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Abstract: This study presents a hybrid approach for simulating flow and advective transport dynam-
ics in fractured rocks. The developed hybrid domain (HD) model uses the two-dimensional (2D)
triangular mesh for fractures and tetrahedral mesh for the three-dimensional (3D) rock matrix in a
simulation domain and allows the system of equations to be solved simultaneously. This study also
illustrates the HD model with two numerical cases that focus on the flow and advective transport
between the fractures and rock matrix. The quantitative assessments are conducted by comparing the
HD results with those obtained from the discrete fracture network (DFN) and equivalent continuum
porous medium (ECPM) models. Results show that the HD model reproduces the head solutions
obtained from the ECPM model in the simulation domain and heads from the DFN model in the
fractures in the first case. The particle tracking results show that the mean particle velocity in the HD
model can be 7.62 times higher than that obtained from the ECPM mode. In addition, the developed
HD model enables detailed calculations of the fluxes at intersections between fractures and cylinder
objects in the case and obtains relatively accurate flux along the intersections. The solutions are the
key factors to evaluate the sources of contaminant released from the disposal facility.

Keywords: fractured rock; hybrid domain; advective transport; particle tracking

1. Introduction

Modeling groundwater flow and solute transport in fractured rocks is essential in
engineering, geology, and hydrogeology studies. Many applications, including gas/oil
transport within the fractured system in the shale formation, artificial fractures by hydraulic
fracturing methods for increasing the connectivity of a fracture system, and enhanced
geothermal system (EGS) in hot and dry formations, have been widely investigated based
on the knowledge of flow and transport in the fractured rocks [1–4]. In the procedures
of site characterization investigation for the spent nuclear fuel final disposal, the solute
transport in the fractured systems plays an essential role because the critical issue has been
focused on the release of radionuclides from the deposition holes (DHs) in the disposal
facility to the human environment, i.e., the biosphere [5,6]. The concept of spent nuclear
fuel final disposal is mainly for radioactive wastes. The radioactive wastes are encapsulated
in tight, corrosion-resistant, and load-bearing copper canisters deposited in the DHs. In
the DHs, the canisters are protected by buffers to prevent canister corrosion. The high
flow velocity in fractures could erode the buffers, and the flow might contact the canister
at relatively high flux. Such high-velocity water carries corrosive materials and could
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cause the copper canister to corrode. Once the canisters are destroyed by corrosion, the
radionuclides will release from the deposition holes through the fractures and migrate to
the human environment. Therefore, the flow and transport dynamics near the disposal
facility might considerably influence the evaluations of long-term transport behavior.

Continuous and discrete are two common approaches to simulate the flow and advec-
tive transport in fractured rocks. The models of the approaches are either the discrete frac-
ture network (DFN) [7–11] or the equivalent continuum porous medium (ECPM) [12–14],
depending on the site-specific conditions and the interesting issues. The DFN model
generates a series of individual fractures based on the statistical distribution of geometrical
properties (i.e., the fracture orientation, size, and center position) and hydraulic parameters
(i.e., transmissivity and hydraulic aperture) to represent the complex fracture system in
fractured rock. The DFN model enables the simulations of detailed flow and transport
dynamics within fractures and neglects the contribution of flow and transport controlled by
the rock matrix [15]. The DFN model is useful for addressing the problems with small-scale
domain, low fracture number or fracture intensity, and high discrepancy of hydraulic
conductivity between fractures and the rock matrix. However, the interactions between the
fractures and rock matrix might be important for contaminant transport. The sorption and
diffusive process in the rock matrix could lead to plume migrations with long-tail behavior
in fractured rocks. Many previous studies have investigated the inconsistency between the
DFN model results and the site-specific observations [7–11].

The key advantage of the ECPM model is the efficiency in obtaining solutions for
the equivalent flow and transport processes in large-scale fractured rock systems. The
numerical cells in the ECPM model are considered the representative elementary volume
(REV), where the lumped flow and transport properties are treated as equivalent values in
the numerical cells. In the ECPM models, the hydraulic and transport properties in a REV
cell are typically preprocessed or up-scaled to be a tensor that represents the anisotropic
characteristic. Thus, the ECPM models have the same features as those available in
most classical porous media models. Many ECPM models have been developed in the
past few decades based on the coupled thermal, hydrologic, mechanical, and chemical
(THMC) processes. With the preprocessed properties for each cell in the ECPM models,
the ECPM models could be used for various site-specific conditions and used to quantify
the large-scale flow and transport mechanisms in fractured rocks. However, detailed
interactions such as the flux, sorption, and desorption between fractures and rock matrix
and the characteristic of high-velocity pathways for fractures are not available in the
models [7,8,12–14].

The large discrepancy of hydraulic properties between fractures and rock matrix has
made the simulations challenging. For a complex three-dimensional (3D) problem, quanti-
fying the fractures and rock matrix interactions is critical to understand the detailed flow
and transport in fractured rocks [7,8]. In many previous investigations, the computational
costs had made most studies focus on small-scale or simplified problems if detailed flow
dynamics need to be explored [7–11,16–20]. The hybrid domain (HD) approaches that
simultaneously consider fractures and rock matrix in a simulation domain have become
feasible because of recent developments of computational technologies [21,22]. The models
require complex numerical meshes to discretize the key geometries of fractures and rock
matrix in the HD approaches. Recent studies have focused on developing complex numeri-
cal models, which enable the separation of the computational domains into fracture and
rock matrix domains [23,24]. However, the local refinement of numerical meshes might
be required to maintain the numerical stability and flow continuity near the interfaces of
fractures and rock matrices. Such mesh refinement could also limit the efficiency of the
hybrid approach for problems with practical scales and complexities.

This study employed the hybrid domain concept but used virtual fractures to account
for the interactions between fractures and rock matrices. This study also conducted bench-
mark tests to assess the developed HD model for simulating flow and advective transport
in fractured rock systems. The commercial software FracMan and DarcyTools were used to
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obtain the solutions of DFN and ECPM models for comparison purposes [25–29]. Based on
the same flow conditions, two synthetic cases were designed to evaluate the developed
HD model. The first simple case (Case I) was composed of three intersected fractures in
a simulation domain. In the second case (Case II), a cylinder object was embedded in
the fractured rock to assess the flow and advective transport in the complex flow system.
In this study, the generated computation meshes for different cases needed to meet the
stability requirement for flow simulation. A systematic comparison was conducted to
quantify the differences in heads and particle paths obtained from three different modeling
concepts.

2. Materials and Methods

This study develops the HD model for modeling flow and advective transport in
fractured rocks. Many previous studies employed the FracMan and DarcyTools for different
applications. FracMan is a commercial software developed by Golder Associates and
widely used software for fracture generation, flow and advective transport simulation
based on the DFN concept. However, DarcyTools is a non-commercial software developed
by Svensk Kärnbränslehantering AB and an integrated software package used for the same
purposes based on the ECPM concept. The detailed theoretical concept and the numerical
algorithms can be obtained in the user’s guide or programming guideline [25–29]. Here,
we focus on presenting the governing equations and the associated numerical algorithm
for the HD model.

2.1. Flow Equation

This study assumes that the virtual fracture includes two parallel plates that enable the
fluid to pass through the aperture of the plates at relatively high velocity. The virtual space
between the two parallel plates consists of the void space. Therefore, the virtual fracture
can be treated as a two-dimensional (2D) porous medium [21,22,30–34]. If the groundwater
is assumed as an incompressible fluid, Darcy’s law can be applied to formulate the steady-
state flow equation:

u + K∇h = 0, in Λ (1)

∇·u = q, in Λ (2)

where u is the Darcy velocity (m/s), K is the hydraulic conductivity (m/s), h is the hydraulic
head (m), q is the source/sink term (1/s), and notation Λ is the equidimensional model
domain (m3). The boundary conditions on the boundaries ∂Λ have the following types:

h| ∂Λh
= h, on ∂Λh (3)

u·n| ∂Λu
= u, on ∂Λu (4)

where h is the hydraulic head on the boundary ∂Λh (m) and u is the Darcy velocity perpen-
dicular to the boundary surface ∂Λu (m/s) concerning the outer unit normal vector n (-).

This study assumes that a virtual fracture has two main characteristics, including
(1) The width of the fracture is uniform in an element and can be represented as fracture
aperture, which is extremely smaller than the fracture size, and (2) The hydraulic conduc-
tivity of a virtual fracture is relatively higher than that of the rock matrices. Therefore, the
fracture can be composed of 2D triangular meshes, whereas the host rock is composed of
3D tetrahedron meshes. The 2D triangular meshes share the nodes and faces of 3D tetra-
hedron meshes. Such approximation can significantly reduce the required small meshes
near the interfaces between fractures and the rock matrix. A mass balance equation based
on Darcy’s law for calculating the flow parallel to the fracture plate could be written as
follows [21,22]:

1
ε2

u2+Keq
2 ∇2h2= 0, in Ω2 (5)
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∇2·u2 −∑
(

u3·n| Γ2

)
= q2, in Ω2 (6)

where u2 is the Darcy velocity (m/s), Keq
2 is the effective hydraulic conductivity perpen-

dicular to the fracture plate (m/s), h2 is the pressure head (m), ∇2 is the gradient in the
tangent direction (-), and notation q2 is the source/sink term (1/s).

2.2. The Mesh Generations for the HD Model

Characterizing the interaction between fractures and rock matrix employs the tetrahe-
dral mesh in the model to represent the rock matrix. The fractures are constructed by using
triangle meshes in the simulation domain [16–19]. In the mesh generation process, the
fracture geometries must be identified first to define the inner boundaries. The fractures
are groups of connected 2D plates in a 3D domain. Note that the identified fractures
have excluded the isolated fractures for computational efficiency. Based on the identified
fractures in the simulation domain, the triangle meshes for the fractures are generated, and
the element sizes can vary with the complexity of the fracture connections. The 2D fracture
meshes are the basis for generating the tetrahedral mesh for the 3D rock matrices.

The challenge of the mesh generation process is to construct the 3D tetrahedral meshes,
which share the existing triangular elements of the identified fractures (see Figure 1). The
generated meshes are crucial to computational convergence and efficiency. This study
proposes the following criteria to meet the requirements: (1) The integrity of the triangle
meshes for fractures needs to be maintained, (2) The boundary recovery algorithm must
be considered to account for the collinear or co-points in the processes of generating
tetrahedral meshes [35], (3) The obtuse angles need to be avoided when generating triangles
and tetrahedrons, and (4) The refinement of the meshes near interfaces between fractures
and matrices is preferred to characterize the large discrepancy in hydraulic conductivity
between fractures and rock matrices. These requirements have been issues in modeling
flow and transport in fractured rocks [35–39].

In this study, the generation of tetrahedral and triangular meshes is based on the
concept of the Delaunay triangulation algorithm. The algorithm enables the generation
of tetrahedral and triangular meshes by adding additional variables in three different
directions. However, the tetrahedron might involve a four-point coplanar, a high acute
angle, or a line with four points. In this study, the developed mesh generation program
has a completed feature to loop over the bad connections of the elements and nodes. In
general, procedures in the loops are to search fracture intersections, sequentially add nodes
inside triangles to refine the mesh until the node distances reach the specified criteria, and
smooth and adjust the triangles to close to acute triangles. Once an obtuse angle appears,
the mesh generation model destroys the obtuse-angled triangular mesh with the adjacent
triangles and regenerates the local meshes until all of the meshes are close to the acute
triangles. The completed fracture meshes are the basis for generating 3D tetrahedral mesh
in fractured rocks.

Figure 1 is an example generated by the developed mesh generation model. In the
example, there are two fractures with one collinear line in the center of the model domain
(see Figure 1a). The fractures are composed of triangular meshes. Figure 1b shows the
two fractures comprised of triangular meshes. In this case, the length of the triangular
mesh is constant so that the sizes and areas of triangular elements are similar. With the
available fracture meshes, the rest portions of the domain are filled with tetrahedral meshes.
Figure 1c is the exterior view of the domain composed of fracture and rock matrix elements.
Inside the simulation domain, the generated meshes consist of triangular and tetrahedral
meshes (see Figure 1d). Note that the mesh generation concept is suitable to embed
irregular objects inside the simulation domain when the volume surfaces of the objects are
available. The surfaces of the objects could be treated as the inner boundaries, i.e., similar
to the fractures. The generated meshes are then used in our HD model for simulating flow
and particle tracking.
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Figure 1. An example that shows two fractures and the corresponding 2D and 3D meshes for the proposed HD model.
(a) The geometry of the fractures inside the modeling domain; (b) The generated triangular meshes for the fractures near
the intersection; (c) The exterior view of the generated meshes for the simulation domain; (d) A profile view shows the
interior of the generated meshes for the simulation domain.

2.3. Particle Tracking Algorithm for Advective Transport

The particle tracking algorithm is a typical approach to simulate the advective trans-
port in complex fractured rocks [40,41]. This study assumes that the particles move with
the flow of fractured rocks and have no chemical reactions and diffusion and dispersion.
Therefore, the approach ignores the influences of sorption, degradation, and decay on
transport. The movements of a particle are determined by the seepage velocity at a specific
released location. With the predefined moving time steps, the particle locations at different
time steps are calculated based on solving the following advection equation:

dx
dt

= U(x, t) (7)

where x is the particle location in space (m), t is the time (s), and U is the seepage velocity
in a certain location (m/s). When the flow fields are available, the solution to the first-order
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differential equation can employ classical numerical solvers such as Euler and Runge-Kutta
methods. In this study, the Euler method yields the following formula:

X(t + ∆t)= X(t)+U(x, t)∆t (8)

where ∆t is the specified time step (s) for the particle tracking. The calculations of the
particle traces and the traveling times rely on accumulating the recorded particle locations
at different time steps.

Figure 2 shows an example of the developed particle tracking algorithm. In this
study, the basic computational meshes are triangle and tetrahedron. The calculation
of particle movement follows the seepage velocities through triangular faces on each
tetrahedral element. The intersection points between the trajectory line and element faces
are calculated based on the Ray-Plane intersection test [42–44]. Figure 2a also shows a
particle trace passing through several tetrahedral elements. Note that the velocities are
available at the nodes of each element. This study uses the linear interpolation algorithm
to obtain the velocities at the particle locations. This developed module can record the
locations on element faces, the distances in elements, and the traveling time inside elements.
The total travel length and time accumulate the step-by-step distances and times in different
elements along the particle trace for each released particle.

Figure 2. The demonstration of the particle tracking algorithm for a particle trace and the associated
element along the trace line: (a) The overall particle moving paths starting from the point “Start” and
end with the point “End”; (b) The local enlargement for the selected elements (marked with grey
color in (a) and the particle trace outside the selected elements; (c) The drawing of local enlargement
that shows the particle trace and the associated intersection point on the element face.

Figure 2b,c are the local enlargements that zoom into two adjacent elements (marked
with grey color) shown in Figure 2a. Figure 2b shows the particle trace outside the two
selected elements, and the entrance point is marked on one face of the right element. Again,
the point can be obtained based on the Ray-Plane intersection test. The 3D velocities at the
marked location are then calculated based on the velocities at nodes of the element face.
The traveling path inside the right element follows the trajectory of the velocity vectors
determined at the point on the element face (see Figure 2c). This trajectory can reach
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another face of the right element, and the intersection point on the face can be determined
(marked in Figure 2c). This face is shared with the left and right elements. Based on the
velocities at the intersection point, the traveling distance and time are then determined for
the right element. This study has implemented a process for the particle tracking algorithm.

3. Numerical Examples
3.1. Workflow for the Test Cases

There are a series of steps included in the workflow of this study (see Figure 3). These
main tasks are developing conceptual models, generating grids or meshes for different
model concepts, simulating steady-state flow, and conducting particle tracking for the
advective transport. The quantitative comparisons of head distribution and particle traces
are then based on the results obtained from the DFN, ECPM, and the developed HD
models. In this study, the flow and advective transport solutions of the DFN and ECPM
model were obtained based on the FracMan and DarcyTools software. Notice that the
DFN model (i.e., FracMan) only focuses on the fractures [25,26], while the ECPM model
(i.e., DarcyTools) considers the lumped behavior of the fractures and rock matrix [27–29].
In test Case I, the designed fractured rock is relatively simple. However, with the more
complex feature of test Case II, the FracMan model (i.e., DFN) was excluded in this case
because the feature to set fracture geometries and boundary conditions is not available in
the DFN model.

Figure 3. The main steps involved in the workflow to model flow and advective transport in
fractured rocks.

This study aims to assess the flow and advective transport based on the developed
HD model. We used the solution from FracMan to obtain the DFN results and the solution
from DarcyTools to obtain the ECPM results. The conceptual models for the test cases are
similar to the used DFN and ECPM models. However, the boundary conditions and release
of particles might be modified to fit the fractures in the DFN model and specify the cells in
the ECPM model.

3.2. The Conceptual Models of the Test Cases

Figure 4 shows the conceptual models for the test cases. In test Case I, the simple
benchmark case includes three orthogonal fractures in the fractured rock (see Figure 4a).
The domain size is a cuboid with 3 m × 4 m × 5 m in x-, y- and z-directions. There are
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three fracture plates in the simulation domain, i.e., F1 to F3 (F1: x = 1.5 m; F2: y = 2 m; F3:
z = 2.5 m). All remaining zones of the domain represent the rock matrix, and the hydraulic
properties are assumed to be homogenous and isotropic. A constant head condition was
assigned to a rectangular area on the top plane, and a similar constant head boundary
condition was specified on a rectangular area on the bottom of the simulation domain. The
specified hydraulic heads of Hin = 4 m and Hout = 1 m are on the inlet and outlet areas,
respectively (see Figure 4a). All remaining areas on the boundaries were assigned no-flow
boundary conditions. In this study, assigning the in- and out-stresses on the matrix zones
aims to evaluate the behavior of the flow that moves in and out of the interfaces between
the fractures and matrix. Note that the DFN model focuses on the fractures only. However,
the ECPM model considers the lumped behavior of the fractures and rock matrix. The
assigned boundary conditions are either the fracture edges (i.e., DFN) or the cell faces
(i.e., ECPM). Table 1 lists the hydraulic properties for the fractures and the rock matrix.
Note that the apertures of the fractures were assumed to be constant for two test cases.

Figure 4. The conceptual model of the benchmark cases in this study: (a) Case I includes three orthogonal fractures (F1 to
F3) in the simulation domain; (b) Case II includes three fractures (F4 to F6) and a deposition hole (DH) in the fractured rock.
Note that the contours show the elevation of the fractures.

Table 1. The physical and simulation parameters for the test cases in this study.

Parameters Case I Case II

Fracture transmissivity (m2/s) 5.0 × 10−10 5.0 × 10−7

Matrix hydraulic conductivity (m/s) 1.0 × 10−10 1.0 × 10−10

Deposition hole hydraulic conductivity (m/s) - 1.0 × 10−10

Fracture aperture (m) 1.0 × 10−4 1.0 × 10−1

Fracture porosity (-) 4.0 × 10−1 4.0 × 10−1

Rock matrix porosity (-) 5.4 × 10−3 5.4 × 10−3

Convergence criteria (m) 1.0 × 10−8 1.0 × 10−8

Particle numbers (-) 1000 1; 48 **

** There is a subcase with 48 particles for Case II.
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With the available flow field in Case I, there are 1000 particles randomly released in
the inlet area. Note that the starting locations of particles and the particle movements are
different in different models. In the DFN model, which only simulates the fractures, the
particles are released on the fracture edges connecting to the inlet boundary area (see the
marked solid pink lines on the top plane in Figure 4a). For the ECPM model, the particles
are randomly released on the cell faces on the inlet boundary area (see Figure 4a). These
two types of particle release scenarios are conducted in the HD model for comparison
purposes.

Figure 4b shows the conceptual model of the second benchmark case. In Case II, the
domain size is relatively larger than that in Case I. A cylinder object represents a deposition
hole (DH) of a disposal facility in the simulation domain, and two intersected fractures
cut the DH. The domain size is 8 m × 8 m × 16 m in x-, y- and z-directions, and the
cylinder DH has 8 m in height and 1.75 m in diameter. There are three fracture plates in the
simulation domain, i.e., F4 to F6. The sizes for F4 and F5 are 6 m × 6 m and the area for
the F6 is 5 m × 14 m. The apertures for the fractures are 0.1 m. Two intersected fractures
cut the DH, i.e., F4 and F5 (see Figure 4b). In this case, the specified hydraulic stress is the
same as that in Case I (i.e., the hydraulic head of Hin = 4 m and Hout = 1 m are assigned
on the inlet and outlet areas, respectively). Note that three fractures have no contact with
any domain boundaries, which means that the specified boundary conditions on the inlet
and outlet areas need to be on the cell faces. Therefore, the DFN model was excluded in
Case II because of the special setting of the conceptual model. The condition has shown
the limited features of the DFN models that focus on the fractures only.

Table 1 also lists the hydraulic properties and the convergence criteria for the sim-
ulation cases. In Case II, the DH hydraulic conductivity is the same as that in the rock
matrix. For most practical problems, the hydraulic conductivity of DH should be lower
than 1.0 × 10−12 m/s to avoid a high corrosion rate and a possible release of radionuclides.
The DH hydraulic conductivity value of 1.0 × 10−10 m/s in this study could be a worse
scenario for the DH design. The concept was proposed by studies of the case in Sweden [45].
In this case, we had made the ECPM model capture the flow and transport influenced by
the fracture geometries. Therefore, the fracture aperture was assumed as 0.1 m to reduce
the total computational grid in the ECPM model.

Based on the safety assessment report proposed by Sweden and Finland, i.e., the
well-experienced countries that provide the general disposal concept for spent nuclear
fuel, there are three potential pathways for releasing radionuclides if the canister in the
DH is destroyed by corrosion or shear movement [6,46]. One of the potential and high
probability pathways is the Q1 path, which is a concept for radionuclides released through
the intersection point between a fracture and a DH. The intersection point usually has the
highest velocity, one of the key input parameters for the corrosion calculation. Typical
approaches consider the intersection points to release particles for evaluating the Q1
pathways. These released particles are in the highest velocity grid centers or nodes at the
intersections to assess the possible pathways. In Case II, the particle release followed the
concept of the Q1 path. In this study, the HD model could search for the highest velocity
near the intersections between DH and fractures and release a particle to track the particle
movement. It is interesting to obtain the intersection position, the highest velocity, and the
overall transport behavior in different models. In addition, there were 48 particles released
along the intersections between fractures and the DH to assess the variations of the particle
movements in the case.

3.3. The Software and Computational Meshes and Grids for the Test Cases

In Case I, three fractures were connected to the domain top and bottom surfaces so
that the DFN model could generate the mesh and directly assign the boundary conditions
on the edge of the fractures. Thus, the 2D triangular meshes were created for fractures in
the DFN model and no other mesh or gird for the remaining parts, i.e., the rock matrix.
This study used the commercial software, FracMan, to simulate the groundwater flow in
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the DFN model. FracMan is the commercial software developed by Golder Associates
for fracture generation and flow and transport simulations. The flow simulation package
in the software is based on the finite element numerical scheme. Many previous investi-
gations employed the software to simulate flow and transport in fractured rock systems
(e.g., [25,26]).

The ECPM model uses the hexahedron as the computational grid. This study used
DarcyTools to simulate the groundwater flow for the ECPM model. The DarcyTools is
an integrated computational package that links several computational modules for the
hydrogeological analysis of nuclear waste repository in fractured rocks. The integrated
package is based on a workflow that allows combining the DFN and CPM models. The
workflow first generates a fracture network or reads from a FAB file, a text file for recording
the fracture positions and geometry in space. One of the modules then up-scales the
fracture network to become the effective hydraulic properties of grid cells. The effective
hydraulic properties, including the hydraulic conductivity and diffusivity, can represent
the complex features of the fractured rocks. The detailed information for the computational
package can be obtained in many previous investigations (e.g., [27–29]).

In this study, the proposed HD model uses the 2D triangular mesh for fractures and
tetrahedron mesh for the 3D rock matrix. We developed a program to read the fractured file
(the FAB file) from FracMan software and the DarcyTools computational package to ensure
the compatibility of generated mesh for the fractures in the test cases. For the rock matrix
in the test cases, the hydraulic properties were considered homogeneous and isotropic
in the entire simulation domain. In the developed HD model, the 3D tetrahedron mesh
was generated associated with the 2D fracture meshes. Therefore, the fractures and rock
matrix could share the same nodes on the fractures and the matrix interfaces. The coupled
solutions then rely on solving the system of equations developed based on all the nodes
and elements in the fractures and matrix.

In this study, Case I is relatively simple as compared to Case II. We used the DFN
model (i.e., FracMan) to generate the fracture geometry and the hydraulic parameters in
Case I. In the DFN model, there was no mesh generated for the matrix. The generated
nodes and elements for the DFN model are 6433 and 12,624, respectively. The averaged
node distance for the fractures is 0.1 m. In the HD model, we had used the averaged node
distance of 0.1 m in the matrix to connect triangular fracture mesh. Figure 5 shows the
generated mesh for the HD model. Figure 5a is the exterior view of the domain composed
of generated fracture and rock matrix elements. Figure 5b,d present the inner views of the
generated mesh for Case I. The mesh for three intersected fractures is shown in Figure 5c.
Based on the average node distance for 2D triangular mesh and 3D tetrahedron mesh,
the number of nodes is 49,747, while the numbers of 2D triangular and 3D tetrahedron
elements are 9147 and 290,324, respectively. In Case I, a similar cell size of 0.1 m was
used in the ECPM model for the up-scaled hydraulic properties and flow and transport
simulations. The total cell number of the ECPM model is 131,072, based on the cell numbers
of 32, 64, and 64 in x-, y-, and z-directions.

Figure 6 shows the generated mesh for Case II. Figure 6a shows the inner view of
the test Case II. The DH object embedded in the simulation domain needs to be specified
before the mesh generation. The surface of the DH object is the inner boundary for our
mesh generation. Note that the fractures and the associated 2D fracture meshes are also
the internal boundaries used to constrain the 3D mesh generation. In this study, the 2D
fracture geometry is obtained based on the FAB file generated from the FracMan software.
Figure 6b,c further zoom in the local region in the simulation domain and present the
generated meshes for the 2D fractures and 3D matrix. In this case, the average node distance
for 2D triangular mesh and 3D tetrahedron mesh in the HD model is approximately 0.125 m,
and the number of nodes for the fractures and matrix is 412,174. Therefore, the numbers
of 2D triangular and 3D tetrahedron elements are 16,734 and 2,511,187, respectively. This
study used the same node distance of 0.125 m for the cell size specified in the ECPM model
(i.e., DarcyTools). The number of total cells in the ECPM model was 524,288 based on
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64 × 64 × 128 in x-, y-, and z-directions. Note that the mechanism for grid generation in
DarcyTools follows a 221 rule that two adjacent cells always have a cross and longitudinal
size ratio of 2:1 at most [27–29].

Figure 5. The computational mesh of the test Case I for the HD model: (a) The generated mesh for the fractures (in blue
color) and the associated matrix (in black color); (b) The inner view of the mesh for the fractures (in blue color) and matrix
(in black color); (c) The mesh for fractures; (d) The close view of the generated nodes and elements for the connections of
fractures (in blue color) and matrix (in black color) in the HD model.



Appl. Sci. 2021, 11, 10792 12 of 22

Figure 6. The computational mesh of the test Case II for the HD model: (a) The geometry of fractures (in blue color) and
DH object (in black color); (b) The zoom-in view of the mesh generated for connecting the matrix and the DH object; (c) The
close view of the generated nodes and elements for the connections of fractures, matrix, and DH object. Note that parts of
the meshes in the figures are blanked for presentation purposes.

4. Results and Discussion

This section focuses on presenting the results based on the specified conditions defined
in the benchmark cases. Case I used the steady-state flow fields from DFN, ECPM, and
HD models, while Case II focused on comparing flow and advective transport obtained
from the ECPM and HD models. Note that a DH was assigned in Case II to evaluate the
dynamics of the particles induced by the fractures.

4.1. Flow Simulations Based on Different Models

Figure 7 shows the steady-state groundwater flow fields for Case I. Figure 7a,b com-
pare results obtained from the HD and ECPM models, while Figure 7c,d present the head
distributions only on the fractures. The results have shown the consistent solutions ob-
tained from three different models. Specifically, the developed HD model enables the
simulations of flow in fractures and rock matrix, which shows the advantage of the system
of equations to be solved simultaneously. The concept proposed in the HD model can accu-
rately capture the behavior of flow interactions between fractures and matrix (Figure 7a,b)
and in the fractures network (Figure 7c,d). There is a difference of four orders of magnitude
in hydraulic conductivity between the fractures and rock matrix in this case. The results of
the HD model agree well with those obtained from the ECPM model in the entire domain
region and the DFN model in the fracture network.

Figure 8 presents the flow results based on the conditions specified in Case II. This
study excluded the DFN model because the three fractures have no contact with the
domain surfaces. The results in Figure 8 indicate that the solutions obtained from the
HD model show slightly deviated from the ECPM model, especially near the corners
away from the specified head boundary conditions. In general, the overall pattern of the
flow was captured by the developed HD model (Figure 8a,b). The results in Figure 8c,d
show different views of the head distribution profile in the simulation domain. The head
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along the profile has demonstrated the considerable influence of the fractures on the head
variation. The fractures provide fast pathways and control the local flow patterns to change
with the fracture locations. Such behavior is significantly influenced by the vertical fracture
near the top and bottom boundaries (see Figure 8c,d).

Figure 7. The steady-state head distributions obtained from the HD, DFN, and ECPM models for
Case I: (a,b) The solutions for the HD and ECPM models; (c,d) The heads obtained from the HD and
DFN models for the fractures.

4.2. Simulations of Advective Transport

Figure 9 shows the particle traces and the associated trace lengths in Case I for three
different models. Figure 9a,b show the release locations and the particle traces for the ECPM
model. The results for the DFN model are shown in Figure 9e,f, while Figure 9c,d,g,h show
the release location and the particle traces for the developed HD model. For comparison
purposes, the HD results in Figure 9g,h only show the particles released along the edges of
the fractures. In Case I, particles were randomly released on the inlet area, i.e., the specified
head on the top boundary. The fracture hydraulic conductivity is four orders of magnitudes
higher than the rock matrix. Figure 9a,b show that most particles directly penetrate the
F3 and move to the outlet area with relatively small trace lengths in the ECPM model.
However, the developed HD model shows that the fast pathway in F3 has significantly
controlled the local flow and forced the particles to move along the fracture. No particle
trace is shown in the block below the F3 fracture (see Figure 9c,d). All the particles move
along the F3 and then follow the flow of the F1 and F2. In the ECPM model, the behavior of
particle movement shows that the characteristic of high velocity in F3 is weak because the
conductivity values of the F3 are lumped with the rock matrix conductivity in the upscaled
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cells in the ECPM model. Therefore, the hydraulic conductivity of the cells intersected by
F3 might be slightly higher than the rock matrix after the upscaling process. In the ECPM
model, the cell sizes intersected by fractures should be smaller than the fracture aperture to
resolve the detailed flow behavior. However, it is impractical to consider small cell sizes
for large-scale and complex fractured rock systems.

Figure 8. The head distributions obtained from the HD and ECPM models for Case II: (a,b) The head
solutions on the surfaces of the simulation domain; (c,d) The different angle views of heads for the
specified profile.

Figure 9e,f show the release locations and traces of particles for the DFN model. The
boundary condition in the DFN model limited the particles to release on the edges of
the intersections between fractures and the domain surface. Note that the particles are
restricted to moving in the fractures plates. In Figure 9g,h, the particle traces on the virtual
fractures were extracted from the HD model for comparison purposes. There are special
trace circulations obtained on the F3, which was recognized as the local flow effect. The
local flow effect is a unique feature in the 3D DFN model because of the interplay between
fracture geometry and boundary conditions for flow in the fracture plates [47]. The local
flow effect has little influence on flow in a 3D DFN but may constitute a mechanism that
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contributions to the long breakthrough tails and retardation observed in transport. The
results obtained from the developed HD model captured the behavior of the local flow
effect. However, the local flow behavior is relatively small as compared with those obtained
from the DFN model.

Figure 9. The particle traces and lengths obtained from the ECPM, DFN, and HD models for Case I: (a,b) The particle traces
for the ECPM model; (c,d) The particle traces for the HD model; (e,f) The particle traces for the DFN model; and (g,h) The
particle trace along the fractures for the HD model.

Table 2 summarizes the advective transport based on particle tracking applied to
different models for Case I. Note that the velocity of each particle could be calculated by
the observed trace length and the travel time. In Table 2, the results show that the mean
trace length and the standard deviation (STD) and the coefficient of variation (CV) of the
HD model are 1.14 times and 2.91 times higher than that of the ECPM model. There is no
considerable deviation on the minimum trace length, but the maximum trace length of
the HD model is 1.64 times higher than that of the ECPM model. The result indicates that
most particles travel longer distances in the HD model because the fractures dominate the
transport when the particles reach the fractures in the simulation domain. In this study,
the STD of the trace length for the HD model is higher than that of the ECPM model. In
general, the results show that the ECPM model underestimates the particle trace lengths
and travel times in the case.

The particle movement statistics in Table 2 also show that the mean trace length and
STD of the HD model are 0.98 and 0.59 times less than those of the DFN model. The
minimal trace lengths for HD and DFN models are identical. However, the maximal trace
length of the HD model is less than that of the DFN model. We found that the relatively
significant local flow circulations in the DFN model lead to a longer trace length because of
the particles that move in the horizontal fracture F3 [47]. Table 2 also shows the statistics
of the traveling time for the released particles. Similar to the results of trace length, the
HD model obtained lower mean and STD values of the particle travel time than those
obtained from the ECPM model. Specifically, the minimum travel time of the HD model is
two orders of magnitude less than that of the ECPM model, while the observed maximum
travel time of the HD model is approximately half of the time obtained from the ECPM
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model. The results indicate that most particles in the HD model have fast traveling paths
dominated by the fracture network. The short travel time is critical in conducting the safety
assessment at a specific site. In general, the DFN model obtains relatively short travel
times. The mean, minimum, and maximum travel times in the DFN model are generally
one to two orders of magnitude smaller than those in the ECPM. However, the travel
time variation (i.e., STD and CV) for the DFN model is relatively small compared with the
results obtained from the HD and the ECPM models. This result is reasonable because
the DFN model has constrained the particles to transport in the fracture network. Table 2
shows that the travel time statistics for the HD model vary between the results obtained
from the ECPM and DFN models.

Table 2. The statistics of the collected particle trace lengths, travel times, and velocities for Cases I.

Parameters ECPM HD
(Fractures and Matrix) DFN HD

(Fractures Only)

Trace length

Mean (m) 5.61 6.38 5.51 5.38
STD (m) 0.35 1.01 0.63 0.37

CV 0.062 0.158 0.114 0.069
Min. (m) 5.07 5.12 5.11 5.10
Max. (m) 6.39 10.48 9.04 7.77

Travel time

Mean (s) 4.0 × 108 2.1 × 108 3.2 × 106 3.9 × 106

STD (s) 2.3 × 108 6.4 × 107 4.7 × 106 2.6 × 106

CV 0.58 0.30 1.47 0.67
Min. (s) 6.4 × 107 1.4 × 105 1.8 × 106 1.8 × 106

Max. (s) 1.2 × 109 6.3 × 108 5.6 × 107 3.1 × 107

Velocity

Mean (m/s) 2.0 × 10−8 1.5 × 10−7 2.4 × 10−6 6.5 × 10−6

STD (m/s) 1.4 × 10−8 1.3 × 10−7 6.2 × 10−7 6.3 × 10−7

CV 0.70 0.87 0.26 0.10
Min. (m/s) 5.1 × 10−9 8.8 × 10−9 2.0 × 10−7 2.0 × 10−7

Max. (m/s) 8.0 × 10−7 3.6 × 10−5 2.8 × 10−6 2.9 × 10−6

The results in Table 2 also show that the mean velocity of the HD model is 7.62 times
higher than that of the ECPM model. In addition, the STD of the HD model is 9.62 times
higher than that of the ECPM model. Note that the velocity calculation is based on the
trace length and the travel time for a specific particle. The minimum velocity for the ECPM
and HD models are in the same order. However, the maximum velocity of the HD model is
considerably higher than that of the ECPM model because the particles in the HD model
might move in the fractures. For the results obtained from the fracture-based DFN model,
the HD model could reproduce well the overall behavior of the advective transport in
fractures. The HD model enables the particles to move in fractures and the rock matrix
with the feature of interactions between fractures and the rock matrix. We had discussed
the computational issues for different approaches. The ECPM model requires the cell
sizes to be small to resolve the detailed flow dynamics near fractures. The DFN ignores
the influence of the rock matrix, which might partially decrease the velocity of advective
transport. In this study, the developed HD model considers the virtual fractures embedded
on the element face could be a feasible approach for problems with practical scales and
complexity.

In Case II, the objective is to evaluate the influence of the DH added in the simulation
domain. Figure 10 shows the released location and the particle traces for the ECPM
and HD model. Table 3 lists the detailed information for the results of particle tracking
simulation for a specified release point in Case II. Note that the particle release point is the
highest velocity based on the flow simulations obtained from the HD and ECPM models.
Previous investigations had shown that the highest velocity was usually obtained along
the intersections between the DH and fractures. In Case II, we had assigned a relatively
large fracture aperture of 0.1 m. The large fracture aperture could reduce the number of
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cells for the ECPM model to capture the flow and transport influenced by the fracture
geometries. However, this large fracture aperture might create differences in the highest
velocities obtained from the ECPM and HD models. The location of a cell center in the
ECPM model might not be consistent with the virtual fracture assigned on the element face.

Figure 10. The particle release location and the particle trace for the ECPM and HD models in Case II.
(a,b) The start location and particle trace for the ECPM model; (c,d) The start location and particle
traces for the HD model.

Table 3. The results of the particle tracking simulation for Cases II.

Parameters ECPM Model HD Model

Start location (x, y, z) (m) 2.4375, 3.6875, 7.0625 3.390, 3.573, 5.000
End location (x, y, z) (m) 4.830, 4.147, 0.125 4.995, 4.114, 0.000

Velocity at the start location (m/s) 1.31 × 10−10 6.25 × 10−9

In most practical problems, the highest velocity is the critical parameter for safety
assessment in the near field of a disposal facility. The velocity is one of the parameters for
calculating the buffer erosion and canister corrosion rate inside the deposition hole. The
highest velocity location is also the point for releasing the containment in most practical
problems [5]. Therefore, the value and location of the highest velocity are essential for
the corresponding safety assessment of the disposal facility. The highest velocity location
in the ECPM model is (2.4375 m, 3.6875 m, 7.0625 m) in Figure 10a,b, while the highest
velocity location in the HD model is (3.390 m, 3.573 m, 5.000 m) in Figure 10c,d. In addition,
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the highest velocity value of the HD model is 47.88 times higher than that of the ECPM
model. In this study, the ECPM and HD models obtain similar head distribution for Case II.
However, the detected highest velocity locations in the two models are considerably differ-
ent (see Table 3). The differences in the detected locations reveal two important technical
issues, including (1) The different grid or mesh generations and hydraulic property fields
are critical in influencing the location of the highest velocity on the intersection between a
fracture and the DH, and (2) The z coordinate of the highest velocity location of the HD
model is 5 m which is exactly the z coordinate of the fracture F5, while the location of
ECPM model is at the center of a grid, which is 7.0625 m in this case based on the applied
computational grids. In this study, the developed HD model considers the intersection as
the inner boundary for mesh generation. The precise location of the highest velocity can be
identified based on the solution at the node on the intersection.

This study further evaluated the uncertainty introduced by the fracture and DH
intersections introduced in Case II. There were 48 particles released on the two intersections
cut by fractures F4 and F5 (see Figure 10). Figure 11 shows the particle traces of the
48 released particles, and Table 4 lists the statistics based on the collected particle traces
and the travel times. The results in Figure 11a show that the particle traces in the ECPM
model are similar, and the trace lines are uniformly distributed on the fracture surfaces. In
the ECPM model, the pattern of the particle traces could capture well the two horizontal
fracture geometry (see Figure 11a). Figure 11b shows the pattern of the particle traces in
the HD model. The result demonstrates that the particle traces have been constrained in
the narrow areas on the two fractures. Parts of the particles released from the intersection
between F4 and DH migrate directly along the fracture F6 and then migrate to the rock
matrix and reach the outlet boundary. A small portion of the particles might move along
the F5 and then follow the particle traces starting from the intersection between DH and
the fracture F5. The results present the significant difference between the ECPM and the
HD models for the local flow behavior near the DH and fractures. The evaluations of
the particle trace and traveling time can vary considerably if the release locations of the
particles are different.

Figure 11. The results of particle traces based on the 48 particles released on the two intersections
between DH and fractures F4 and F5: (a) The trace lines for the ECPM model, and (b) The trace lines
for the developed HD model.
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Table 4. The statistics of the particle trackings for Cases II.

Parameters ECPM Model HD Model

Trace length

Mean (m) 10.69 9.07
STD (m) 3.16 2.74

CV 0.296 0.302
Min. (m) 7.25 5.85
Max. (m) 15.70 15.10

Travel time

Mean (s) 9.70 × 109 4.25 × 109

STD (s) 2.40 × 109 1.05 × 109

CV 0.247 0.247
Min. (s) 6.50 × 109 2.69 × 109

Max. (s) 1.55 × 1010 7.10 × 109

Velocity

Mean (m/s) 1.09 × 10−9 2.18 × 10−9

STD (m/s) 1.56 × 10−10 1.10 × 10−9

CV 0.143 0.505
Min. (s) 8.31 × 10−10 1.15 × 10−9

Max. (s) 1.37 × 10−9 4.33 × 10−9

The statistics for the advection transport are summarized in Table 4. In general,
the particle travel times obtained from the HD model are relatively small, leading to a
relatively high transport velocity (Table 4). The mean velocity of the HD model could be
two times higher than that in the ECPM model. Table 4 also shows that the HD model
obtains relatively low STD values for the trace lengths and travel times but obtains high
variation in transport velocity. Note that the HD model has considered virtual fractures in
the simulation procedures. The particle release locations are precisely defined in the HD
model. The fractures in the HD model act as a high-velocity pathway for groundwater
flow. The particle migrations could be in fractures or rock matrices, depending on the local
flow dynamics. For most practical problems, capturing the complex flow dynamics near
DHs and fractures is essential for accurate evaluations of the large-scale and long-term
transport processes.

5. Conclusions

This study has presented the concept of the HD approach for the simulation of
advective transport in fractured rocks. Specifically, the developed HD model uses the 2D
triangular mesh for fractures and tetrahedral mesh for the 3D rock matrix in a simulation
domain and allows the system of equations to be solved simultaneously. The study
employed two synthetic cases to assess the developed HD model. Solutions of flow and
advective transport were compared with those obtained from the DFN model and ECPM
model. In this study, the advective transport was conducted based on the particle tracking
algorithm.

The simulation results show that the HD model is flexible in considering the concepts
of DFN, ECPM, or both. Based on the test cases, the flow fields obtained from the HD
model agree well with those obtained from the ECPM and DFN models. However, the
local flow dynamics led to significant variations in the advective transport. Fractures in
the simulation domain play an important role in controlling the local flow patterns. In
addition, the released particle locations could also influence the particle traces and the
travel times. The ECPM model might need fine grids to resolve the interaction dynamics
between the fractures and rock matrix. The DFN model focuses on the fractures only and
has the limited feature to account for the interaction between fractures and rock matrix.
The local flow circulations are the special characteristic obtained from the DFN and the
developed HD model.

The transport statistics relied on collecting the particle traces and travel times obtained
from different models. The results in Case I indicated that the HD and DFN models
obtained similar particle traces and travel times because the particles migrations have been
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restricted in the fractures. The particle released in the matrix and fractures might obtain
different results from the ECPM and HD models. For the case with the particle release in
the matrix (i.e., Case I), the HD model considered the detailed fracture flow and obtained a
longer mean trace length than that obtained from the ECPM model. In Case II, the particles
were released on the intersections between the DH and fractures. The HD model obtained
a relatively small mean trace length and travel time. The identified highest velocity in the
HD model is significantly greater than that in the ECPM model. The results have shown
the feasibility of the HD model for accurate simulations of flow and advective transport in
complex fractured rock systems.
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