
applied
sciences

Article

Hybrid Nearest-Neighbor Ant Colony Optimization Algorithm
for Enhancing Load Balancing Task Management

Fatma Mbarek and Volodymyr Mosorov *

����������
�������

Citation: Mbarek, F.; Mosorov, V.

Hybrid Nearest-Neighbor Ant

Colony Optimization Algorithm for

Enhancing Load Balancing Task

Management. Appl. Sci. 2021, 11,

10807. https://doi.org/10.3390/

app112210807

Academic Editor: Federico Divina

Received: 27 September 2021

Accepted: 9 November 2021

Published: 16 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Applied Computer Science—Faculty of Electrical, Electronic, Computer and Control Engineering,
Lodz University of Technology, 90-924 Lodz, Poland; mbarek.fatma08@gmail.com
* Correspondence: mosorow@kis.p.lodz.pl

Abstract: Many computer problems that arise from real-world circumstances are NP-hard, while, in
the worst case, these problems are generally assumed to be intractable. Existing distributed comput-
ing systems are commonly used for a range of large-scale complex problems, adding advantages
to many areas of research. Dynamic load balancing is feasible in distributed computing systems
since it is a significant key to maintaining stability of heterogeneous distributed computing systems
(HDCS). The challenge of load balancing is an objective function of optimization with exponential
complexity of solutions. The problem of dynamic load balancing raises with the scale of the HDCS
and it is hard to tackle effectively. The solution to this unsolvable issue is being explored under a
particular algorithm paradigm. A new codification strategy, namely hybrid nearest-neighbor ant
colony optimization (ACO-NN), which, based on the metaheuristic ant colony optimization (ACO)
and an approximate nearest-neighbor (NN) approaches, has been developed to establish a dynamic
load balancing algorithm for distributed systems. Several experiments have been conducted to
explore the efficiency of this stochastic iterative load balancing algorithm; it is tested with task and
nodes accessibility and proved to be effective with diverse performance metrics.

Keywords: ant colony optimization; nearest-neighbor; load balancing; hybrid nearest-neighbor ant
colony optimization; distributed computing systems

1. Introduction

Distributed computing platforms are becoming increasingly important as cost-effective
options to conventional high-performance computing platforms. The distributed systems
keep going to expand in size, heterogeneity, and diversity of network resources [1,2].
In such complicated platforms, workload management and load balancing become critical
factors in keeping business activities afloat. Workload management has reached the top of
business and management engineering research priorities [3,4]. One of the most complex
concerns in real-time optimization problems is the robust management of a wide range
of workload patterns. Robust management includes a resilient load balancing system [5].
Load balancing is an important element in distributed and parallel environments [6,7],
as it is used to achieve maximum use of resources, to avoid node overload, to reduce re-
sponse time, to avoid network bottlenecks, and to ensure system scalability. The challenge
of dynamic load balancing persists as a difficult issue of global optimization because of
system structure heterogeneity, requisitions of Quality of Service (QoS) per application and
administration of computational resources [8,9].

There are several algorithmic methods for optimizing load balancing problems [10–12].
These optimization algorithms were based on a metaheuristic (or stochastic) nature-inspired
paradigm. Most metaheuristic algorithms generate random possible solutions at each it-
eration to enhance the chances of exploring the whole search space [13]. The first feasible
solution can be improved using mechanisms as movement, mutation, exchange, and coop-
erative perception. The improvement process is then repeated many times until the best

Appl. Sci. 2021, 11, 10807. https://doi.org/10.3390/app112210807 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5545-3918
https://orcid.org/0000-0001-6016-8671
https://doi.org/10.3390/app112210807
https://doi.org/10.3390/app112210807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210807
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210807?type=check_update&version=1

Appl. Sci. 2021, 11, 10807 2 of 18

solution is discovered, and the optimization is completed using termination conditions.
The stochastic methods use a cost function (or fitness function) [14]. The cost function is a
set of agents passing through the solution space. The position of an agents in the solution
space represents a set of parameters in the cost function. Thus, the aim of the metaheuristic
algorithm is to find the global minimum or global maximum of the cost function and to
supply high-quality solutions within a feasible lead time [15].

The swarmintelligence-based (SI-based) algorithms belong to the category of stochastic
population-based bioinspired algorithms [16]. SI-based algorithms covered algorithms that
are based on the behavior of different animal species, chemical processes, or even other nat-
ural processes [17]. Several nature-inspired metaheuristic algorithms have been presented
to handle optimization problems in different applications. The ant colony optimization
(ACO) [18], genetic algorithm (GA) [19], and particle swarm optimization (PSO) [20] are
some examples of algorithms inspired by nature. ACO imitates the behavior of a colony
of real foraging ants to find the most cost-effective path. The shortest or optimal path is
found via the stigmergy process. It is a social network mechanism where pheromones
push agents toward promising solutions. ACO is designed to solve the most challenging
concern of combinatorial optimization problems, as well as of network applications, such
as routing and load balancing. ACO algorithms can be applied to solve different problems,
such as the traveling salesman problem (TSP) [21], vehicle routing [22], sequential order-
ing [23], and scheduling [24]. GA is a search algorithm based on the concepts of natural
selection and natural genetics (crossover and mutation). The GA is employed in real-world
optimization problems, for example, manufacturing [25], warehouses [26], robotics [27],
and automatic control [28]. PSO mimics the behavior of a swarm of birds or fish in search
of food. In PSO, each particle in a swarm does not exchange materials with other parti-
cles. A particle is impacted by its current position, the best position in the swarm, and its
velocity. Lately, PSO has been used to solve real-world engineering problems such as the
design of multilayered rectangular microstrip antenna using electromagnetic band-gap
(EBG) structures [29], and bandwidth improvement of an inverted-F antenna (IFA) [30].
Furthermore, the PSO algorithm is also able to design new engineering components, for
example, artificial magnetic conductors [31].

Apart from optimizing solutions based on bioinspired algorithms, the multiobjective
optimization (MOO) algorithm is designed to solve the most challenging concern of com-
binatorial optimization problems, as well as of network applications. MOO algorithm is
known as Pareto optimization, and it is classified as a multiple-criteria decision analysis
(MCDA). The MOO algorithm is used in connection with optimization problems that
include more than one conflicting objective function to be optimized simultaneously [32].
Multiobjective problems, such as routing in communication networks [33,34], compres-
sor design [35,36], engineering [37,38], and logistics [39], require a number of objective
functions for simultaneous optimization [40].

It is essential to solve the system’s task scheduling problem to increase resource uti-
lization and sharing rate in distributed systems. Task scheduling became more difficult and
complex for parallel and distributed environment due to resource distribution, heterogene-
ity, and autonomy. Different research projects have been carried out to improve the ant
colony optimization performance, for example, a novel pheromone update strategy [41,42],
a modified ant colony optimization with improved tour construction and pheromone
updating strategies [43], an AntNet with reward-penalty reinforcement learning [44], and
an AntNet routing technique for real-world application [45]. A further improvement on
the original form of the ant system (AS) is called the elitist strategy (elitist-AS) [46]. The
concept is to provide strong reinforcement at the edges of the optimal path determined
at the beginning of the algorithm. Using the elitist method with an appropriate number
of elitist ants enables AS to locate better routes earlier in the run. Despite the existing
researches for ACO algorithm can improve the efficiency of task scheduling, they do not
contribute significantly to improving the overall load imbalance of the system. In this

Appl. Sci. 2021, 11, 10807 3 of 18

paper, a novel ACO-NN approach is proposed to manage task assignment of load balancing
system. The developed algorithm (ACO-NN) meets the following main contributions:

(i) Take into consideration the system heterogeneity and the dynamic task scheduling;
(ii) Carry out different computing data sets and experiments to investigate load balancing

performance;
(iii) Minimize the total cost of the computing system;
(iv) Validate the obtained results with the results of previous research using makespan

and the optimal solution as performance measures.

The structure of this paper is organized as follows. Section 2 introduces the hybrid
of nearest neighbor and ACO algorithm. In Section 3, various experiments are presented,
and the outcomes of the experiments are analyzed. Section 4 carries out the discussion of
comparison tests. Finally, conclusion is provided in Section 5.

2. Methods

In this research, a new load balancing algorithm based on ant-inspired behavior called
hybrid nearest-ant colony optimization (ACO-NN) is proposed. It is properly described
in Algorithm 1. ACO-NN contains three strategies: approval procedure, nearest neighbor
operator, and ACO operator.

Besides the heuristic and fitness functions of load balancing, the approval procedure
Pre− approve_Tasks() controls the management of workload. ACO-NN can minimize the
amount of processing time used in scheduling.

Algorithm 1 Pseudocode of nearest-neighbor ant colony optimization.

1: Initialization;
2: Every task comes;
3: Pre− approve_Tasks();
4: while any_task_needs_to_be_scheduled do
5: Apply NN operator;
6: Store the current value of optimal path;
7: Update routing table;
8: Sort the ants for search using the routing table;
9: Path construction;

10: Update pheromone table;
11: if all ants complete their tour then
12: Evaluate updated pheromone table;
13: Select the best path;
14: if Best_solution_ f ound then
15: Choose the optimal node based on pheromone table;
16: Assign task to optimal node;
17: else
18: Find next optimal solution;
19: end if
20: end if
21: end while

2.1. Nearest Neighbor (NN) with Ant Colony Optimization (ACO)

In order to minimize computation time and boost the scheduling result of a to-
tal system resource set N = {N1 . . . Nm} and a finite set of tasks T = {T1 . . . Tj}, it
is important to choose the right job scheduling order through an approval procedure,
Pre − approve_Tasks(). The local search phase through the nearest neighbor operator
constructs the problem graph and determines the beginning node of ant. The proposed
method assumes that the job scheduling mechanism is analogous to the ant foraging pro-
cess. According to the system resource node’s hardware performance parameters and the
system average load gap, the pheromone is updated, and the estimated time to execute all

Appl. Sci. 2021, 11, 10807 4 of 18

tasks is kept to a minimum. The execution time is the amount of time required by a task to
complete its execution. We define Ci to be the execution time of task i. The parameters tin
and tout represent respectively the arrival time of task i for processing and the complete
processing time of task i. The general formula for an execution time for a task i is defined
by Equation (1):

Ci = tout − tin (1)

The estimated total execution time of n tasks is represented by Equation (2):

Cn = ∑n
i=1 Ci (2)

The heuristic function of the ant colony optimization algorithm is calculated using
the estimated completion time. Moreover, to assign a task, a resource node with a strong
pheromone concentration (high efficiency and low load), maximum remaining memory,
and a short completion time is chosen.

The aim of the proposed task scheduling method, nearest-ant colony optimization
(ACO-NN) is to assign each task of the set T to the resource set N on the basis of main-
taining load balance and increasing the efficiency of the system’s task scheduling. This
hybrid algorithm combined ACO with NN to get an efficient and feasible optimization
method. Figure 1 displays the flowchart of the specific steps for ACO-NN in distributed
systems based on load balancing, while the generic pseudocode of this proposed method
is presented in Algorithm 1.

Figure 1. The flow chart of nearest-neighbour ant colony optimization task scheduling technique.

Appl. Sci. 2021, 11, 10807 5 of 18

2.2. Preapprove Procedure

Preapprove is the first stage of ACO-NN at each time tasks arrive. In this stage, the
algorithm will verify the available memory of each computing node and determine the
maximum amount of memory left over. If the request requires a higher memory than the
maximum left memory, the request will be denied prior to scheduling. The preapprove
step reduces the size of the ACO solutions, and indeed, the computing time of the ACO
scheduling is reduced. Considering N1 and N2, two service nodes in the system. The
residual memory in N1 and N2 is 2 and 3 GB. Supposing two requests T1 and T2 are
reaching the system with demanding memory of 1 and 5 GB. Whenever a new request
comes in, preapprove evaluates the maximum existing memory in each node, which is
3 GB. After this, see if the new request can be approved. Though T1 is demanding memory
of 1 GB, which is less than the overall remaining memory in a single service node, so T1
can be served by any node. While the demanding memory of T2 is 5 GB, which is bigger
than the total remaining memory of nodes. As consequence, T2 will not be approved
by Pre− approve_Tasks() because there is no available resource to serve it. The rejected
request will be in queue buffer until one of the available resources can handle it. The
request that is in the queue has priority over new incoming requests (in case available
resource can serve the pending workload).

2.3. Nearest Neighbor Operator

It is a local search strategy used for pattern recognition of the distributed system and
construct the routing table for all ants. This is the simplest, easiest, and most straightfor-
ward heuristic method to generate the short tour using Euclidean distance calculation.

The Euclidean distance (D) between two nodes N1 and N2 of m dimensions is ob-
tained by Equation (3):

D(N1, N2) =
√

∑m
i=1(N1i − N2i)2 (3)

The nearest neighbor is a structured approach that follows the following steps:

step 1 Select a random node.
step 2 Find the nearest unvisited node using a distance calculation.
step 3 If unvisited nodes exist, repeat step 2.

2.4. ACO Operator

It is used to build possible solutions for all ants. Each ant will choose the next resource
node according to the probability matrix Pxy as shown in Equation (4). The value of this
transition probability of ant from resource node x to resource node y is used to select the
next node to be allocated by a task.

Pxy =
τα

xy×η
β
xy

∑z∈T(τ
α
xz×η

β
xz)

, y ∈ T (4)

In Equation (4), τxy is the pheromone value for the transition of resource node x to
resource node y. ηxy is a heuristic function that represents a priori desirability of the move
from resource node x to resource node y. α is a positive parameter used to control the
influence of pheromone concentrations and heuristic information and which is the relative
value of scheduling order; β is the expected heuristic component, which sets out the relative
heuristic information in the scheduling sequence of selections for an ant. T denotes the set
of unscheduled requests that remain. An ant can choose a task among the set T to execute
in the next move.

The two main factors influencing the choosing of resource nodes, according to Equa-
tion (4), are τxy and ηxy. The complexity and emphasis of the research algorithm are
considered the improvement of these two main factors. The heuristic function ηxy is
described by Equation (5).

Appl. Sci. 2021, 11, 10807 6 of 18

ηxy = φ1 × C(x) + φ2 ×M(x) + φ3 × Du(x) (5)

where φ1, φ2 and φ3 are the effect weights of CPU utilization, memory, and disk utilization,
respectively; C(x), M(x), and Du(x) indicate the efficiency of resource node x in the three
following resources:

C(x) = Maxcu−CUx
Maxcu

(6)

M(x) = RMx
Maxm

(7)

Du(x) = Maxdu−DUx
Maxdu

(8)

where CUx is the CPU utilization for the node x and RMx and DUx represent the remaining
memory amount and the disk utilization for the node x, respectively.

In ACO, the heuristic function corresponds to a local point, which implies that each
ant has its decision when it comes to path selection. As a result, each ant chooses its path
based on the available resources on each server. In terms of CPU and disk usage, lower
utilization means higher resource availability, as shown in (6) and (8). From the standpoint
of memory, more remaining memory on the server leads to better efficiency as shown in
Equation (7). The sum of these three values represents the average remaining resource as
indicated in Equation (5).

2.5. Global Pheromone Update Operator

The proposed ACO-NN method updates pheromone according to the load balancing
value and the performance of resource node hardware. Ants lookup the shortest path in the
neighborhood according to the current algorithm iteration. Pheromones rise exclusively on
the routes that correspond to the current best solution in this iteration, whereas pheromones
on the remaining routes decrease with evaporation mechanism. The pheromone trail
update is done in accordance with the ant-cycle, where the ants update the pheromone
after all the ants have built the tours. The global pheromone update is performed using
Equation (9).

τxy(t + 1) = (1− ρ)τxy(t) + ∑n
k=1 ∆τk

xy(t) (9)

where 1− ρ is the global residual coefficient of pheromones decay rate, 0 < ρ ≤ 1. The
pheromone trail evaporation prevents bad decisions made before. ∆τk

xy(t) represents the
amount of pheromones dropped by ant k on arc (x,y). Generally, ∆τk

xy(t) is defined in
Equation (10).

∆τk
xy(t) =

{
Qk
Lk

, if ant k passes the arc (x, y);

0, otherwise.
(10)

where Qk is the quantity of pheromone to be distributed along the route. Lk is the path
length performed by ant k.

3. Results

The proposed approach was developed and implemented in MATLAB environment
R2018a. The MATLAB environment was used for numerical computing. In this dissertation,
each of the developed algorithms for load balancing were implemented with the aid
of MATLAB toolbox, which allows matrix manipulations and the plotting of functions.
The algorithms were run with the following computer configuration: Intel Core i5, CPU
2.20 GHz, RAM 12 GB, and Windows 10.

To further explain the efficacy and practicability of the proposed algorithm, we used
the problems TSPLIB ([47,48], source by: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/
tsp/index.html, accessed on 1 June 2021) for experimental studies. All the problems are
solved in TSPLIB and the optimal values are given. Table 1 displays experimental data sets.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

Appl. Sci. 2021, 11, 10807 7 of 18

Table 1. Data sets used for testing.

Instance Nb.Node Optimal Solution

Bayg29 29 1610
Eil51 51 426
St70 70 675
Eil76 76 538
KroA100 100 21,282
KroC100 100 20,749
Eil101 101 629
Ch150 150 6528
D198 198 15,780
Gr120 120 6942
Pcb442 442 50,778
Gr666 666 294,358

The optimal solution for each instance of data sets comes from http://elib.zib.de/
pub/mp-testdata/tsp/tsplib/stsp-sol.html (accessed on 1 June 2021).

ACO-NN is a kind of heuristic algorithm; its performance is influenced by the various
parameter values. Table 2 shows the parameters used by the proposed algorithm.

Table 2. Parameters settings of test data.

Parameters Values

α 0.8–0.9
β 8–35
ρ 0.4–0.5
Population size 500–800
Number of nodes 29–666
Number of tasks 100–500
Memory demand 2–10 GB

The layout of each experiment consists mainly of the total number of resource nodes
where the scheduler assigns tasks to the available computing nodes according to system
measurement and the optimal tour cost between nodes.

3.1. Experiment 1: Comparison ACO-NN to GA and SA Approaches

Bayg29, Eil76, Gr120, Pcb442, and Gr666 problems are used for testing the performance
of ACO-NN. The obtained results are compared with GA and SA.

Figure 2 displays the convergence of a small-scale instance using Bayg29 as an ex-
ample. ACO-NN performs better in terms of convergence rate while GA has the worst
convergence rate.

As can be seen from Figure 3, ACO-NN obtains the optimal solution with the best
convergence rate for a small-scale instance using Eil76. SA has the worst performance
among the optimization algorithms.

According to Figure 4, ACO-NN has better convergence performance than GA and
SA during 10 experimental runs. For medium-scale instance using Gr120, SA has worse
performance.

As illustrated in Figures 5 and 6, ACO-NN has minimal tour cost for five data sets with
an increase in the number of runs. The performance of ACO-NN and GA is significantly
similar for large-scale instances of Pcb442 and Gr666.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/stsp-sol.html
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/stsp-sol.html

Appl. Sci. 2021, 11, 10807 8 of 18

Figure 2. Comparison of ACO-NN to GA and SA for Bayg29.

Figure 3. Comparison of ACO-NN to GA and SA for Eil76.

Figure 4. Comparison of ACO-NN to GA and SA for Gr120.

Appl. Sci. 2021, 11, 10807 9 of 18

Figure 5. Comparison of ACO-NN to GA and SA for Pcb442.

Figure 6. Comparison of ACO-NN to GA and SA for Gr666.

3.2. Experiment 2: Comparison ACO-NN to GRASP Approach

To verify the effectiveness of ACO-NN for data sets Eil51, St70 and Kroc100, we
compare the proposed algorithm with GRASP.

3.2.1. Results of Optimal Solutions vs. Number of Runs

The comparison of optimal solution based on ACO-NN and GRASP for two data sets
with an increase in the number of runs is shown by Figures 7 and 8. The simulation results
demonstrate that our proposed algorithm has the lowest value of optimal solutions during
10 runs. ACO-NN is superior to GRASP.

3.2.2. Results of Response Time vs. Number of Runs

The comparison of optimal solution based on ACO-NN and GRASP for two data sets
with an increase in the number of runs is shown by Figures 9 and 10. From the perspective
of response time, the simulation results shows that our proposed algorithm has minimal
response time during 10 runs and it is superior to GRASP.

Appl. Sci. 2021, 11, 10807 10 of 18

Figure 7. Comparison of ACO-NN with GRASP for Eil51 regarding optimal solution metric.

Figure 8. Comparison of ACO-NN with GRASP for St70 regarding optimal solution metric.

Figure 9. Comparison of ACO-NN with GRASP for Eil51 regarding response time metric.

Appl. Sci. 2021, 11, 10807 11 of 18

Figure 10. Comparison of ACO-NN with GRASP for St70 regarding response time metric.

3.3. Experiment 3: Comparison ACO-NN to GA and GRASP Approaches

The comparison of optimal solution based on ACO-NN, GA, and GRASP in terms of
two factors: tour cost and response time, with an increase in the number of runs is carried
out by Figures 11 and 12.

According to Figure 11, the simulation results show that our proposed algorithm has
the lowest value of optimal solutions during 10 runs for the data set Kroc100 from the
perspective of tour cost.

As seen in Figure 12, the results of response time are similar for both algorithms
ACO-NN and GA, while the GRASP provides the worst result for the instance KroC100.

Figure 11. Results of optimal solutions vs. number of runs for KroC100.

Appl. Sci. 2021, 11, 10807 12 of 18

Figure 12. Results of response time vs. number of runs for KroC100.

4. Discussion

Several tests were carried out to evaluate the performance of the proposed method.
The results obtained by the nearest-neighbor ant colony optimization (ACO-NN) algorithm
are compared to renowned metaheuristic algorithms such as artificial bee colony (ABC),
genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), camel
herd algorithm (CHA), black hole (BH), greedy randomized adaptive search procedure
(GRASP), particle swarm optimization (PSO), traveling salesman problem based on simu-
lated annealing and gene expression programming (TSP-SAGEP), simulated-annealing-
based symbiotic organisms search (SOS-SA), multioffspring genetic algorithm (MO-GA),
and discrete tree-seed algorithm (DTSA) with their variants (DTSA0, DTSAI, DTSAII).

4.1. Test1

In this experiment, three state-of-the-art algorithms based on ACO approaches devel-
oped in recent years from the literature were used to test the performance of ACO-NN.
The modified ant system was proposed by Yan et al. in 2017 [49]. The adaptive tour con-
struction and pheromone updating techniques are integrated into the standard ant system.
The modified ACO (MACO) with improved tour construction and pheromone updating
strategies is proposed by Gao in 2021 [43]. The hybrid elitist-ant system (Elitist-AS) with an
external memory structure [46] gives strong reinforcement at the arcs of the optimal tour
determined at the beginning of the algorithm. The computing results of instance Gr666 are
summarized in Table 3.

As demonstrated in Table 3, ACO-NN proves its robustness through the low standard
deviation (SD) value and the optimal solution. The comparison results of ACO-NN with
Elitist-AS are shown in Table 4. It is noted that ACO-NN is faster than Elitist-AS for
instances Eil76, Ch150, and D198. From the perspective of optimal solution value, Elitist-
AS performed better than ACO-NN.

Table 3. Comparison of ACO-NN to MACO and modified ant system for Gr666.

Alg. Nb.Node Optimal Best Mean Std.Dev Rank

ACO-NN 666 294,358 3597 3632 83.7198 1
MACO [43] 666 294,358 294,358 294,972.3 24,702.1 3
Modified ant system [49] 666 294,358 294,358 294,899.6 23,551.35 2

Appl. Sci. 2021, 11, 10807 13 of 18

Table 4. Comparison of ACO-NN to Elitist-AS for Eil76, Ch150, and D198.

Instances Nb.Node Optimal Alg. Best Mean Std.Dev Time (s)

Eil76 76 538 ACO-NN 562 567 2.8946 5.04
Elitist-AS [46] 538 551 0 42

Ch150 150 6528 ACO-NN 6846.45 6914.88 40.11 9.29
Elitist-AS [46] 6528 6550 11.22 53

D198 198 15,780 ACO-NN 17,054.09 17,123.04 60.83 12.48
Elitist-AS [46] 15,888 15,940 64.83 103

4.2. Test2

To demonstrate the benefits of the proposed algorithm in this research, we compared
ACO-NN to ACO [50], PSO [50], GA [50], BH [50], DTSA [50], and CHA [51] for the
instance Eil76 in terms of the meaning of best solutions, the rate of difference (R-mean),
and standard deviation. The results are defined in Table 5.

Table 5. Comparison of ACO-NN to various approaches for Eil76.

Alg. Nb.Node Optimal Mean R-Mean (σ) Std.Dev Rank

ACO [50] 76 538 594 0.0942 40.2152 3
PSO [50] 76 538 975 0.4482 152.4061 7
GA [50] 76 538 652 0.1748 122.0972 4
BH [50] 76 538 659 0.1836 152.1754 5
DTSA [50] 76 538 588 0.0850 5.7296 2
CHA [51] 76 538 687 0.2168 N/R 6
ACO-NN 76 538 567 0.0511 2.8946 1

According to Table 5, ACO-NN algorithm is superior in computational results to the
other algorithms. In Test 2, the rate of difference was used to assess the merits and disad-
vantages of experiment outcomes based on ACO-NN and other methods. Equation (11)
represents the rate of difference.

σ =
Pmean−Poptimal

Pmean
(11)

where σ defines the rate of difference, the well-known optimal solution is represented by
Poptimal while Pmean describes the mean of the best solution obtained by ACO-NN.

4.3. Test3

In this experiment, we compared ACO-NN to ACO [50], ABC [50], DTSA [50], and
CHA [51] for the instance Eil101. As shown in Table 6, the ACO-NN method has good
results with the rank 3, and it proves a better experimental result for standard deviation.

Table 6. Comparison of ACO-NN to various approaches for Eil101.

Alg. Nb.Node Optimal Mean R-Mean (σ) Std.Dev Rank

ACO [50] 101 629 693 0.0923 6.80 2
ABC [50] 101 629 1315 0.5216 35.28 5
DTSA [50] 101 629 689 0.0870 4.47 1
CHA [51] 101 629 862 0.2703 N/R 4
ACO-NN 101 629 695 0.0949 3.70 3

Appl. Sci. 2021, 11, 10807 14 of 18

4.4. Test4

In this test, ACO-NN was compared with other optimization algorithms for the
instance KroA100. As illustrated in Table 7, the results revealed that ACO-NN performed
much better than the other approaches for optimal solutions and the rate of difference
metrics. ACO [50] has a low standard deviation (SD) value. A low SD value indicates that
ACO [50] is a reliable algorithm. ACO-NN was in second place for the lower SD results
and proves its robustness.

Table 7. Comparison of ACO-NN to various approaches for KroA100.

Alg. Nb.Node Optimal Mean R-Mean (σ) Std.Dev Rank

ACO [50] 100 21,282 22,880 0.0698 40.2152 3
ABC [50] 100 21,282 53,840 0.6047 2198.36 6
DSTA0 [50] 100 21,282 23,213 0.0831 906.11 4
DSTAI [50] 100 21,282 22,835 0.0680 715.85 2
CHA [51] 100 21,282 31,786 0.3304 N/R 5
ACO-NN 100 21,282 22,793 0.0662 162.090 1

4.5. Test5

The ACO-NN was compared with SA [50], DSTA0, DSTAI, and DTSA [50] for the
instance KroC100. According to Table 8, our approach confirmed better results than the
other approaches.

Table 8. Comparison of ACO-NN to various approaches for KroC100.

Alg. Nb.Node Optimal Mean R-Mean (σ) Std.Dev Rank

SA [50] 100 20,749 22,223 0.0663 522.20 4
DSTA0 [50] 100 20,749 22,877 0.0930 709.87 5
DSTAI [50] 100 20,749 21,891 0.0521 536.88 3
DTSA [50] 100 20,749 21,817 0.0489 217.77 2
ACO-NN 100 20,749 21,753 0.0461 106.26 1

As seen from Figure 13, ACO-NN is a greater scheduler in comparison with TSA,
DSTA0, DSTAI, and DTSA for the instance Kroc100 from the perspective of rank values.

Figure 13. Comparison of rank values for ACO-NN, SA, DSTA0, DSTAI, and DTSA.

Appl. Sci. 2021, 11, 10807 15 of 18

4.6. Test6

In this experiment, we compare ACO-NN to various approaches such as TSP-SAGEP [52],
SOS-SA [53], and MO-GA [54]. For the instances Gr120 and Gr666, our method proves the best
results while it provides an acceptable outcome with best execution time for the instance Pcb442.
Table 9 displays the following outcomes for different data sets.

Table 9. Comparison of ACO-NN to various approaches for Gr120, Pcb442, and Gr666.

Instances Nb.Node Optimal Alg. Best Worst Average Time (s)

Gr120 120 6942

ACO-NN 1770 1843 1811 6.6174

TSP-SAGEP [52] 6942 7406 6995 19.4612

SOS-SA [53] 6942 11,237 7786 25.3581

MO-GA [54] 6942 11,008 7655 236,709

Pcb442 442 50,778

ACO-NN 56,815 58,894 58,333 40.3890

TSP-SAGEP [52] 50,811 52,147 50,878 51.0964

SOS-SA [53] 51,107 55,723 51,958 610,876

MO-GA [54] 51,097 55,006 51,828 594,571

Gr666 666 294,358

ACO-NN 3597 3655 3632 83.7198

TSP-SAGEP [52] 294,419 305,036 295,542 79.7853

SOS-SA [53] 311,855 417,702 331,024 90.0014

MO-GA [54] 311,003 441,298 329,199 88.0163

As seen from Figure 14, ACO-NN is a leader scheduler in comparison with TSP-
SAGEP, SOS-SA, and MO-GA for instances GR120 and Pcb442. For the instance Gr666,
ACO-NN proves better results than SOS-SA and MO-GA.

Figure 14. Comparison of rank values for ACO-NN, TSP-SAGEP, SOS-SA, and MO-GA.

5. Conclusions

This paper addresses load-balancing-related optimization problems impacting the per-
formance of entire systems. The research proposed a ACO-NN approach for load balancing
in distributed computing systems to enhance load scheduling mechanism. ACO-NN can
manage task scheduling based on node status information. To expedite the ACO process,

Appl. Sci. 2021, 11, 10807 16 of 18

we reject dissatisfied requests before scheduling. The preapprove procedure reduces the
solution dimensions of the nearest neighbor and ACO, thereby saving computing time in a
high-load condition.

To validate the performance of the proposed algorithm, nine trials were carried out
on ten benchmark instances taken from the TSPLIB. The experimental results of ACO-NN
were compared to fourteen heuristic algorithms. Hybrid ACO-NN proves its efficiency
over diverse performance metrics, the experimental results show that the proposed method
outperforms existing approaches in maintaining load balance in a dynamic environment.

Author Contributions: F.M. and V.M. contributed to the design of research; F.M. implemented and
performed the experiments; V.M. and F.M. analysed the study data; V.M. conducted the supervision
and validation of the research; and F.M. wrote the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was particularly funded by the Intelligent Development Operational Pro-
gram 2014–2020 cofinanced by the European Regional Development Fund, project POIR.04.01.04-00-
0074/19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The submitted article contains all of the data, and models developed
or used during the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ranjan, R.; Rana, O.; Nepal, S.; Yousif, M.; James, P.; Wen, Z.; Barr, S.; Watson, P.; Jayaraman, P.P.; Georgakopoulos, D.; et al. The

next grand challenges: Integrating the Internet of Things and data science. IEEE Cloud Comput. 2018, 5, 12–26. [CrossRef]
2. Rana, B.; Singh, Y.; Singh, P.K. A systematic survey on internet of things: Energy efficiency and interoperability perspective. Trans.

Emerg. Telecommun. Technol. 2021, 32, e4166. [CrossRef]
3. Poola, D.; Salehi, M.A.; Ramamohanarao, K.; Buyya, R. A taxonomy and survey of fault-tolerant workflow management systems

in cloud and distributed computing environments. In Software Architecture for Big Data and the Cloud; Elsevier: Amsterdam, The
Netherlands, 2017; pp. 285–320.

4. Thoman, P.; Dichev, K.; Heller, T.; Iakymchuk, R.; Aguilar, X.; Hasanov, K.; Gschwandtner, P.; Lemarinier, P.; Markidis, S.; Jordan,
H.; et al. A taxonomy of task-based parallel programming technologies for high-performance computing. J. Supercomput. 2018,
74, 1422–1434. [CrossRef]

5. Gamoura, S.C. A New Non-Stigmergic-Ant Algorithm to Make Load Balancing Resilient in Big Data Processing for Enterprises.
Artif. Algorithms Natural Algorithms 2020, 1–30. Available: https://www.researchgate.net/profile/Samia-Gamoura/publication/
353806980_A_New_Non-Stigmergic-Ant_Algorithm_to_Make_Load_Balancing_Resilient_in_Big_Data_Processing_for_
Enterprises/links/6112bec4169a1a0103f20303/A-New-Non-Stigmergic-Ant-Algorithm-to-Make-Load-Balancing-Resilient-in-
Big-Data-Processing-for-Enterprises.pdf (accessed on 1 June 2021).

6. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Load-balancing algorithms in cloud computing: A survey. J. Netw. Comput. Appl. 2017,
88, 50–71. [CrossRef]

7. Semmoud, A.; Hakem, M.; Benmammar, B. A survey of load balancing in distributed systems. Int. J. High Perform. Comput. Netw.
2019, 15, 233–248. [CrossRef]

8. De Schepper, T.; Latré, S.; Famaey, J. Scalable load balancing and flow management in dynamic heterogeneous wireless networks.
J. Netw. Syst. Manag. 2020, 28, 133–159. [CrossRef]

9. Zeebaree, S.R.; Jacksi, K.; Zebari, R.R. Impact analysis of syn flood ddos attack on haproxy and nlb cluster-based web servers.
Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 510–517.

10. Ebadifard, F.; Babamir, S.M. A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud
computing environment. Concurr. Comput. Pract. Exp. 2018, 30, e4368. [CrossRef]

11. Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud
computing environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]

12. Ding, S.; Chen, C.; Xin, B.; Pardalos, P.M. A bi-objective load balancing model in a distributed simulation system using NSGA-II
and MOPSO approaches. Appl. Soft Comput. 2018, 63, 249–267. [CrossRef]

13. Tzanetos, A.; Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 2021,
54, 1841–1862. [CrossRef]

14. Nedjah, N.; Mourelle, L.D.M.; Morais, R.G. Inspiration-wise swarm intelligence meta-heuristics for continuous optimisation:
A survey-part I. Int. J. Bio-Inspired Comput. 2020, 15, 207–223. [CrossRef]

http://doi.org/10.1109/MCC.2018.032591612
http://dx.doi.org/10.1002/ett.4166
http://dx.doi.org/10.1007/s11227-018-2238-4
https://www.researchgate.net/profile/Samia-Gamoura/publication/353806980_A_New_Non-Stigmergic-Ant_Algorithm_to_Make_Load_Balancing_Resilient_in_Big_Data_Processing_for_Enterprises/links/6112bec4169a1a0103f20303/A-New-Non-Stigmergic-Ant-Algorithm-to-Make-Load-Balancing-Resilient-in-Big-Data-Processing-for-Enterprises.pdf
https://www.researchgate.net/profile/Samia-Gamoura/publication/353806980_A_New_Non-Stigmergic-Ant_Algorithm_to_Make_Load_Balancing_Resilient_in_Big_Data_Processing_for_Enterprises/links/6112bec4169a1a0103f20303/A-New-Non-Stigmergic-Ant-Algorithm-to-Make-Load-Balancing-Resilient-in-Big-Data-Processing-for-Enterprises.pdf
https://www.researchgate.net/profile/Samia-Gamoura/publication/353806980_A_New_Non-Stigmergic-Ant_Algorithm_to_Make_Load_Balancing_Resilient_in_Big_Data_Processing_for_Enterprises/links/6112bec4169a1a0103f20303/A-New-Non-Stigmergic-Ant-Algorithm-to-Make-Load-Balancing-Resilient-in-Big-Data-Processing-for-Enterprises.pdf
https://www.researchgate.net/profile/Samia-Gamoura/publication/353806980_A_New_Non-Stigmergic-Ant_Algorithm_to_Make_Load_Balancing_Resilient_in_Big_Data_Processing_for_Enterprises/links/6112bec4169a1a0103f20303/A-New-Non-Stigmergic-Ant-Algorithm-to-Make-Load-Balancing-Resilient-in-Big-Data-Processing-for-Enterprises.pdf
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1504/IJHPCN.2019.106124
http://dx.doi.org/10.1007/s10922-019-09502-2
http://dx.doi.org/10.1002/cpe.4368
http://dx.doi.org/10.1007/s10586-020-03075-5
http://dx.doi.org/10.1016/j.asoc.2017.09.012
http://dx.doi.org/10.1007/s10462-020-09893-8
http://dx.doi.org/10.1504/IJBIC.2020.108597

Appl. Sci. 2021, 11, 10807 17 of 18

15. Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic Algorithms on Feature Selection: A Survey of One
Decade of Research (2009–2019). IEEE Access 2021, 9, 26766–26791. [CrossRef]

16. Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence algorithms. IEEE Trans.
Ind. Inform. 2017, 14, 1004–1015. [CrossRef]

17. Fister, I., Jr.; Fister, I. A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv 2020,
arXiv:2010.15524.

18. Chen, X.; Yu, L.; Wang, T.; Liu, A.; Wu, X.; Zhang, B.; Lv, Z.; Sun, Z. Artificial intelligence-empowered path selection: A survey of
ant colony optimization for static and mobile sensor networks. IEEE Access 2020, 8, 71497–71511. [CrossRef]

19. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef]

20. Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A survey of historical and recent developments with
hybridization perspectives. Mach. Learn. Knowl. Extr. 2019, 1, 157–191. [CrossRef]

21. Yang, K.; You, X.; Liu, S.; Pan, H. A novel ant colony optimization based on game for traveling salesman problem. Appl. Intell.
2020, 50, 4529–4542. [CrossRef]

22. Huang, Y.H.; Blazquez, C.A.; Huang, S.H.; Paredes-Belmar, G.; Latorre-Nuñez, G. Solving the feeder vehicle routing problem
using ant colony optimization. Comput. Ind. Eng. 2019, 127, 520–535. [CrossRef]

23. Skinderowicz, R. An improved ant colony system for the sequential ordering problem. Comput. Oper. Res. 2017, 86, 1–17.
[CrossRef]

24. Kumar, S.; Solanki, V.K.; Choudhary, S.K.; Selamat, A.; Gonzalez, Crespo, R. Comparative Study on Ant Colony Optimization
(ACO) and K-Means Clustering Approaches for Jobs Scheduling and Energy Optimization Model in Internet of Things (IoT). Int.
J. Interact. Multimed. Artif. Intell. 2020, 6, 107–116. [CrossRef]

25. Liu, Z.; Wang, L.; Li, X.; Pang, S. A multi-attribute personalized recommendation method for manufacturing service composition
with combining collaborative filtering and genetic algorithm. J. Manuf. Syst. 2021, 58, 348–364. [CrossRef]

26. Grznár, P.; Krajčovič, M.; Gola, A.; Dulina, L.; Furmannová, B.; Mozol, Š.; Plinta, D.; Burganová, N.; Danilczuk, W.; Svitek, R. The
Use of a Genetic Algorithm for Sorting Warehouse Optimisation. Processes 2021, 9, 1197. [CrossRef]

27. Lamini, C.; Benhlima, S.; Elbekri, A. Genetic algorithm based approach for autonomous mobile robot path planning. Procedia
Comput. Sci. 2018, 127, 180–189. [CrossRef]

28. Zhang, H.; Zhao, X.; Yang, J.; Zhang, W. Optimizing automatic transmission double-transition shift process based on multi-
objective genetic algorithm. Appl. Sci. 2020, 10, 7794. [CrossRef]

29. Gaharwar, M.; Dhubkarya, D.C. X-Band Multilayer Stacked Microstrip Antenna Using Novel Electromagnetic Band-Gap
Structures. IETE J. Res. 2021, 1–10. doi:10.1080/03772063.2021.1883484. [CrossRef]

30. Alnas, J.; Giddings, G.; Jeong, N. Bandwidth improvement of an inverted-F antenna using dynamic hybrid binary particle swarm
optimization. Appl. Sci. 2021, 11, 2559. [CrossRef]

31. Kwon, O.H.; Park, W.B.; Yun, J.; Lim, H.J.; Hwang, K.C. A low-profile HF meandered dipole antenna with a ferrite-loaded
artificial magnetic conductor. Appl. Sci. 2021, 11, 2237. [CrossRef]

32. Malar, A.; Kowsigan, M.; Krishnamoorthy, N.; Karthick, S.; Prabhu, E.; Venkatachalam, K. Multi constraints applied energy
efficient routing technique based on ant colony optimization used for disaster resilient location detection in mobile ad-hoc
network. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4007–4017. [CrossRef]

33. Wu, J.; Xu, M.; Liu, F.F.; Huang, M.; Ma, L.; Lu, Z.M. Solar Wireless Sensor Network Routing Algorithm Based on Multi-Objective
Particle Swarm Optimization. J. Inf. Hiding Multim. Signal Process. 2021, 12, 1–11.

34. Vijayalakshmi, K.; Anandan, P. A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN.
Clust. Comput. 2019, 22, 12275–12282. [CrossRef]

35. Sharma, M.; Baloni, B.D.Design optimization of S-shaped compressor transition duct using particle swarm optimization algorithm.
SN Appl. Sci. 2020, 2, 1–17. [CrossRef]

36. Mofid, H.; Jazayeri-Rad, H.; Shahbazian, M.; Fetanat, A. Enhancing the performance of a parallel nitrogen expansion liquefaction
process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm. Energy 2019, 172, 286–303. [CrossRef]

37. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Zeb, B.A. Multi-objective particle swarm optimization for the realization of a low profile
bandpass frequency selective surface. In Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP),
Hobart, TAS, Australia, 9–12 November 2015; pp. 1–4. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
7447507 (accessed on 1 June 2021).

38. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P. Multiobjective particle swarm optimization to design a time-delay equalizer metasurface
for an electromagnetic band-gap resonator antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 912–915. [CrossRef]

39. Chan, F.T.; Wang, Z.X.; Goswami, A.; Singhania, A.; Tiwari, M.K. Multi-objective particle swarm optimisation based integrated
production inventory routing planning for efficient perishable food logistics operations. Int. J. Prod. Res. 2020, 58, 5155–5174.
[CrossRef]

40. Mbarek, F.; Mosorov, V. Load Balancing Based on Optimization Algorithms: An Overview. J. Telecommun. Inf. Technol. 2019, 4,
3–12. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3056407
http://dx.doi.org/10.1109/TII.2017.2786782
http://dx.doi.org/10.1109/ACCESS.2020.2984329
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.3390/make1010010
http://dx.doi.org/10.1007/s10489-020-01799-w
http://dx.doi.org/10.1016/j.cie.2018.10.037
http://dx.doi.org/10.1016/j.cor.2017.04.012
http://dx.doi.org/10.9781/ijimai.2020.01.003
http://dx.doi.org/10.1016/j.jmsy.2020.12.019
http://dx.doi.org/10.3390/pr9071197
http://dx.doi.org/10.1016/j.procs.2018.01.113
http://dx.doi.org/10.3390/app10217794
http://dx.doi.org/10.1080/03772063.2021.1883484
http://dx.doi.org/10.3390/app11062559
http://dx.doi.org/10.3390/app11052237
http://dx.doi.org/10.1007/s12652-020-01767-9
http://dx.doi.org/10.1007/s10586-017-1608-7
http://dx.doi.org/10.1007/s42452-020-1972-4
http://dx.doi.org/10.1016/j.energy.2019.01.087
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7447507
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7447507
http://dx.doi.org/10.1109/LAWP.2016.2614498
http://dx.doi.org/10.1080/00207543.2019.1701209
http://dx.doi.org/10.26636/jtit.2019.131819

Appl. Sci. 2021, 11, 10807 18 of 18

41. Zhao, J.; Li, H.; Yang, C.; Wang, W. A novel path planning method for wheel-legged unmanned vehicles based on improved ant
colony algorithm. In Proceedings of the 2021 60th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE), Tokyo, Japan, 8–10 September 2021; pp. 696–701.

42. Lalbakhsh, P.; Zaeri, B.; Lalbakhsh, A. An improved model of ant colony optimization using a novel pheromone update strategy.
IEICE Trans. Inf. Syst. 2013, 96, 2309–2318. [CrossRef]

43. Gao, W. Modified ant colony optimization with improved tour construction and pheromone updating strategies for traveling
salesman problem. Soft Comput. 2021, 25, 3263–3289. [CrossRef]

44. Lalbakhsh, P.; Zaeri, B.; Lalbakhsh, A.; Fesharaki, M.N. AntNet with reward-penalty reinforcement learning. In Proceedings of
the 2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks, Liverpool, UK,
28–30 July 2010; pp. 17–21.

45. Wilfert, J.; Paprotta, N.; Kosak, O.; Stieber, S.; Schiendorfer, A.; Reif, W. A Real-Word Realization of the AntNet Rout-
ing Algorithm with ActivityBots. Institute for Software and Systems Engineering, University of Augsburg. Available:
https://www.researchgate.net/profile/Simon-Stieber/publication/354889888_A_Real-Word_Realization_of_the_AntNet_
Routing_Algorithm_with_ActivityBots/links/6152ebed522ef665fb660ab8/A-Real-Word-Realization-of-the-AntNet-Routing-
Algorithm-with-ActivityBots.pdf (accessed on 1 June 2021).

46. Jaradat, G.M. Hybrid elitist-ant system for a symmetric traveling salesman problem: Case of Jordan. Neural Comput. Appl. 2018,
29, 565–578. [CrossRef]

47. Weise, T.; Wu, Z. Difficult features of combinatorial optimization problems and the tunable w-model benchmark problem for
simulating them. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July
2018; pp. 1769–1776.

48. Lendl, S.; Ćustić, A.; Punnen, A.P. Combinatorial optimization with interaction costs: Complexity and solvable cases. Discret.
Optim. 2019, 33, 101–117. [CrossRef]

49. Yan, Y.; Sohn, H.S.; Reyes, G. A modified ant system to achieve better balance between intensification and diversification for the
traveling salesman problem. Appl. Soft Comput. 2017, 60, 256–267. [CrossRef]

50. Cinar, A.C.; Korkmaz, S.; Kiran, M.S. A discrete tree-seed algorithm for solving symmetric traveling salesman problem. Eng. Sci.
Technol. Int. J. 2020, 23, 879–890. Available: https://www.sciencedirect.com/science/article/pii/S2215098619313527 (accessed on
1 June 2021). [CrossRef]

51. Ahmed, Z.O.; Sadiq, A.T.; Abdullah, H.S. Solving the Traveling Salesman’s Problem Using Camels Herd Algorithm. In
Proceedings of the 2019 2nd Scientific Conference of Computer Sciences (SCCS), Baghdad, Iraq, 27–28 March 2019; pp. 1–5.

52. Zhou, A.H.; Zhu, L.P.; Hu, B.; Deng, S.; Song, Y.; Qiu, H.; Pan, S. Traveling-salesman-problem algorithm based on simulated
annealing and gene-expression programming. Information 2019, 10, 7. [CrossRef]

53. Ezugwu, A.E.S.; Adewumi, A.O.; Frîncu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm for
traveling salesman problem. Expert Syst. Appl. 2017, 77, 189–210. [CrossRef]

54. Wang, J.; Ersoy, O.K.; He, M.; Wang, F. Multi-offspring genetic algorithm and its application to the traveling salesman problem.
Appl. Soft Comput. 2016, 43, 415–423. [CrossRef]

http://dx.doi.org/10.1587/transinf.E96.D.2309
http://dx.doi.org/10.1007/s00500-020-05376-8
https://www.researchgate.net/profile/Simon-Stieber/publication/354889888_A_Real-Word_Realization_of_the_AntNet_Routing_Algorithm_with_ActivityBots/links/6152ebed522ef665fb660ab8/A-Real-Word-Realization-of-the-AntNet-Routing-Algorithm-with-ActivityBots.pdf
https://www.researchgate.net/profile/Simon-Stieber/publication/354889888_A_Real-Word_Realization_of_the_AntNet_Routing_Algorithm_with_ActivityBots/links/6152ebed522ef665fb660ab8/A-Real-Word-Realization-of-the-AntNet-Routing-Algorithm-with-ActivityBots.pdf
https://www.researchgate.net/profile/Simon-Stieber/publication/354889888_A_Real-Word_Realization_of_the_AntNet_Routing_Algorithm_with_ActivityBots/links/6152ebed522ef665fb660ab8/A-Real-Word-Realization-of-the-AntNet-Routing-Algorithm-with-ActivityBots.pdf
http://dx.doi.org/10.1007/s00521-016-2469-3
http://dx.doi.org/10.1016/j.disopt.2019.03.004
http://dx.doi.org/10.1016/j.asoc.2017.06.049
https://www.sciencedirect.com/science/article/pii/S2215098619313527
http://dx.doi.org/10.1016/j.jestch.2019.11.005
http://dx.doi.org/10.3390/info10010007
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.asoc.2016.02.021

	Introduction
	Methods
	Nearest Neighbor (NN) with Ant Colony Optimization (ACO)
	Preapprove Procedure
	Nearest Neighbor Operator
	ACO Operator
	Global Pheromone Update Operator

	Results
	Experiment 1: Comparison ACO-NN to GA and SA Approaches
	Experiment 2: Comparison ACO-NN to GRASP Approach
	Results of Optimal Solutions vs. Number of Runs
	Results of Response Time vs. Number of Runs

	Experiment 3: Comparison ACO-NN to GA and GRASP Approaches

	Discussion
	Test1
	Test2
	Test3
	Test4
	Test5
	Test6

	Conclusions
	References

