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Abstract: Aerostatic bearings are widely used in high-precision devices. Partial arc annular-thrust
aerostatic porous journal bearings are a prominent type of aerostatic bearings, which carry both
radial and axial loads and provide high load-carrying capacity, low air consumption, and relatively
low cost. Spindle shaft tilting is a resource-demanding challenge in numerical modeling because it
involves a 3D air flow. In this study, the air flow problem was solved using a COMSOL software,
and the dynamic coefficients for tilting degrees of freedom were obtained using finite differences.
The obtained results exhibit significant coupling between the tilting motion in the x-and y-directions:
cross-coupled coefficients can achieve 20% of the direct coefficient for stiffness and 50% for damping.
In addition, a nonlinear behavior can be expected, because the tilting motion within 3◦, tilting
velocities within 0.0012◦/s, and relative eccentricity of 0.2 have effects as large as 20% for direct
stiffness and 100% for cross-coupled stiffness and damping. All dynamic coefficients were fitted
with a polynomial of eccentricity, tilting, and tilting velocities in two directions, with a total of six
parameters. The resulting fitting coefficient tables can be employed for the fast dynamic simulation
of the rotor shaft carried on the proposed bearing type.

Keywords: aerostatic journal bearings; porous bearing; annular-thrust bearing; numerical simulation;
finite element method; dynamic coefficients; eccentricity; tilting; tilting velocity; partial arc

1. Introduction

Porous aerostatic bearings are widely used in machinery, owing to their relatively
high load-carrying capacity and low air consumption [1–3]. Similar to other types of
aerostatic bearings, owing to their high accuracy and zero contamination, they are suitable
for high-precision devices. In addition, the friction drag of a porous aerostatic bearing is
low [4,5], its motion accuracy is higher than that of a conventional orifice-type aerostatic
bearing [5,6], and its load thresholds at high rotation speeds are the highest among other
types of aerostatic bearings [5,7]. The production of porous materials with desirable
permeabilities is relatively complicated. However, the amount of porous material required
can be reduced via design optimization [8].

The optimal governing equations required for porous air bearing analysis remain un-
der discussion. Zhong et al. [9] experimentally determined Ergun’s equation coefficients for
the pressure drop in sintered metal porous media for air bearings. Belforte et al. [10] exper-
imentally verified Forchheimer’s law for porous air bearing applications. Zhong et al. [11]
verified the accuracy of Forchheimer’s law for air flow through sintered metal porous
media and Darcy’s law, under slight pressure drops. Recently, it has been reported that a
deep learning-based approach can be employed for high-precision and low-cost analysis of
the 3D flow state inside a porous material [12].

Various numerical methods and engineering packages have been adopted for air
pressure calculations in porous bearings. Huang et al. [13] analyzed the pressure in a
porous conveyor air bearing using the FLUENT software. Cui et al. [14] used FLUENT
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software to numerically analyze the effect of manufacturing errors on the load-carrying
capacity and stiffness of an annular-thrust porous aerostatic bearing. In addition, the
deformation of porous thrust bearings was numerically investigated based on the fluid–
solid interaction method by Wang et al. [15]. Van Ostayen et al. [16] used the COMSOL
software for active aerostatic bearing analysis. Hwang and Khan [17] conducted 3D finite
element analysis, while Plante et al. [18] proposed the shed 1D generalized flow theory.
Otsu et al. [19] and Hosokawa et al. [8] used the FDM.

Several papers [19–22] deal with the numerical calculation of stiffness and damping
coefficients corresponding to eccentricity or parallel shaft displacement (Figure 1a). How-
ever, insufficient data are available on stiffness and damping for shaft tilting (Figure 1b) in
porous air bushing. Cui et al. [14,23] analyzed the non-flatness effect of the air-bearing sur-
face on the stiffness and damping of an aerostatic porous bearing, which is computationally
similar to modeling the tilting.
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Figure 1. Two spindle motion modes: (a) eccentricity; (b) tilting. sb and sr denote the bearing and rotor axes, respectively.

The rotor in ultraprecision devices is usually supported by journal and thrust bearings,
which share a common air supply system but separate porous pads [14,23]. Annular-
thrust bearings share the same porous pad carrying loads in both the annular and thrust
directions (Figure 2). This dual role decreases the manufacturing cost while triggering
flow coupling [23–27]. A partial arc bearing has a higher load-carrying capacity but lower
stiffness than a full-arc bearing [27].
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The numerical modeling of the rotor motion, including the effect of shaft tilting, as
well as the modeling of a partial arc annular-thrust porous aerostatic bearing is substantially
time-consuming, because it requires a 3D air flow solution. Dynamic modeling can be
performed in a less resource-consuming manner if the full bearing model is replaced
with stiffness and damping coefficients. The nonlinear dynamic motion can be modeled,
provided the influences of eccentricity, tilting, and velocities on the dynamic coefficients are
included. In this study, the air flow in the porous pad and air lubrication film between the
porous pad and solid surface of the shaft were numerically modeled using the COMSOL
Multiphysics® software. The pressure distribution and total forces and moments were
calculated for low eccentricity, low tilting angles, and tilting speeds. The stiffness and
damping coefficients were determined using finite differences.

2. Materials and Methods

The porous air bearing was modeled using the COMSOL Multiphysics software,
“Darcy’s law”, and “Thin-Film Flow, Shell” modules. Here, the static solution is sufficient
in determining the response of the displacement and velocity of the spindle. In addition,
the porous bushing is a hollow cylinder parallel to the z-axis with a cut sector α. Figure 3
illustrates the different boundary conditions.
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Figure 3. Porous pad boundaries: (a) airbearing surface carrying both radial and axial loads; (b) air supply surface;
(c) outflow to atmospheric pressure; (d) outflow to atmospheric pressure in xy-plane with axes and bearing partial arc.
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The pressure in the porous pad is modeled with the “Darcy’s law” module:

−∇
(

ρ
κ

µ
∇p

)
= 0 (1)

where p, ρ, κ, and µ denote the air pressure, air density, permeability coefficient, and
dynamic viscosity of air, respectively. ∇ is the gradient operator in three-dimensional
space. The pressure at the air-bearing surface (see Figure 3a) is modeled with the “thin-film
flow, shell” module:

∇t

(
ρh
(

1
2

vt −
h3

12µ
∇t p f

))
= −ρ

∂

∂t
h + Q (2)

where p f , h, vt, and Q represent the air film pressure, air film thickness, tangential spin-
dle surface velocity, and air flux, respectively. ∇t is the gradient operator in the two-
dimensional space of the air film surface and ∇ is the partial derivative operator. At the
interface between the porous pad and the air-bearing surface, the pressure and air flux
must be continuous. In the “Darcy’s law” module, the “Pressure” boundary condition is
adopted at the surfaces that open to the air lubrication film, which is expressed as:

p = p f . (3)

In the “Thin-Film Flow, Shell”, the continuity of the air flux is expressed by admittance
Y in the “Perforation” interface, which is expressed as:

Y =
Q·n
ρ p f

(4)

where n =
(
nx, ny, nz

)
is the air-bearing surface normal vector. The air film thickness in the

“Thin-Film Flow, Shell” module depends on the spindle eccentricity (εx, εy), tilting (tx, ty),
and tilting velocities (

.
tx,

.
ty) (refer to Figure 1):

h = c + u·n− u·∇th (5)

∂

∂t
h = v·n− v·∇th (6)

u =
(
cεx + tx(z− L/2); cεy + ty(z− L/2);−txx− tyy

)
(7)

v =
(
−yω +

.
tx(z− L/2); xω +

.
ty(z− L/2);−

.
txx−

.
tyy
)

(8)

where u is the spindle surface displacement, and v is the spindle surface velocity.
The isothermal compressibility of the air was modeled using the user-defined density

in both modules. Here, the density is related to the air pressure in the “Variables” block
as follows:

ρ =
ρ0 p
p0

, (9)

where the subscript 0 refers to the atmospheric conditions, and p0 = 1 bar. The air supply
is modeled by another “Pressure” interface in the “Darcy’s law” module with a constant
pressure of ps (see Figure 3b). The outflow at the air-bearing edges is given by the “Border”
interface in the “Thin-Film Flow, Shell” module with a fixed pressure of p0 (see Figure 3c).
The other boundaries were sealed.

After the static problem was solved and the air pressure was calculated, the moments
in the x and y tilt directions were calculated, using the “Surface Integration” in the “Derived
Values” block, according to the following expressions:

Mx =
x

p(nx(z− L/2)− nzx)dx′dy′ (10)
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My =
x

p
(
ny(z− L/2)− nzy

)
dx′dy′ (11)

where x′ and y′ are the local coordinates of the air film surface.
Stiffness and damping for tilting degrees of freedom were calculated by using fi-

nite differences:

Ktx,tx = −
(

Mx

(
εx, εy, tx + ∆tx, ty,

.
tx,

.
ty

)
−Mx

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆tx (12)

Ktx,ty = −
(

Mx

(
εx, εy, tx, ty + ∆ty,

.
tx,

.
ty

)
−Mx

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆ty (13)

Kty,tx = −
(

My

(
εx, εy, tx + ∆tx, ty,

.
tx,

.
ty

)
−My

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆tx (14)

Kty,ty = −
(

My

(
εx, εy, tx, ty + ∆ty,

.
tx,

.
ty

)
−My

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆ty (15)

Dtx,tx = −
(

Mx

(
εx, εy, tx, ty,

.
tx + ∆

.
tx,

.
ty

)
−Mx

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆

.
tx (16)

Dtx,ty = −
(

Mx

(
εx, εy, tx, ty,

.
tx,

.
ty + ∆

.
ty

)
−Mx

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆

.
ty (17)

Dty,tx = −
(

My

(
εx, εy, tx, ty,

.
tx + ∆

.
tx,

.
ty

)
−My

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆

.
tx (18)

Dty,ty = −
(

My

(
εx, εy, tx, ty,

.
tx,

.
ty + ∆

.
ty

)
−My

(
εx, εy, tx, ty,

.
tx,

.
ty

))
/∆

.
ty (19)

3. Results

The airbearing moments, tilting stiffness, and damping were calculated for εx = 0.1,
0.2, 0.3 , εy = 0.0, 0.1, tx = −0.003◦, −0.00275◦, . . . , 0.003◦, and ty = 0.0◦, 0.00025◦,. . . ,
0.003◦ , respectively; with ps = 8 bar, bearing length L = 0.11 m, shaft diameter D = 0.1 m,
porous cylinder thickness b = 0.01 m, clearance c = 10 µm, rotation speed = 1000 rpm,
bearing arc α = 240◦, porosity = 0.4, and permeability = 8.33× 10−17 m2. The film variation
due to tilting in the given range does not exceed 57% for simultaneous change of tx and ty.
Together with 30% variation due to eccentricity, it gives a minimal film thickness of 13% of
clearance, or 1.3 µm. The air-bearing pressure, forces, and moments were calculated for all
combinations of parameters tx, ty, εx, and εy, and their combinations with the following

pairs of tilting velocity values:
( .

tx,
.
ty

)
∈
{
(0, 0),

(
∆

.
tx, 0

)
,
(

2∆
.
tx, 0

)
,
(

0, ∆
.
ty

)
,
(

0, 2∆
.
ty

)}
.

The total number of cases was 13000. The steps in the differences (12–19) were ∆tx =

∆ty = 0.00025◦, and ∆
.
tx = ∆

.
ty = 0.00573◦/s. The maximum and average absolute errors

of the finite differences are presented in Table 1.

Table 1. Finite difference errors.

Stiffness (kN·m/rad) Damping (kN·m·s/rad)
Ktx,tx Ktx,ty Kty,tx Kty,ty Dtx,tx Dtx,ty Dty,tx Dty,ty

max 0.124 0.066 0.089 0.120 0.011 0.008 0.003 0.003
average 0.022 0.006 0.010 0.016 0.003 0.002 0.0004 0.0003

3.1. Preliminary Analysis

As illustrated in Figure 4, the direct stiffness coefficient Ktx,tx has values in the range
of 80–140 kN·m/rad. Within the range under consideration, Ktx,tx depends linearly on
εx and nonlinearly on tx, ty,

.
tx,

.
ty. The parameters tx,

.
tx, and εx exhibit significant effects

(more than 10%). Ktx,tx is almost insensitive to tx at low negative tilting angles; however,
it decreases linearly with tx at positive and high negative tilting angles (see Figure 4a).
The effect of the x-tilting velocity

.
tx is the diminishing of Ktx,tx, which is more significant

at negative tilting angles. Ktx,tx increases with decreasing ty, increasing
.
ty and εx, and is

insensible to εy (see Figure 4b,c).
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The cross-coupled stiffness coefficient Ktx,ty is approximately 10 times smaller than
the direct stiffness coefficient Ktx,tx, and lies in the range of 6–15 kN·m/rad (see Figure 5).
It is highly sensitive to all parameters, except for

.
tx. Ktx,ty increases with decreasing tx

and
.
ty, and increasing ty (see Figure 5a,b). Eccentricity εx can increase or decrease Ktx,ty,

depending on εy (see Figure 5c).
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Kty,tx, which is another cross-coupled stiffness coefficient, is of the same order of
magnitude; however, it is negative, and falls in the range of −18–0 kN·m/rad (refer to
Figure 6). It is not sensitive to

.
tx, and the

.
ty effect on it is also negligible (see Figure 6a,b).

The magnitude of Kty,tx is higher at lower tx and εy and at higher ty and εx.
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The direct stiffness coefficient Kty,ty is higher than that of Ktx,tx. Kty,ty falls in the range
of 110–140 kN·m/rad (refer to Figure 7). This is triggered by the cut arc, which increases
force and decreases the stiffness in the x-direction [27]. The y-tilting angle ty exerts a strong
nonlinear effect on Kty,ty. The stiffness coefficient Kty,ty is almost constant for a low positive
ty, and then increases with increasing ty. In contrast to Ktx,tx, which is primarily sensitive
to “its own” parameter tx and significantly less sensitive to ty. Kty,ty is equally sensitive to
both tx and ty. In addition, it is equally sensitive to both higher εx and εy, with a negligible
.
ty effect, and no

.
tx effect. Furthermore, it is higher for lower tx and higher ty, εx, and εy.
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Because the simultaneous variation of tilting velocities was not studied, the effect of
.
tx

was solely studied for Dtx,tx and Dty,tx, while the effect of
.
ty was solely studied for Dtx,ty and

Dty,ty. Instead of the missing parameter, the coupling between tx and ty is comprehensively
presented in Figures 8–11.

The direct damping coefficient Dtx,tx is positive and falls in the range 0.2–2.2 kN·m s/rad
(refer to Figure 8). It is higher for lower tx, and higher ty and higher

.
tx (see Figure 8a,b).

The effect of eccentricity is also substantial, nonlinear, and strongly coupled between εx
and εy (see Figure 8c).
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The cross-coupled damping coefficient Dtx,ty does not exceed 1 kN m s/rad in mag-
nitude, being mostly negative (see Figure 9). Dtx,ty rapidly decreases with decreasing tx
or increasing ty in the negative tx range, while in the positive tx range, it is much less
sensible both to tx and ty (see Figure 9a). Dtx,ty decreases with increasing ty and is almost
insensible to

.
ty (see Figure 9b). The dependence of Dtx,ty on eccentricity parameters is

highly nonlinear. Dtx,ty can take relatively high positive values for zero εx. and positive εy,
but in most of the range, the sensitivity to εx and εy is low (see Figure 9c).
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The cross-coupled damping coefficient Dty,tx falls in the range −0.6–0.13 kN m s/rad
(see Figure 10). It is negative for positive ty and negative tx, otherwise it is positive. Similar
to Dtx,ty, Dty,tx rapidly decreases with decreasing tx or increasing ty in the negative tx range,
while in the positive tx range, it is much less sensible both to tx and ty. However, for
tx > 0.002 ◦, Dty,tx increases with increasing ty (see Figure 10b), while Dtx,ty decreases with
increasing ty for any tx (see Figure 9a). For zero ty, Dty,tx decreases with increasing tx and
decreasing

.
tx. Similar to all previously considered damping coefficients, the dependence of

Dty,tx on the eccentricity parameters is highly nonlinear.
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In contrast with all other damping coefficients, the direct damping coefficient Dty,ty
does not significantly depend on εx and εy (refer to Figure 11). It falls in the range
0.6–2.0 kN·m s/rad. It is higher for lower tx, and higher ty, similar to Dtx,tx. Dty,ty is
almost insensible to the y-tilt velocity

.
ty. It slightly increases with increasing εx and

increasing εy.
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In summary, the direct stiffness and damping coefficients were positive. The cross-
coupled stiffness coefficients are approximately 10 times smaller than the direct stiffness
coefficients, and the cross-coupled damping coefficients are approximately 2–3 times
smaller than the direct damping coefficients. Hence, a stable tilting motion was expected.
However, information on the rotor inertia and the bearing at the other end is required to
make precise conclusions on the dynamic behavior. Moreover, the results above exhibit
a strong coupling between the eccentricity and tilting motion, including the nonlinearity
of the moments relative to the position parameters. This can make the rotor motion
severely complicated.
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3.2. Regression

Although it is possible to obtain the direct solution of the time-dependent problem in
the model described above, the process is significantly time consuming because the air flow
problem must be solved at every step. Conversely, the air-bearing forces and moments
can be calculated using the interpolated stiffness and damping coefficients. In this study,
each dynamic coefficient for each combination of εx, εy,

.
tx, and

.
ty was first fitted with a

quadratic polynomial of tx and ty, and then each coefficient of the polynomial was fitted
with a linear function of εx, εy,

.
tx, and

.
ty. The accuracy of the fitting is expressed in the

form of determination coefficients, as presented in Table 2. The accuracy is relatively good,
although it can be improved for K̃tx,ty, D̃tx,tx, D̃tx,ty, and D̃ty,tx by providing more points
and increasing the fitting order in εx and εy degrees of freedom.

Table 2. Coefficients of determination for dimensionless dynamic coefficient fitting.

Stiffness (kN·m/rad) Damping (kN·m·s/rad)
~
Ktx,tx

~
Ktx,ty

~
Kty,tx

~
Kty,ty

~
Dtx,tx

~
Dtx,ty

~
Dty,tx

~
Dty,ty

R2 0.99 0.77 0.97 0.96 0.89 0.83 0.91 0.96

The fitting results are presented in Tables 3–10. An example of the table interpretation
is given below for Ktx,tx:

K̃tx,tx =
(

1.09533 + 1.49129εx + 0.17719εy − 0.02161
.
Tx

)
+(

−0.30745− 3.94666εx + 0.10915
.
Tx + 0.00478

.
Ty

)
Tx+(

−0.15003 + 0.09324εx − 1.16823εy + 0.01582
.
Tx + 0.0114

.
Ty

)
Ty+(

−0.3232 + 2.45267εx + 2.42515εy + 0.16265
.
Tx − 0.28434

.
Ty

)
TxTy+(

7.99445εx − 0.26854εy − 0.35236
.
Tx + 0.14364

.
Ty

)
T2

x+(
0.34256 + 0.41188εx + 1.09915εy − 0.13117

.
Tx + 0.17535

.
Ty

)
T2

y

Table 3. Fitting results for K̃tx,tx.

1 εx εy
.
Tx

.
Ty

1 1.09533 1.49129 0.17719 −0.02161 0
Tx −0.30745 −3.94666 0 0.10915 0.00478
Ty −0.15003 0.09324 −1.16823 0.01582 0.0114

TxTy −0.3232 2.45267 2.42515 0.16265 −0.28434
T2

x 0 7.99445 −0.26854 −0.35236 0.14364
T2

y 0.34256 0.41188 1.09915 −0.13117 0.17535

Table 4. Fitting results for K̃tx,ty.

1 εx εy
.
Tx

.
Ty

1 0.10973 0 0.51941 −0.00802 −0.02162
Tx −0.13722 −0.006 −0.80745 0 −0.02419
Ty 0 −1.68577 −0.42286 0.08025 0.193

TxTy 0.22904 3.62763 −2.10164 0 0.74463
T2

x −0.1213 1.02097 1.42966 0.06678 −0.15351
T2

y 0.50093 3.62374 −2.3118 0 −0.34029
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Table 5. Fitting results for K̃ty,tx.

1 εx εy
.
Tx

.
Ty

1 −0.07381 −0.09673 0.78029 −0.00428 −0.00686
Tx 0.11042 0.41995 −1.26002 0.01449 0.00965
Ty −0.24779 −1.11043 0.33455 0.02062 0.02685

TxTy 1.06605 2.90228 0 −0.20887 0.24493
T2

x −0.72174 −0.86434 1.50162 0.07247 −0.11828
T2

y −0.6127 0.69547 0.93397 0.10771 −0.20109

Table 6. Fitting results for K̃ty,ty.

1 εx εy
.
Tx

.
Ty

1 1.42569 0.47905 0.29851 0 0.0155
Tx −0.30423 −1.10565 0 0.0651 0.12299
Ty −0.64244 0.25697 −3.21467 0 −0.10432

TxTy −1.01131 0 5.08434 0.17214 −0.52047
T2

x 0.43263 1.33588 0 −0.03328 0.27025
T2

y 3.53634 1.57983 2.17612 −0.13259 0.69417

Table 7. Fitting results for D̃tx,tx.

1 εx εy
.
Tx

.
Ty

1 0.0097 0.00358 0 0.00156 0
Tx −0.02028 −0.05093 0 −0.00117 0
Ty −0.00168 −0.00288 −0.01683 0.00023 0

TxTy −0.01595 −0.04394 0.09286 0.00158 0
T2

x 0.03404 0.19438 0 −0.00225 0
t2
y 0.01708 0.04876 −0.01605 −0.0015 0

Table 8. Fitting results for D̃tx,ty.

1 εx εy
.
Tx

.
Ty

1 0.0024 −0.00962 0.01265 0 −0.00171
Tx −0.00299 0.01579 −0.02654 0 0.00227
Ty −0.00896 −0.01581 0 0 0.00029

TxTy 0.03654 0.10701 −0.05103 0 0.00167
T2

x −0.00931 −0.05237 0.05414 0 −0.00165
T2

y −0.01297 −0.03191 0.06242 0 −0.0018

Table 9. Fitting results for D̃ty,tx.

1 εx εy
.
Tx

.
Ty

1 0.00072 0.00114 0.00674 0 0
Tx −0.00151 −0.00441 −0.01802 0 0
Ty −0.00833 0 −0.01345 −0.00208 0

TxTy 0.03325 0.08433 −0.02828 0 0
T2

x −0.00695 −0.01593 0.04641 0 0
T2

y −0.00795 −0.01552 0.0475 0.00093 0
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Table 10. Fitting results for D̃ty,ty.

1 εx εy
.
Tx

.
Ty

1 0.00987 0.00426 0.00289 0 −0.00014
Tx −0.00619 −0.01127 −0.0017 0 0.00026
Ty −0.00943 0.01182 −0.04927 0 0.00208

TxTy −0.01952 −0.05093 0.10336 0 −0.00248
T2

x 0.01514 0.04059 −0.01941 0 0.0007
T2

y 0.06967 0.05133 −0.07676 0 0.00259

Here, the dimensionless variables are adopted:

Ki,j

K̃i,j
=

p0DL3

16 c
= 83, 187

N m
rad

(20)

Di,j

D̃i,j
=

p0DL2

2
(

0.0001 rad
s

) = 1.51× 105 N m s
rad

(21)

tx

Tx
=

ty

Ty
=

c
L
= 0.000182 rad = 0.0104◦ (22)

.
tx
.
Tx

=

.
ty
.
Ty

= 0.0001
rad

s
= 0.00573◦

1
s

(23)

4. Discussion

The tilting stiffness and damping analyzed in this study could be significant for the
spindle shaft tilting motion, provided the shaft length is not significantly longer than the
bearing length. Otherwise, the shaft tilting will be controlled by the air-bearing force
applied at a long distance from the shaft center, while the tilting stiffness and damping
will influence the shaft bending. In addition, bending can also significantly influence
the air-bearing forces, moments, and dynamic coefficients, because of the convexity and
concavity of the bearing surface [14,23]. Based on the obtained results, the tilting motion
is independently stable because the direct stiffness and damping coefficients are positive
and significantly higher in amplitude than the cross-coupled coefficients. However, the
tilting dynamic coefficients were substantially influenced by shaft eccentricity. Hence, the
stability of the shaft parallel and tilting motions must be analyzed together. The increased
rotor speed would result in a more pronounced hydrodynamic component in the bearing
forces, moments, stiffness, and damping components, as well as in more significant x-y
coupling, that is typical for the journal bearings.

5. Conclusions

The problem of tilting stiffness and damping analysis is hardly ever addressed in the
literature since the fundamental books on rotodynamic and tribology where the theoretical
analysis was presented for idealized types of bearings. This ignorance can be explained by
the minor role of individual bearing moments, compared to the total shaft-bearing systems
moments in most applications. However, the tilting moments exist, and they become more
and more important in high-precision machinery. Besides the bearing moments, the tilting
motion greatly affects the bearing forces, as well as other types of air film distortions, which
are widely considered in recent publications.

The purpose of this study was to predict the behavioral characteristics according to
the design and operating parameters of porous aerostatic bearings that can be utilized in
applications requiring high-precision positioning, such as semiconductor manufacturing
equipment. Most importantly, the highly efficient and reliable numerical analysis approach
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proposed in this study can contribute to increasing system stability and reducing costs and
risks at the product level prior to the actual manufacturing process.
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