.; Glock, C.H.; Grosse, E.H.; Persona, A.; Sgarbossa, F. Analysis of economic and ergonomic performance measures of different rack layouts in an order-picking warehouse. Comput. Ind. Eng. 2017, 111, 527–536. [Google Scholar] [CrossRef]
- Davarzani, H.; Norrman, A.J. Toward a relevant agenda for warehousing research: Literature review and practitioners’ input. Logist. Res. 2015, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Glock, C.H.; Grosse, E.H. Storage policies and order-picking strategies in u shaped order-picking systems with a movable base. Int. J. Prod. Res. 2012, 50, 4344–4357. [Google Scholar] [CrossRef]
- Gong, Y.; De Koster, R. A review on stochastic models and analysis of warehouse operations. Logist. Res. 2011, 3, 191–205. [Google Scholar] [CrossRef]
- Thomas, L.M.; Meller, R.D. Analytical models for warehouse configuration. IIE Trans. 2014, 46, 928–947. [Google Scholar] [CrossRef]
- Vanheusden, S.; Van Gils, T.; Braekers, K.; Ramaekers, K.; Caris, A. Analysing the effectiveness of workload balancing measures in order-picking operations. Int. J. Prod. Res. 2021, 1–25. [Google Scholar] [CrossRef]
- Glock, C.H.; Grosse, E.H.; Elbert, R.M.; Franzke, T. Maverick picking: The impact of modifications in work schedules on manual order-picking processes. Int. J. Prod. Res. 2017, 55, 6344–6360. [Google Scholar] [CrossRef]
- Lerher, T. Travel time model for double-deep shuttle-based storage and re-trieval systems. Int. J. Prod. Res. 2015, 54, 2519–2540. [Google Scholar] [CrossRef]
- Neumann, W.P.; Medbo, L. Ergonomic and technical aspects in the redesign of material supply systems: Big cases vs. narrow cases. Int. J. Ind. Ergon. 2010, 40, 541–548. [Google Scholar] [CrossRef]
- Yu, Y.; De Koster, R.; Guo, X. Class-based storage with a finite number of items: Using more classes is not always better. Prod. Oper. Manag. 2015, 24, 1235–1247. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Murray, C.C. Robotics in order picking: Evaluating warehouse layouts for pick, place, and transport vehicle routing systems. Int. J. Prod. Res. 2018, 57, 5821–5841. [Google Scholar] [CrossRef]
- Ho, Y.C.; Lin, J.W. Improving order-picking performance by converting a sequential zone-picking line into a zone-picking network. Comput. Ind. Eng. 2017, 113, 241–255. [Google Scholar] [CrossRef]
- Andriansyah, R.; De Koning, W.W.H.; Jordan, R.M.E.; Etman, L.F.P.; Rooda, J.E. A process algebra based simulation model of a miniload–workstation order picking system. Comput. Ind. 2011, 62, 292–300. [Google Scholar] [CrossRef]
- Koch, S.; Wäscher, G. A grouping genetic algorithm for the order batching problem in distribution warehouses. J. Bus. Econ 2016, 86, 131–153. [Google Scholar] [CrossRef]
- Schleyer, M.; Gue, K. Throughput time distribution analysis for a one-block warehouse. Transp. Res. Part E: Logist. Transp. Rev. 2012, 48, 652–666. [Google Scholar] [CrossRef]
- Tang, L.; Wang, G.; Liu, J.; Liu, J. A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production. Nav. Res. Logistics. (NRL) 2011, 584, 370–388. [Google Scholar] [CrossRef]
- Elbert, R.M.; Franzke, T.; Glock, C.H.; Grosse, E.H. The effects of human behavior on the efficiency of routing policies in order picking: The case of route deviations. Comput. Ind. Engineering. Ind. Eng. 2017, 111, 537–551. [Google Scholar] [CrossRef]
- Letchford, A.N.; Nasiri, S.D.; Theis, D.O. Compact formulations of the Steiner traveling salesman problem and related problems. Eur. J. Oper. Res. 2013, 228, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.; Choy, K.; Siu, P.K.; Ho, G.; Lam, H.; Lee, C.K. A B2C e-commerce intelligent system for re-engineering the e-order fulfilment process. Expert Syst. Appl. 2018, 91, 386–401. [Google Scholar] [CrossRef]
- Lu, W.; McFarlane, D.; Giannikas, V.; Zhang, Q. An algorithm for dynamic order-picking in warehouse operations. Eur. J. Oper. Res. 2016, 248, 107–122. [Google Scholar] [CrossRef]
- Pan, J.C.H.; Wu, M.H. Throughput analysis for order-picking system with multiple pickers and aisle congestion considerations. Comput. Oper. Res. 2012, 39, 1661–1672. [Google Scholar] [CrossRef]
- Feng, X.; Hu, X. A Heuristic Solution Approach to Order Batching and Sequencing for Manual Picking and Packing Lines considering Fatiguing Effect. Sci. Program. 2021, 2021, 8863391. [Google Scholar] [CrossRef]
- Scholz, A.; Wäscher, G. Order batching and picker routing in manual orderpicking systems: The benefits of integrated routing. Cent. Eur. J. Oper. Res. 2017, 25, 491–520. [Google Scholar] [CrossRef]
- Hong, S.; Johnson, A.L.; Peters, B.A. Order batching in a bucket brigade order-picking system considering picker blocking. Flex. Serv. Manuf. J. 2016, 28, 425–441. [Google Scholar] [CrossRef]
- Giannikas, V.; Lu, W.; Robertson, B.; McFarlane, D. An interventionist strategy for warehouse order picking: Evidence from two case studies. Int. J. Prod. Econ. 2017, 189, 63–76. [Google Scholar] [CrossRef] [Green Version]
Order-Picking | Order picking refers to the operation of retrieving items from storage locations to fulfill customer orders [11]. |
Makespan | Makespan is the time when all batches are picked [12]. |
Tardiness | Tardiness defines as the positive value between the completion time of a customer order with its due date [13]. |
Routing | Routing policies define the sequence of storage locations that should be visited in each pick round to retrieve all items on a pick list [2]. |
Assignment | Orders should be retrieved by order pickers within tight time windows. The job assignment planning problem determines the sequence according to which orders or batches of orders should be retrieved, as well as the assignment of these (batches of) orders to a limited number of order pickers [14]. |
Order Batching | Order batching policies define rules on which customer orders to combine in a single pick round. These policies can be either static (i.e., all orders are known at the beginning of the planning period) or dynamic (i.e., customer orders become available over time) [2]. Order batching is the grouping of customer orders into picking orders (batches) [14]. |
Auditors | Layout Method | Number |
---|---|---|
Ardjmand et al. [12], Azadnia et al. [13], Chen et al. [22], Cheng et al. [30], Cortes et al. [31], De Vries et al. [32], Henn & Wäscher [33], Henn [14], Hong & Kim. [34], Isler. [35], Schrotenboer et al. [36], Henn [37], Men’endez et al. [38], Theys et al. [39] | Parallel aisle | 14 |
Berglund & Batta [40], Öztürkoğlu & Hoser [41], Öztürkoğlu et al. [42] | cross aisle | 3 |
Li et al. [43], Scholz et al. [20] | Parallel aisle with a middle aisle | 2 |
Hsieh & Huang [44], Scholz et al. [19] | parallel aisle with cross aisle | 2 |
Matusiak et al. [45] | Parallel aisle with 3 cross aisles | 1 |
Ardjmand et al. [46] | parallel aisles and two front and rear cross | 1 |
Valle et al. [8], Valle & Beasley [47] | parallel aisles and two or more cross-aisles | 2 |
Clark & Meller [48] | Fishbone | 1 |
Kübler et al. [49], Chen et al. [50] | picker-to-parts | 2 |
Mowrey & Parikh [51] | Mixed-width aisle | 1 |
Pan et al. [52] | pick-and-pass | 1 |
Kulak [53], Roodbergen et al. [29] | multiple cross aisles | 2 |
Cano et al. [24] | single-block and multiple-block | 1 |
Henn et al. [54] | U-shaped central aisle | 1 |
Total | 34 |
Performance Index | Articles |
---|---|
Cost | 27 |
Equipment | 9 |
Storage space | 37 |
Assignment | 8 |
Routing | 54 |
Batching | 43 |
Sequencing | 14 |
Tardiness | 6 |
Ergonomy | 11 |
Auditors | Assignment | Routing | Batching | Sequencing |
---|---|---|---|---|
Scholz et al. [20] | ✓ | ✓ | ✓ | ✓ |
Azadnia et al. [13] | ✓ | ✓ | ||
Henn [14], Meńendez et al. [38] | ✓ | ✓ | ||
Hong [95] | ✓ | |||
Schrotenboer et al. [36] | ✓ |
Auditors | Assignment | Routing | Batching | Sequencing | Tardiness | Others |
---|---|---|---|---|---|---|
Akilbasha & Atarajan [56], Chabot et al. [61], Chen et al. [50], Kaur & Kumar [16], Mowrey & Parikh [51], Öztürkoğlu et al. [42], Park & Kim [15] | ✓ | |||||
Acimovic & Graves [55] | ✓ | |||||
Cergibozan & Tasan [59], Çeven & Gue [60] | ✓ | ✓ | ||||
Kuo et al. [18] | ✓ | |||||
Chackelson et al. [62], Matusiak et al. [67] | ✓ | ✓ | ✓ | |||
Zhang et al. [21] | ✓ | ✓ | ✓ | |||
Azadnia et al. [13] | ✓ | ✓ | ✓ | |||
Cheng et al. [30], Ene & Öztürk [64], Öztürkoğlu & Hoser [41] | ✓ | ✓ | ||||
Schrotenboer et al. [36] | ✓ | ✓ | ||||
Battini et al. [57], Bevan [58], Chien et al. [63], Grosse et al. [6], Grosse et al. [65], Manzini et al. [66], Schwerdfeger & Boysenl [68], Tappia et al. [69] | ✓ |
Auditors | Assignment | Routing | Batching | Sequencing | Tardiness | Others |
---|---|---|---|---|---|---|
Li et al. [48], Van Gils et al. [70] | ✓ | ✓ | ||||
Chen et al. [22] | ✓ | ✓ | ✓ | |||
Matusiak et al. [67] | ✓ | ✓ | ✓ | |||
Leung et al. [90], Neumann & Medbo. [80] | ✓ | |||||
Hong [95] | ✓ | ✓ | ||||
Henn & Wäscher [33], Koch & Wäscher [85] | ✓ | |||||
Bevan [58], Calzavara et al. [72], De Vries et al. [32], Tappia et al. [69] | ✓ |
Auditors | Assignment | Routing | Batching | Sequencing | Tardiness | Others |
---|---|---|---|---|---|---|
Berglund & Batta [40], Chabot et al. [61], Clark & Meller [48], Glock et al. [78], Henn et al. [54], Lerher [79], Mowrey & Parikh [51], Neumann & Medbo [80], Öztürkoğlu et al. [42] Roodbergen et al. [29], Yu et al. [81], Lee & Murray [82] | ✓ | |||||
De Koster et al. [1], Ene & Öztürk [64], Kübler et al. [49], Öztürkoğlu & Hoser [41], Van Gils et al. [70] | ✓ | ✓ | ||||
Chackelson et al. [62], Chun et al. [71] | ✓ | ✓ | ✓ | |||
Cano et al. [24] | ✓ | ✓ | ✓ | |||
Schrotenboer et al. [36] | ✓ | ✓ | ||||
Kuo et al. [18] | ✓ | |||||
Pan et al. [52] | ✓ | |||||
Battini et al. [4], Battini et al. [57], Calzavara et al. [72], De Vries et al. [32], Glock & Grosse [74], Gu et al. [28], Grosse et al. [65], Manzini et al. [66], Marchet et al. [9], Schwerdfeger & Boysenl [68], Tappia et al. [69], Thomas & Meller [76], Van Gils et al. [2], Vanheusden et al. [77] | ✓ |
Auditors | Assignment | Routing | Batching | Sequencing | Tardiness | Others |
---|---|---|---|---|---|---|
Ardjmand et al. [46] | ✓ | ✓ | ✓ | ✓ | ||
Ardjmand et al. [12] | ✓ | ✓ | ✓ | |||
Zulj et al. [5], Henn [37], Muter & Öncan [23] | ✓ | |||||
Lee & Murray [82] | ✓ |
Articles | Solution Methods | Assignment | Routing | Batching | Sequencing | Tardiness |
---|---|---|---|---|---|---|
Chen et al. [50], Chen et al. [22], Cheng et al. [30], Li et al. [43] | ACO | ✓ | ✓ | ✓ | ✓ | |
Koch & Wäscher [85], Leung et al. [90], Schrotenboer et al. [36], Feng & Hu [93], Cano et al. [25], Ene & Öztürk [64], Azadnia et al. [13], Chen et al. [22], Kuo et al. [18] | GA | ✓ | ✓ | ✓ | ✓ | ✓ |
Kuo et al. [18], Cheng et al. [30], Chun et al. [71], Öztürkoğlu et al. [42] | PSO | ✓ | ✓ | ✓ | ||
Cortes et al. [31], Kulak [53], Zulj et al. [5], Henn & Wäscher [33] | TS | ✓ | ✓ | |||
Ardjmand et al. [12], Ardjmand et al. [46] | PSA-ACO | ✓ | ✓ | ✓ | ✓ | |
Matusiak et al. [45] | A∗-algorithm | ✓ | ✓ | |||
Matusiak et al. [45] | SA | ✓ | ✓ | |||
Ene & Öztürk [64], Li et al. [43], Manzini et al. [66] | integer programming | ✓ | ✓ | |||
Scholz et al. [19] | exact method | ✓ | ✓ | |||
Ardjmand et al. [46] | CG | ✓ | ✓ | ✓ | ✓ | |
Glock & Grosse [74], Isler [35], Kübler et al. [49], Theys et al. [39], Valle & Beasley [47], Zhang et al. [21], Henn [37], Vanheusden et al. [77] | Heuristic | ✓ | ✓ | ✓ | ✓ | |
Zulj et al. [5], Chabot et al. [61], Henn [14], Matusiak et al. [67], Scholz et al. [20], Men´endez et al. [38], Muter & Öncan [23] | VNS | ✓ | ✓ | ✓ | ✓ | ✓ |
Tang et al. [87] | Lagrang | ✓ | ||||
Valle et al. [8], Lee & Murray [82] | B&B | ✓ | ✓ | |||
Henn & Wäscher [33] | Hill climbing | ✓ | ||||
Andriansyah et al. [84], Berglund & Batta [40], Chackelson et al. [62], Chien et al. [63], Elbert et al. [88], Giannikas et al. [96], Ho & Lin [83], Hong & Kim [34], Hsieh & Huang [44], Lu et al. [91], Pan et al. [52], Roodbergen et al. [29], Tappia et al. [69], | Simulation | ✓ | ✓ | ✓ | ||
Gupta & Kumar [17], Kaur & Kumar [16] | Fuzzy | ✓ | ||||
Acimovic & Graves [55], De Koster et al. [1], Glock et al. [78], Grosse et al. [7], Grosse et al. [6], Grosse et al. [65], Henn et al. [54], Mowrey & Parikh [51] Schleyer & Gue [86], Thomas & Meller [76], Van Gils et al. [70], | Analytical models | ✓ | ✓ | |||
Battini et al. [4], Battini et al. [57], Calzavara et al. [72], Cano et al. [24], Çeven & Gue [60], Hong [95], Lerher [79], Öztürkoğlu & Hoser [41], Pan & Wu [92], Scholz & Wäscher [94], Schwerdfeger & Boysenl [68] | Other | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi Keshavarz, A.R.; Jaafari, D.; Khalaj, M.; Dokouhaki, P. A Survey of the Literature on Order-Picking Systems by Combining Planning Problems. Appl. Sci. 2021, 11, 10641. https://doi.org/10.3390/app112210641
Ahmadi Keshavarz AR, Jaafari D, Khalaj M, Dokouhaki P. A Survey of the Literature on Order-Picking Systems by Combining Planning Problems. Applied Sciences. 2021; 11(22):10641. https://doi.org/10.3390/app112210641
Chicago/Turabian StyleAhmadi Keshavarz, Amir Reza, Davood Jaafari, Mehran Khalaj, and Parshang Dokouhaki. 2021. "A Survey of the Literature on Order-Picking Systems by Combining Planning Problems" Applied Sciences 11, no. 22: 10641. https://doi.org/10.3390/app112210641
APA StyleAhmadi Keshavarz, A. R., Jaafari, D., Khalaj, M., & Dokouhaki, P. (2021). A Survey of the Literature on Order-Picking Systems by Combining Planning Problems. Applied Sciences, 11(22), 10641. https://doi.org/10.3390/app112210641