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Abstract: Investigation of a hard rock site for the development of engineered structures mainly
depends on the delineation of weathered and unweathered rock, and the fractures/faults. Tradi-
tionally, borehole tests are used in such investigations. However, such approaches are expensive
and time-consuming, require more equipment, cannot be conducted in steep topographic areas, and
provide low coverage of the area with point measurements only. Conversely, geophysical methods
are non-invasive, economical, and provide large coverage of an area through both vertical and lateral
imaging of the subsurface. The geophysical method, electrical resistivity tomography (ERT), can
reduce a significant number of expensive drilling tests in geotechnical investigations. However, a
geophysical method alone may provide ambiguity in the interpretation of the subsurface, such as
electrical resistivity cannot differentiate between water and clay content. Such uncertainty can be
improved by the integration of ERT with induced polarization (IP). Similarly, self-potential (SP) can
be integrated with other geophysical methods to delineate the groundwater flow. In this contribution,
we integrated three geophysical methods (ERT, IP and SP) to delineate the weathered and unweath-
ered rock including the weathered/unweathered transition zone, to detect the fractures/faults, and
to map the groundwater flow. Based on ERT, IP and SP results, we develop a geophysical conceptual
site model which can be used by site engineers to interpret/implement the findings for build-out.
Our approach fills the gaps between the well data and geological model and suggests the most
suitable places for the development of engineered structures in the hard rock terrains.

Keywords: electrical resistivity tomography (ERT); induced polarization (IP); self-potential (SP);
engineered structures; hard-rock

1. Introduction

Given natural heterogeneity, the evaluation of hard rock sites for the construction
of engineered structures is a challenging task for planners and engineers. The sustain-
able design of structures depends on the accurate evaluation of the subsurface geological
model [1]. The uncertainty in the subsurface interpretation may cause structure failure [2,3].
A geotechnical site investigation requires time, expenses, and evaluation of subsurface
heterogeneity. There is a need to use techniques so that planners can overcome the chal-
lenges of a costly and longtime commitment [4]. The construction sites without any proper
geotechnical investigation result in building collapse in many developing countries [5].
In the hard rock terrains, the subsurface geological knowledge about the weathered and
unweathered rock and the fractures/faults needs to be known for the success of the en-
gineering construction [6]. The weathered zones and fractures/faults are mainly created
by tectonic, chemical, erosion and weathering processes. The weathered/fractured zones
are mainly associated with groundwater occurrence in the hard rock [7,8]. Therefore,
identification of the weathered/fractured zones saturated with groundwater is essential to
avoid locating engineered structures within potential failure zones [3,6].
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Traditionally, boreholes are carried out to acquire subsurface geological knowledge [9,10].
However, given safety and accessibility issues, it is a challenging task to conduct such tests
in steep topographic areas [11,12]. In addition, the drilling approaches are expensive, time-
consuming, need heavy equipment, offer low coverage of point measurements only, and
cannot provide lateral information on the subsurface [13,14]. Thus, the conventional tests
cause uncertainties in the geological model which may lead planners to locate engineered
structures at locations where failure is more likely [15]. Therefore, an alternative approach
of traditional geotechnical techniques is necessary, which can delineate the subsurface
between borehole locations prior to the engineering construction and thus bring a sigh of
relief to the engineers.

In the past years, many researchers have used geophysical methods in their in-
vestigations [16–28]. Geophysical methods, such as electrical resistivity tomography
(ERT), induced polarization (IP) and self-potential (SP) are non-invasive, fast, economi-
cal, user friendly, and provide lateral and vertical mapping of the subsurface for large
coverage areas [22,29]. ERT is widely used in environmental and geotechnical investiga-
tions [3,17,20,23]. ERT measures electrical resistivity which has a wide range of values
and varies with rock type. Unweathered rock has high resistivity, while weathered rock
has lower values [10]. Thus, ERT can be used to map the weathered and unweathered
zones. However, ERT alone cannot distinguish between water and clay content, since
low resistivity suggests water, as well as clay content in the saturated zone [3]. The clay
content causes instability in the foundation rock of the engineering structures. Recently, the
integration between two or more geophysical methods has been very successful to reduce
the uncertainty caused by a single geophysical method [9,24,25]. Integration between IP
and ERT can remove the uncertainty caused by low values of electrical resistivity as high IP
values indicate clay content whereas low IP values reveal water content [30,31]. In addition,
ERT coupled with IP can detect the saturated weathered/fractured zones more efficiently
since low values of electrical resistivity and chargeability suggest water content [3]. The
negative values of SP suggest groundwater flow; thus, SP is very effective to evaluate the
groundwater flow mainly along the weathered/fractured zones [10,32].

In this work, we performed an integrated geophysical survey of ERT, IP and SP
at a highly heterogeneous hard-rock terrain in order to evaluate the subsurface for site
suitability prior to engineering construction. The electrical resistivity obtained by ERT
was used to delineate the distinct subsurface layers, such as the topsoil layer, weathered
layer, weathered/unweathered transition zone and the unweathered rock at the bottom.
Zones of higher clay content were delineated with the integration between ERT and IP.
The groundwater flow path was inferred by SP. The 2D models of integrated geophysical
methods provide a thorough insight into the subsurface. Compared with conventional
geotechnical studies, our contribution reduces the uncertainty caused by the spatially
limited data, provides a more accurate geological model via lateral and vertical (2D)
imaging of the large area, and suggests the most suitable places for the development of
engineering structures in highly heterogeneous hard-rock terrain.

2. Study Area and Hydrogeology

The projected area is located in Huangbu, a coastal area of the South China Sea in
Guangdong province of China (Figure 1). This investigation is a part of the project con-
ducted by the Institute of Geology and Geophysics, Chinese Academy of Sciences to assess
the hard-rock site for the development of engineering structures, such as facilities, labo-
ratories and accelerator-driven systems. The investigated site is located in the Huidong
Mountain Ranges including a tributary of Kaozhouyang River in northeast. The simplified
geological settings of Huangbu consist of several localized faults, an unconformable bound-
ary between the volcanic acidic rocks of Upper Jurassic and the magmatic/granite rocks of
Lower Jurassic, and dynamo metamorphic zones [33]. Tuff rocks are dominant throughout
the study area. The project area has a tropical climate system with the monsoon (rainy)
season between May and September. The annual mean precipitation is 1950 mm [33].
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Huangbu faces natural hazards, such as frequent typhoons, earthquakes and landslides,
etc., [10]. It has a long summer with a maximum temperature of 40 ◦C and a short winter
with a minimum temperature of 5 ◦C. The geological processes, such as weathering, tec-
tonic and hydrothermal processes mainly cause fracturing in the study area [3]. The excess
rainwater enters the fractures/discontinuities and makes the aquifer system. Groundwater
resources are found within the weathered rock lying between the topsoil layer and the
unweathered rock. Therefore, the delineation of weathered and unweathered rock, clay,
and faults is the main challenge prior to the construction of engineered structures.
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3. Materials and Methods

In the past decades, ERT has been widely used to assess hard-rock sites for the
evaluation of weathered and unweathered layers, discontinuities, joints and frac-
tures/faults [3,7,10,18,19,21,22,34,35]. It has been highly efficient in the areas dominated
by the hydrogeological significance of weathering processes [9,10]. In ERT surveys, electri-
cal resistivity is measured (in Ωm), which depends on the subsurface variations mainly
associated with the type of rock, fractures, joints, lithology, water content, porosity, and
permeability [3,36]. ERT data is collected using different electrode configurations which
provide different resolutions [36]. ERT is affected by lithology and electrolytic conduction
related to the size and configuration of the pore space, which is dependent on the size and
shape of subsurface grains [9]. In general, electrical resistivity decreases with increasing
water and clay content [37]. The resistivity of metamorphic and igneous rocks is higher
than that of sedimentary rocks; similarly, the resistivity of unweathered rocks is higher
than that of weathered/fractured rocks [10]. Thus, a huge contrast between resistivity
values of weathered and unweathered rock is useful for the site suitability of the engi-
neered structures [3,9]. ERT surveys are performed by injecting electric current into the
subsurface via a pair of current electrodes, and the potential difference is measured through
a pair of potential electrodes. The spacing between the electrodes controls the subsurface
volume/area of influence. As the electrode spacing increases, the volume/area increases.
The electrical resistivity measured in the field is known as the apparent resistivity (ρa) and
is equal to:

ρa =
KV

I
(1)

where V is the potential difference obtained between two potential electrodes, I is the
direct electric current injected through two current electrodes, and K is the geometric
factor that depends on the electrode spacings used to collect resistivity measurements.
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The electrical resistivity measured in the field does not show the true resistivity of the
subsurface layers [10,38]. The apparent resistivity assumes a homogeneous subsurface. To
solve for the true resistivity, apparent resistivities must be inverted [3,37].

IP is a method in which the subsurface materials get polarized as a result of the injec-
tion of an electric current into the subsurface [39,40]. Chargeability (in ms) is measured
in the time-domain IP surveys. The electric field causes ions to displace within the EDL
(electrical double layer). For time-domain IP, the measurement is the signal decay where
displaced ions return back to the original state [41]. IP measurements are affected by the
electrolyte properties in pore spaces, size of the grain, type of minerals, surface-water
interaction, and the ratio of internal surface area to volume [42]. IP has higher polarization
values for clay, sulfides and graphite; whereas its low values suggest the water content
associated with the weathered/fractured zones in the hard rock terrains [30,31]. Thus, IP
measurements have been very successful to differentiate between clay (with high charge-
ability and low resistivity) and weathered/fractured rock saturated with water (for low
chargeability and low resistivity) [3]. In this investigation, IP was used as a supporting
method of ERT to differentiate between water and clay.

SP is a passive geoelectrical technique, which measures natural potential (in mV) be-
tween two points on the ground [43]. SP anomalies are sensitive to the streaming potentials
(e.g., groundwater flow). The high potential anomalies are mainly caused by conductive
minerals, magnetite, sulfide ore bodies, graphite and groundwater flow [44–46]. SP anoma-
lies at this site are mainly controlled by groundwater flow through the weathered/fractured
zones [47]. The SP surveys measure positive and negative anomalies depending on the
subsurface materials properties [48,49]. The groundwater flow system is mainly associated
with negative SP anomalies [9]. In order to map the groundwater flow path in the study
area, the SP measurements were obtained along with the ERT and IP data

Geophysical data acquisition of ERT, IP and SP was performed along the same profile
using the same (constant) electrode spacing and the same number of measurements. All
electrodes are connected to the resistivity meter via multi-core cables. The lateral and
vertical resolution of the subsurface depends on the spacing between the electrodes. The
resolution of a model increases with decreasing electrode spacing; however, this will reduce
the depth of investigation. Therefore, electrode spacing should be selected considering a
balance between the investigation depth and model resolution. The ERT, IP and SP data
were obtained by the ABEM Lund Imaging System (ABEM Terrameter (SAS 4000)) along
with ten profiles (A, B, C, D, E, F, G, H, I, and J) (Figure 1). A power amplifier, receiver
and transmitter are all integrated into the imaging system. The system, connected with
a PC, collects the main survey parameters including injected electric current, voltage, ap-
parent resistivity, chargeability and self-potential. The ERT, IP and SP measurements were
obtained using non-polarizing electrodes. Such electrodes are a requirement for IP and SP
surveys to reduce contact resistances in electrically resistive mediums. A measurement
of apparent resistivity, chargeability, and self-potential is performed for each electrode
combination. This reading is displayed on the computer output at the lateral midpoint of
the electrode locations and a prescribed depth level. Three parameters (electrical resistivity,
chargeability and self-potential) are acquired at each of these points. First, the ERT data
were obtained via Imaging System on resistivity mode. Afterwards, IP and SP measure-
ments were obtained by using the Imaging System on IP and SP modes, respectively. The
geophysical measurements (ERT, IP and SP) were acquired using the pole-dipole array
with 5 m electrode spacing. The asymmetrical nature of this array was removed via the
integration of two independent measurements (forward and reverse). Geophysical data
of ERT, IP and SP along ten profiles were acquired for a total of 6150 m profile length,
1240 electrodes and 31,000 measurements, including 25 layers (depth levels) along each
profile with the first layer at 7.5 m depth and last layer at 127.5 m depth. Data acquisition
parameters of ERT, IP and SP along each profile are given in Table 1. Prior to exporting
geoelectrical data (apparent resistivity, chargeability and self-potential) to an inversion
package, PROSYSII (IRIS Instruments) was used to display raw data in graphical plots,
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and to separate and remove incorrect data points (low/very high potential readings com-
pared with surrounding readings). Furthermore, the signal strength was also enhanced
through the use of stacking, i.e., the repeated measurement of transfer resistance through
a number of cycles of current injection. The geophysical data obtained in the field were
further processed. The apparent electrical resistivity, IP and assigned data weights were
inverted by RES2DINV [37]. ZondSP2D program was used for SP data inversion. In SP
inversion, the medium model is created through a number of cells, and each cell has the
electrical value and type of conductivity (ion or electronic) properties. RES2DINV provides
the 2D resistivity/IP model via the nonlinear optimization procedure [37,50]. The robust
constraint was used to enhance the data quality by removing the bad data (data values that
cause spikes when compared with the surrounding data points and/or data with standard
deviations over the average). Thus, the fit of the data to the model can be improved
through filtering or using higher standard deviation weights on bad data. A standard
deviation weight measures the dispersion of values when some values have higher weights
than others. Data weights determine reciprocal errors which provide a measure of the
error caused by an instrument, natural electrical storms and nearby anthropogenic current
sources. RES2DINV uses the smoothness-constrained least squares inversion with L2-norm.
The inversion program minimized the root mean square error (RMS) up to 5%. RMS is
calculated as the square of the difference obtained between the estimated and observed
apparent resistivity. The ERT models were generated within three to five iterations. The
standard technique of Gauss Newton optimization was used in the inversion program. The
inversion method was performed using a low damping factor of 0.03.

Table 1. Data acquisition parameters of geophysical survey (ERT, IP and SP) including profile name, total number of
electrodes for each profile, total profile length, electrode spacing along each profile, depth of first layer, depth of last layer,
total layers (depth levels), and total number of measurements.

Profile Electrodes Profile Length
(m)

Electrode Spacing
(m)

1st Layer Depth
(m)

Last Layer Dept
(m) Layers Measurements

A 261 1300 5 7.5 127.5 25 6525
B 101 500 5 7.5 127.5 25 2525
C 111 550 5 7.5 127.5 25 2775
D 141 700 5 7.5 127.5 25 3525
E 111 550 5 7.5 127.5 25 2775
F 121 600 5 7.5 127.5 25 3025
G 111 550 5 7.5 127.5 25 2775
H 81 400 5 7.5 127.5 25 2025
I 101 500 5 7.5 127.5 25 2525
J 101 500 5 7.5 127.5 25 2525

4. Results and Discussion

Geophysical data of three methods (ERT, IP and SP) were used to interpret the sub-
surface for site suitability of engineered structures in the study area. The subsurface was
interpreted for the delineation of distinct layers, fractures/faults, clay, and groundwater
flow path. 2D ERT models were integrated with the borehole lithological logs to obtain a
subsurface model of four distinct layers/zones with specific resistivity values range. Clay
was identified by the integration of 2D IP models (with high chargeability) and 2D ERT
models (with low resistivity). Groundwater flow was mapped using 2D SP models (with
low or negative SP). The main fractures/faults were delineated by the integration of all
geophysical models using low values of ERT, IP and SP. One of the interpreted models
for three geophysical methods is shown in Figure 2. Based on the correlation between all
ERT models and borehole data, the ERT model (Figure 2a) along profile B was interpreted
(Figure 2b) for four layers (topsoil cover, weathered layer, weathered/unweathered transi-
tion zone (partly weathered rock) and unweathered layer) and four main fractures/faults
(F2, F3, F4 and F5). The identified fractures/faults in ERT B also show consistency on IP B
(Figure 2c) and SP B model (Figure 2d). The ambiguity in the water-clay distinction caused
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by low resistivity in the ERT model (Figure 2a) was removed by integration of IP (with
high chargeability) (Figure 2c). Similarly, negative SP shows the direction of groundwater
flow mainly along the identified fractures/faults (Figure 2d). The details of subsurface
interpretation for all geophysical profiles are given in the following sections.
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Figure 2. (a) 2D ERT model along profile B, (b) 2D ERT model along the same profile B interpreted for subsurface layers
and fractures/faults based on the correlation between ERT models and borehole lithological logs, (c) 2D IP model along the
same profile B interpreted for clay and fractures/faults, and (d) 2D SP model along profile B interpreted for groundwater
flow path and fractures/faults.

4.1. Delineation of Subsurface Layers

The 2D ERT models along with all profiles generated by the inversion program of
RES2DINV are shown in Figure 3. The electrical resistivity varies between 18–545,650 Ωm
along all ERT profiles over the entire investigated site. Based on the correlation between
ten ERT models and the local hydrogeological information obtained by eight boreholes,
the interpretation was constrained for a four-layered model of topsoil cover, weathered
layer (highly weathered rock), weathered/unweathered transition zone (partly weathered
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rock) and unweathered layer. The topsoil cover of dry strata above the water table was
delineated with a resistivity less than 180,500 Ωm, the weathered layer below the water
table underlying the top layer was evaluated with a resistivity between 18–375 Ωm, the
unweathered rock at the bottom was revealed with a resistivity greater than 1000 Ωm and
as high as 545,650 Ωm, and the transition zone between weathered and unweathered layer
(below the water table) was identified with resistivity ranging from 375 to 1000 Ωm. The
weathered layer, unweathered layer and weathered/unweathered transition zone (partly
weathered layer) are clearly identified in 2D ERT models shown in Figure 3.

All 2D ERT profiles were integrated and interpreted for the delineation of weath-
ered layer, weathered/unweathered transition zone and unweathered rock as shown in
Figure 4. Thus, a 3D view of the integrated 2D ERT profiles provides a clearer view of
the subsurface layers over the entire area. Each ERT model in Figures 3 and 4 was inter-
preted for the identification of the most suitable places for the construction of engineering
structures. Average depth/thickness of the delineated topsoil cover, unweathered layer,
weathered/unweathered transition zone and weathered layer, including most appropriate
locations for engineering construction along each profile are given in Table 2. Results of
ten ERT models in Table 2 reveal that the topsoil cover is evaluated with an average depth
of 3 m, the weathered layer is evaluated with an average thickness of 14 m, the weath-
ered/unweathered transition zone (partly weathered rock) is interpreted with an average
thickness of 8 m, and the unweathered layer is delineated at an average depth of 25 m. The
results suggest that ERT profiles A, G and H are more suitable for engineering construction
compared with other profiles since they reveal only one deep weathered/transition zone
and lower thickness of the weathered rock; while profiles profile B, F, I and J provide the
most unsuitable places for construction as they delineate several deep weathered/transition
zones and thick weathered layer. Looking at the ERT results alone, the southeastern parts of
the project area provide more suitable places for engineering structures due to a shallower
depth to the unweathered zone.

Table 2. Results obtained from the interpreted ERT models suggesting the most suitable places for the construction of
engineering structures, including average thickness/depth of the topsoil layer, weathered layer, weathered/unweathered
transition zone and unweathered layer along each profile.

Profile
Average Depth/Thickness of Subsurface Layers

Most Suitable Places for
Engineering Structures (m)Topsoil

Thickness (m)
Weathered Layer

Thickness (m)
Transition Zone
Thickness (m)

Unweathered
Layer Depth (m)

A 3 10 7 20 60–180, 500–800, 1000–1300

B 3 26 6 35 50–75, 220–275, 430–500

C 3 10 7 20 0–175, 275–375, 425–490

D 3 10 9 22 0–100, 275–325, 375–425,
575–700

E 2 11 7 20 150–275, 400–450, 480–550

F 3 16 13 32 75–225, 325–400, 500–600

G 3 11 6 20 240–550

H 2 8 8 18 0–250

I 5 15 10 30 0–50, 90–210, 325–375, 430–450

J 3 16 11 30 100–225, 290–400
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4.2. Detection of Faults

Low resistive zones (resistivity less than 1000 Ωm) were interpreted either as a weath-
ered layer or the fracture/fault. A total of ten main fractures/faults (F1–F10) were de-
lineated over the entire investigated site (Figure 4). These faults were interpreted based
on the hydrogeological information of the study area, the deep weathered zones and an
overall model generated by the integration of all ERT models (Figure 4). The identified frac-
tures/faults provide the most unsuitable foundation rock for engineering design. Along
profile A, one fault (F1) was detected at 220 m distance. Profile B revealed four faults, such
as F2 at 30 m, F3 at 190 m, F4 at 280 m and F5 at 400 m distance. Profile C evaluated four
faults, such as F3 at 50 m, F4 at 210 m, F6 at 270 m and F5 at 400 m distance. Profile D
revealed four faults, such as F2 at 130 m distance, F4 at 350 m, F6 at 450 m, and F5 at 530 m
distance. Profile E detected three faults, such as F2 at 120 m, F4 at 310 m and F5 at 470 m
distance. Three faults were identified along profile F, such as F2 at 40 m distance, F7 at
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290 m, and F5 at 440 m distance. Along profile G, one fault (F3) was identified at a distance
of 120 m. One fault F8 was revealed along profile H in the north at 350 m distance. Along
profile I, five faults were detected, such as F2 at 70 m, F9 at 250 m, F7 at 300 m, F10 at 390 m,
and F5 at 470 m distance. Similarly, four faults were evaluated along profile J, such as F2 at
70 m, F4 at 270 m, F7 at 370 m and F5 at 450 m distance. F1 with the northeast-southwest
direction was identified along profile A in the south. The overall orientation of faults
F2–F10 is from northwest to southeast. F2 and F5 are the longest faults with about 700 m in
length. F1, F6, F8, F9 and F10 are the shortest faults with lengths of about 150 m. Whereas
F3, F4 and F7 are about 300–550 m long. The fractures/faults were identified by low values
of resistivity (Figure 2a), IP (Figure 2c) and SP (Figure 2d).
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4.3. Water-Clay Distinction

Electrical resistivity obtained from ERT models cannot distinguish between clay and
weathered rock saturated with water, since low resistivity suggests water as well as clay.
Thus, ERT models alone cause ambiguity in the interpretation of the subsurface geological
model. On the other hand, high IP suggests a higher likelihood of clays while low IP
suggests fluid-filled voids. Therefore, such uncertainty in the model was removed by the
integration of ERT and IP. Based on the integration between ERT and IP models, and the
borehole information, clay was identified with IP greater than 40 ms and resistivity less than
1000 Ωm. The results suggest that mostly clay was delineated along the fractures/faults
near the surface (Figure 5). The prominent clay content along profile A was delineated at
220 m, 490 m, 1000 m and 1300 m. Clay was identified at four places along profile B, such
as at 30 m, 190 m, 280 m and 480 m distance. Profile C revealed clay at three locations, such
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as at 40 m, 210 m and 520 m distance. Profile D revealed thin clay content at several places
near the surface. Profile E detected the high clay content at 550 m on the east side. The
main clay content along profile F was revealed at a 500 m distance. Along profile G, minor
clay content was identified at a 75 m distance. Along profile H, two places of high clay were
identified at the integration of profiles E and F. Along profile I, clay was detected at four
places, at 70 m, 250 m, 300 m and 390 m distance. Compared with other profiles, mostly the
topsoil layer in profile J is dominant with clay, especially along the fractures/faults. The
locations identified by clay may cause the collapse of the engineered structures. Therefore,
clay identified along the 2D IP profiles should be avoided in the construction.
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4.4. Groundwater Flow Modeling

Most of the uncertainties in the subsurface geological model were reduced/removed
by 2D ERT and IP models through the delineation of weathered and unweathered rock,
detection of fractures/faults, and the distinction between water and clay. However, ERT
and IP cannot map the groundwater flow in the investigated area. Groundwater flow
mapping was performed by SP. SP anomalies suggest both positive and negative values
ranging from −150 mV to 900 mV over the entire investigated area. The negative SP
suggests the groundwater flow path. The 2D SP models were generated along the same
ERT and IP profiles. The 2D SP models interpreted for the groundwater flow are shown in
Figure 6. The integration of 2D SP models provides an overall view of the projected site
with clear insights into the subsurface. The SP results suggest that the groundwater flow is
mainly mapped along the main fractures/faults. The arrowheads in Figure 6 suggest the
groundwater flow direction. Furthermore, the low SP (negative values) delineates the frac-
tures/faults. Hence, in addition to the groundwater flow mapping, SP also supports ERT
and IP for the delineation of fractures/faults, and hence the accuracy in the interpretation of
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the subsurface geological model is increased. The results obtained by different geophysical
methods show a good correlation with each other and the hydrogeological information of
the project site (Figures 2–6). Thus, the use of integrated geophysical methods reduces the
geological model uncertainties caused by the limited data and provides more accuracy in
the subsurface geological model for the successful construction of engineered structures.
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Based on the interpretation of the subsurface using three geophysical methods, a
conceptual model of the investigated site was obtained as shown in Figure 7a. The con-
ceptual model provides an overall picture of the study area for the delineation of four
distinct layers (topsoil cover, weathered layer, weathered/unweathered transition zone
and unweathered layer using ERT, the main faults using ERT, IP and SP, clay using ERT
and IP, and groundwater flow path using SP.
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construction as identified by the interpreted fault F4 along profile J, and (c) A change in construction design was made by
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5. Conclusions

In this work, we used an integrated approach of three geophysical methods namely
electrical resistivity tomography (ERT), induced polarization (IP) and self-potential (SP).
We used this geophysical approach to assess a highly heterogeneous site in South China
for the successful construction of the engineered structures. Traditionally, drilling tests
are conducted to get the subsurface geological information. However, such tests suffer
limitations in terms of cost, coverage and topographic constraints, etc. Furthermore, it
may not be possible for planners to drill a large number of wells that provide the point
measurements vertically. On the other hand, geophysical methods are non-invasive,
cheaper, and provide subsurface geological knowledge both laterally and vertically. Such
methods can be integrated with the available geological information obtained from the
limited boreholes in order to investigate the large area entirely.
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In this work, we calibrated ERT with the local geological information of eight bore-
holes and constrained the subsurface into four discrete layers with specific values range
of resistivities, such as the topsoil layer above water table with a resistivity between
18–180,500 Ωm, the weathered layer with resistivity ranging from 18 and 375 Ωm, the
weathered/unweathered transition zone (partly weathered rock) with resistivity ranging
from 375 to 1000 Ωm, and the unweathered layer with a resistivity between 18–545,650 Ωm.
The interpreted 2D ERT models delineated the subsurface layers over the entire area, such
as the topsoil layer with an average thickness of 3 m, the weathered layer with an average
thickness of 14 m, transition zone with an average thickness of 8 m, and the unweathered
layer at an average depth of 25 m. IP was integrated with ERT to delineate clay since ERT
alone cannot differentiate between water and clay because low resistivity shows either
clay or water. Clay was identified with chargeability greater than 40 ms and resistivity less
than 1000 Ωm. The deep weathered zones were delineated as the main faults and localized
fractures in the project site. Our observation suggests that low values of geophysical
parameters (resistivity and chargeability) suggest the faults/fractures saturated with water,
such as ERT less than 1000 Ωm, IP less than 15 ms and SP less than 0 mV. Groundwater
flow along the faults/fractures was mapped by SP. Negative SP mapped the groundwater
accumulation mainly along the faults/fractures. Based on the results of ERT, IP and SP, we
recommend the most suitable places for the development of engineering structures along
each profile (Table 2). Our findings will help the site engineers with the accurate design of
engineering structures in the investigated area. Results of this study including the concep-
tual model (Figure 7a) will also be useful for the interpretation of nearby sites. Our results
were confirmed by the actual situation of the investigated site during the construction,
such as groundwater seepage during the site construction was clearly observed from the
identified fractures/faults (Figure 7b), and the construction design was modified based
on our geophysical results (Figure 7c). Our approach of integrated geophysical methods
provides better insights into the subsurface for the construction of engineering structures
in highly heterogeneous hard rock terrains.
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