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Abstract: Full-matrix capture (FMC)-based ultrasonic imaging provides good sensitivity to small
defects in non-destructive testing and has gradually become a mainstream research topic. Many
corresponding algorithms have been developed, e.g., the total focusing method (TFM). However, the
efficiency of the TFM is limited, especially in multi-layered structures. Although the appearance of
wavenumber algorithms, such as extended phase-shift migration (EPSM) methods, has improved
imaging efficiency, these methods cannot be applied to cases with oblique incidence. Therefore, a
modified wavenumber method for full-matrix imaging of multi-layered structures with oblique array
incidence is proposed. This method performs a coordinate rotation in the frequency domain to adapt
it to the oblique incidence. It then utilizes wave-field extrapolation to migrate the transmitting and
receiving wave field to each imaging line, and a correlation imaging condition is used to reconstruct
a total focused image. The proposed method can deal with any incident angle without precision
loss. Moreover, it inherits the computational efficiency advantages of the wavenumber algorithms.
The simulation and experimental results show that the proposed method performs better in terms of
accuracy and efficiency than the TFM. Specifically, it is nearly 60 times faster than the TFM when
processing an FMC dataset with a size of 4096 × 64 × 64.

Keywords: ultrasonic array imaging; full-matrix imaging; wavenumber algorithm; multi-layered
medium; oblique incidence

1. Introduction

Complex structures such as welds, joints, and pipe bends are critical components in
massive buildings, bridges, and oil pipelines, where internal defects pose considerable
threats [1–4]. Therefore, an effective and accurate nondestructive testing (NDT) technique
to detect and characterize defects is essential to ensure the safety and reliability of these
components. The ultrasonic phased array, as a well-established technique, is widely used
in industrial NDT applications [5–8] due to its portability, reliability, and relatively high
accuracy. Conventional ultrasonic phased array techniques are based on delay-and-sum
(DAS) beamforming, which generates coherent ultrasonic beams by controlling the time
delay of transmitters [9,10]. However, the limited information in the data in these solutions
leads to low image contrast and distortion of the target object and severely restricts the
applications for complex structures. The appearance of full-matrix capture (FMC) has
solved this problem [11]. FMC performs data acquisition by having all elements act as
receivers while every successive element acts as a transmitter. Hence, FMC datasets contain
more information about the objects, and the focusing process can be performed offline
without applying delay laws during acquisition [12].

On the basis of FMC, many algorithms have been developed independently. The
total focusing method (TFM) [13,14] is a typical post-processing algorithm that uses all
the FMC data to focus at every pixel in the region of interest (ROI). It can significantly
improve detection sensitivity and spatial resolution and is considered to be the gold
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standard in ultrasonic imaging. However, the computational cost of TFM is substantial,
as it is an extension of the DAS approach in the time domain [15]. In order to resolve the
computational issue, some researchers have sought for solutions in the frequency domain.
Hunter et al. [16] proposed a wavenumber algorithm for full-matrix imaging, which has
superior computational performance. Nevertheless, this algorithm is only applicable for
single-layered structures. To date, frequency-domain algorithms have been proposed to
accommodate more complicated structures, such as the extended phase-shift migration
(EPSM) method [17] and multi-layered wavenumber algorithms [18,19]. These methods
are adapted to multi-layered structures and have improved the computational efficiency.

The algorithms mentioned above are only valid for a multi-layered medium with a
surface parallel to the phased array. In practice, however, complex structures such as welds
and joints usually require oblique incidence detection to obtain excellent inspection cover-
age [20,21]. In this situation, the TFM needs to use the Fermat principle, calculating the
refraction points at each interface to accurately estimate the wave propagation time in the
multi-layered medium [18]. However, this complicated step increases the computational
cost dramatically. Several other approaches to full-matrix imaging have also been proposed
for oblique incidence detection. Ray tracing methods [22,23] estimate the propagation
time through iterative calculations, no matter how complicated the interface is, but the
complexity of iterative calculations limits their efficiency. The root-mean-square (RMS)
velocity [24,25] has been applied to reduce the calculation time. However, the approxi-
mation of RMS velocity introduces a huge error when the incidence angle of the array is
overlarge. The virtual source TFM [26,27] can achieve total focusing through arbitrarily
shaped interfaces. In addition, it reduces the processing complexity of time-of-flight cal-
culations, leading to more efficient implementation of the TFM. Unfortunately, although
many attempts have been made to improve the efficiency, these time-domain algorithms
still cannot meet the high-resolution real-time imaging demand. To solve this, Lukomski
proposed an FMC method based on phase-shift migration (PSM) [28], implemented in a
wavenumber domain. Unlike EPSM, this method allows for imaging of a multi-layered
medium with lateral velocity variations, such as a medium that is not perpendicular to the
surface of the arrays. The main advantage of the algorithm is a much higher efficiency than
time-domain algorithms. Nevertheless, this algorithm cannot achieve a spatial resolution
as high as the standard TFM, and the signal-to-noise ratio (SNR) is lower than for the TFM.
Thus, a high-efficiency and high-accuracy algorithm for ultrasonic full-matrix imaging in
oblique incidence detection on multi-layered structures is intensely desired.

In this paper, a modified wavenumber method for full-matrix imaging of multi-layered
structures with oblique array incidence is proposed. The proposed method performs a
coordinate rotation in the frequency domain to extrapolate the original wave field, which
is parallel to the linear array, to the virtual measurement line that is parallel to the object’s
surface. Then both transmission and reception wave-field extrapolation are performed
in the rotated coordinate system, and an imaging condition is applied to obtain a total
focused image of the multi-layered structure. The proposed method introduces an accurate
coordinate transformation relation, so that it can deal with any incident angle without
precision loss. It can be used in many applications, such as immersion detection of large
objects with slightly curved surfaces and oblique incidence inspection of welds with an
angled wedge. The simulations and experimental results show that the proposed method
has high accuracy and efficiency.

The remainder of this paper is organized as follows. The method and the derivation
of the proposed method are provided in Section 2. The results and discussion illustrating
the method performance are presented in Section 3. Finally, the conclusions are given
in Section 4.
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2. Method
2.1. Wave-Field Extrapolation for Multi-Layered Structures

In this subsection, the basic wave-field extrapolation is introduced, as well as the
extension to multi-layered structures. Here, a linear array is assumed to detect a homoge-
neous medium with a sound velocity of c. The x-axis is directed along the interface, and
the z-axis is perpendicular to the interface, as shown in Figure 1. In FMC, the ultrasound
waves excited by the u-th element will propagate to the scatterers and the reflected waves
will be received by all array elements. Let pu(x, z, t) be the ultrasound pressures reflected
by the point scatterer. The propagation of the reflected pressures should satisfy the wave
equation given in [18]:

∇2 pu(x, z, t)− 1
c2

∂2 pu(x, z, t)
∂t2 = 0 (1)
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Meanwhile, pu(x, z, t) can be expanded in the wavenumber domain as in [28]:

pu(x, z, t) =
x

Pu(kx, z, ω) · eikx x−iωtdkxdω (2)

where Pu(kx, z, ω) is the Fourier expansion of pu(x, z, t), kx is the wavenumber in the
x direction, and ω is the angular frequency. By inserting Equation (2) into Equation (1), the
Helmholtz equation can be obtained:(

∂2

∂z2 + k2
z

)
Pu(kx, z, ω) = 0 (3)

where kz is the wavenumber component in the z direction, defined as

k2
z = ω2/c2 − k2

x (4)

The general solution of Equation (3) is given by [17]:

Pu(kx, z, ω) = A(kx, ω) · eikzz + B(kx, ω)·e−ikzz (5)

where A(kx, ω)· exp(ikzz) and B(kx, ω)· exp(−ikzz) represent the upward-traveling and
downward-traveling waves, respectively. We assume that the array is placed at z = 0 and
all reflectors are located in the half-space z > 0. Thus, only upward-traveling waves can
be recorded by the ultrasonic array. Considering the boundary condition Pu(kx, z = 0, ω),
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which is the 2D Fourier transform of the received pressures p(x, z = 0, t) at depth z = 0,
the wave field at an arbitrary depth z can be extrapolated as in [17]:

Pu(kx, z, ω) = Pu(kx, z = 0, ω)·eikzz (6)

where
kz = −sgn(ω)·

√
ω2/c2 − k2

x, with ω2/c2 ≥ k2
x (7)

The sign function in Equation (7) guarantees that the kz value represents the waves
traveling in the −z direction. Thus, the pressures pu(x, z, t) in time–space coordinates can
be reconstructed by an inverse Fourier transform

pu(x, z, t) =
x

∞

Pu(kx, z = 0, ω)·eikzzeikx x−iωtdkxdω (8)

In the case of multi-layered structures where the sound velocity varies along the
z-axis (Figure 1), Equation (6) cannot be applied directly. On the one hand, the phase
factor exp(ikzz) in Equation (6) is determined by the sound velocity of the medium, and it
should be modified in order to extend it to a multi-layer case. On the other hand, the wave
transmissions through each interface must be considered. Theoretically, the transmission
coefficient between different layers is a complex function of the incident angle and the
acoustic impedances of the materials [29]. In practice, however, the transmission coefficient
can be approximated as a constant based on the assumption of a narrow transducer
beam [30].

A typical multi-layered structure is schematically illustrated in Figure 1. The sound
velocity is different between layers, while it is homogeneous inside each layer. The layers
are numbered m = 1, 2, . . . , L, where cm and dm denote the sound velocity and thickness of
layer m, respectively. Using the narrow beam assumption, the extrapolated wave fields
above and below the interface z = zm are proportional:

Pu(kx, z−m , ω) ∝ Pu(kx, z+m , ω) (9)

where Pu(kx, z−m , ω) and Pu(kx, z+m , ω) represent the wave fields of the upper and lower
side of the interface, respectively.

For a point scatterer within layer L, the wave field at the interface z = zL−1 is used as
the boundary condition defining the solution within the layer. This gives us the solution

Pu(kx, z, ω) = Pu(kx, z = zL−1, ω)·eikz,L(z−zL−1) (10)

By proceeding in this way for the remaining layers, the wave field at depth z within
layer L can be extrapolated as:

Pu(kx, z, ω) ∝ Pu(kx, z = 0, ω)·eikz,L(z−zL−1)
L−1

∏
m=1

exp(ikz,mdm) (11)

Since the focus is usually on the relative amplitudes within each layer, the ampli-
tude scaling effect is insignificant in the image reconstruction and can reasonably be
neglected [19].

2.2. Oblique Incidence Compensation

The multi-layer algorithm presented above is only applicable for horizontal multi-
layered structures as shown in Figure 1. However, in practical phased array inspection, such
as weld inspection, a wedge between the array and the object is used to create an oblique
beam and obtain excellent coverage. Consequently, a tilt angle is generated between the
normal direction of the transducer surface and the z-axis. The wave-field extrapolation of
the multi-layered structures represented by Equation (11) is no longer applicable. Therefore,
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we propose an oblique incidence compensation method to extrapolate the measured wave
field to a virtual measurement line that is parallel to the object’s surface.

Considering the case of oblique incidence, as shown in Figure 2, a wedge with angle θ
is added between the linear array and the multi-layered structure. The sound velocity
of the wedge is c. A classical Cartesian coordinate system is established using the center
of the first array element as the origin. Another coordinate system Ox′z′ is obtained
by rotating the coordinate system Oxz by an angle θ, so that the x′-axis is parallel to
the surface of the multi-layered structure. The tilt of the wedge is compensated for by
extrapolating the measured wave field from z = 0 to the virtual measurement line z′ = 0.
The original element position (x, 0) is extrapolated to the new position (xnew, znew), which
can be expressed in the original system as in [31]:{

xnew = bx
znew = ax

, where
{

b = cos θ
a = sin θ

. (12)
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Thus, for the oblique incidence situation, the wave field along the virtual measurement
line z′ = 0 can be obtained by inserting Equation (12) into Equation (8):

pu(x′, z′ = 0, t) =
x

∞

Pu(kx, z = 0, ω)·eikzaxeikxbxe−iωtdkxdω (13)

After combining the exp(ikzax) and exp(ikxbx) terms, Equation (13) is rewritten as

pu(x′, z′ = 0, t) =
x

∞

Pu(kx, z = 0, ω)·eik′x xe−iωtdkxdω (14)

where
k′x = bkx + akz = bkx − a·sgn(ω)·

√
ω2/c2 − k2

x (15)

Rearranging Equation (15), we obtain

kx(k′x, ω, a) =
1

a2 + b2

(
bk′x + a

√
(a2 + b2)·ω2/c2 − k′x

2
)

(16)

With the integrals transformation, replacing kx with k′x, Equation (14) is expressed as

pu(x′, z′ = 0, t) =
x

∞

Pu(k′x, z′ = 0, ω)·eik′x x′ e−iωtdk′xdω (17)



Appl. Sci. 2021, 11, 10808 6 of 17

where
Pu(k′x, z′ = 0, ω) = Φ(k′x, ω, a)·Pu(kx(k′x, ω, a), z = 0, ω) (18)

and

Φ(k′x, ω, a) =
∂kx

∂k′x
=

1
a2 + b2

b− ak′x√
(a2 + b2)·ω2/c2 − k′x

2

 (19)

After the rotation transformation, the wavenumber-domain wave field Pu(k′x, z′ = 0, ω)
given by Equation (17) can be used directly as the start point for wave-field extrapolation, giving

pu(x′, z′, t) =
x

∞

Φ(k′x, ω, a)·Pu(kx(k′x, ω, a), z = 0, ω)·eik′zz′ eik′x x′−iωtdk′xdω (20)

where k′z is the wavenumber along z′-axis. Then, for the multi-layered structures, the wave
field at depth z′ within layer L in an oblique incidence system can be extrapolated as:

pu(x′, z′, t) =
s

∞
Pu(k̂x, z′, ω)·eik′x x′−iωtdk′xdω

∝
s

∞
Φ(k′x, ω, a)·Pu(kx(k′x, ω, a), z = 0, ω)·eik′z,L(z

′−z′L−1)e

L−1
∑

m=1
ik′z,mdm

eik′x x′−iωtdk′xdω

(21)

2.3. Full-Matrix Imaging in Wavenumber Domain

In the case of FMC data, we consider the rotated coordinate system Ox′z′, where the
linear array is rotated to z′ = 0. For simplicity, we assume that the u-th element emits
ultrasound waves at t = 0, and the scatterer is located at (x′, z′) in the L-th layer of the
oblique multi-layer structure. The ultrasound waves reach the scatterer at t = τu(x′, z′),
which is determined by the relative position of the scatterer and the element. At this
moment, the reflected wave field from the scatterer is tightly focused and is not affected
by the other scatterers. If there is an array element just above it to receive the reflected
signals, an optimally focused image can be reconstructed [17]. Then, the imaging condition
becomes t = τu(x′, z′) instead of t = 0. Thus, the focused image line at depth z′ can be
reconstructed according to [28]:

Iu(x′, z′) = pu(x′, z′, τu(x′, z′)) =
x

∞

Pu(k′x, z′, ω)·eik′x x′−iωτu(x′ ,z′)dk′xdω (22)

However, the computational burden of calculating τu(x′, z′) is very heavy for FMC
data, especially in multi-layered structures. To solve this problem, we extend the re-
ceived wave-field extrapolation to the transmitted wave field, to compensate for the
propagation time. For the u-th active element, the transmitted pressures can be written as
su(x, z = 0, t). Note that the transmitted pressures travel along the +z direction. According
to Equation (5), A(kx, ω) should be set to zero, and the extrapolated wave field from the
active array element u can be expressed as

Su(kx, z, ω) = Su(kx, z = 0, ω)·e−ikzz (23)

where Su(kx, z = 0, ω) is the spectrum of su(x, z = 0, t). Combining the wave-field
extrapolation and the tilt compensation operations in oblique multi-layered structures,
we can obtain the extrapolated transmitted wave field at position (x′, z′) in the L-th layer,
which is expressed as

Su(k′x, z′, ω) ∝ Su(k′x, z′ = 0, ω)·e−ik′z,L(z
′−z′L−1)

L−1

∏
m=1

exp(−ikz,mdm) (24)

where
Su(k′x, z′ = 0, ω) = Ψ(k′x, ω, a)·Su(k∗x(k

′
x, ω, a), z = 0, ω) (25)
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and

k∗x(k
′
x, ω, a) =

1
1 + a2

(
k′x − a

√
(1 + a2)·ω2/c2 − k′x

2
)

(26)

Ψ(k′x, ω, a) =
∂k∗x
∂k′x

=
1

1 + a2

1 +
ak′x√

(1 + a2)·ω2/c2 − k′x
2

 (27)

It should be noted that Equations (26) and (27) differ from Equations (16) and (19) due
to the physical differences between forward and backward propagations. Thus, the sign
function in Equations (7) and (15) should be different when it is used in the transmitted
wave-field extrapolation.

After extrapolating the transmitted wave field at the point of interest, the image can
be reconstructed by taking a correlation between the forward-extrapolated wave field of
su(x, z = 0, t) and the backward-extrapolated wave field of pu(x, z = 0, t), depth by depth.
The correlation in the frequency domain can be written as

Cu(x′, z′, ω) = Pu(x′, z′, ω)·Su(x′, z′, ω) (28)

where Su(x′, z′, ω) and Pu(x′, z′, ω) are the inverse Fourier transforms of Su(k′x, z′, ω) and
Pu(k′x, z′, ω) over k′x, respectively. The corresponding image condition is defined as

fu(x′, z′) =
∫

Cu(x′, z′, ω)dω (29)

After reconstructing all B-scan images, the final image is obtained by superimposing
the B-scan results:

f̂ (x′, z′) =
Nu

∑
u=1

fu(x′, z′) (30)

where f̂ (x′, z′) represents the distribution of scatterers in the Ox′z′ coordinates, and Nu is
the number of array elements.

2.4. Implementation

Figure 3 illustrates the implementation flowchart of the proposed algorithm. In summary,
the algorithm consists of five main steps:

1. Performing a 2D Fourier transform of the received pressures pu(x, z = 0, t) and
transmitted pressures su(x, z = 0, t).

2. Using Equations (17) and (25) for tilt compensation to extrapolate both received
and transmitted wave fields from the coordinate system Oxz to Ox′z′.

3. Using Equations (21) and (24) for wave-field extrapolations to obtain both received
and transmitted wave fields at depth z′ in layer L.

4. Image reconstruction at depth z′ by taking a correlation between the two wave
fields using Equation (29).

5. Obtaining the full-matrix image by superimposing all B-scan images using Equation (30).
It should be noted that the substitution of kx with k′x is implemented by an interpola-

tion in the kx domain. Note also that a frequency truncation is applied, as the frequency
spectrum of ultrasonic signals is band-limited. After the 2D Fourier transform, the spectra
Pu(kx, z = 0, ω) and Su(kx, z = 0, ω) are truncated to obtain a subset corresponding to
ω ∈ [2π fmin, 2π fmax], where fmin and fmax are the lower and upper cutoff frequencies of
the array, respectively. Therefore, the SNR of the image is improved due to the removal of
high-frequency noise. The efficiency is also improved due to the dataset size reduction.

The proposed algorithm provides an accurate method for compensating for the oblique
incidence of the linear array and achieving oblique incidence full-matrix imaging with a
significant efficiency advantage compared with the time-domain TFM.
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3. Results
3.1. Simulation

To verify the performance of the proposed method, a simulation for ultrasonic FMC
imaging in an oblique incidence situation was conducted. The simulation was designed for
immersion detection of a steel specimen with side-drilled holes (SDHs). The simulation was
carried out on the CIVA platform (version 2020, the French Atomic Energy Commission,
Paris, France). As shown in Figure 4, the specimen was made of steel, with a sound velocity
of 5889 m/s, and the reflectors were a set of SDHs with diameters of 1 mm. The SDHs were
arranged in a horizontal line with a step of 3 mm, and the vertical distance of the SDHs
from the surface of the specimen was 10 mm. The coordinate origin was set on the upper
surface of the specimen. The x-axis was parallel to the specimen’s surface while the z-axis
was along the depth direction. The ultrasonic transducer was set to be a linear array with
the detailed parameters listed in Table 1. The array and specimen were immersed in water,
with a sound velocity of 1483 m/s, and the angle between the array and the horizontal
plane was 10 degrees. The distance between the center of the array and the upper surface
of the specimen was 20 mm. The source signal was a Hanning windowed signal with one
and a half cycles. The FMC data were sampled at 50 MHz frequency with a time range of
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20 us, and then imported into MATLAB (version 2018b, MathWorks, Natick, MA, USA) for
post-processing. The raw dataset size was 4000 × 64 × 64 pixels.
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Table 1. The parameters of the phased array used in the simulation and experiment.

Array Parameter Value

Number of elements 64
Element pitch 0.6 mm
Element width 0.6 mm
Element length 10 mm

Center frequency 5 MHz
−6 dB bandwidth 78%

As well as the proposed method, the time-domain TFM was also used to process the
FMC data, for comparison. The time-domain TFM utilizes the Fermat principle to calculate
the refraction points at the interface, then accurately estimates the wave propagation time.
The processing computer had an AMD Ryzen 5 3600 CPU and an NVIDIA GeForce GTX
970 GPU. All the algorithms used in the simulation and the experiment were accelerated
by the GPU in MATLAB.

Figure 5a shows the result reconstructed by the time-domain TFM. It can be seen
that the tilted coordinate was well compensated. However, the shape of the SDHs in the
reconstructed image was distorted, and this increased as the angle of the incident beam
increased. Figure 5c shows an enlarged image of SDH A in the image reconstructed by
TFM. The shape of SDH A is no longer a circle. This distortion is introduced by the heuristic
approach used in the TFM, where the ray-based method used for the beam path calculation
results in errors in the oblique incidence compensation [16].

The result reconstructed by the proposed method is shown in Figures 5b,d is the local
enlarged image of SDH A. Apparently, the proposed method yields a more accurate result
than time-domain TFM. It can compensate well for the wave-field rotation introduced by
the oblique incidence and avoid the distortion of the reflectors. The proposed method pro-
vides a more rigorous solution to the inverse problem, and the array performance exhibits
less dependence on the lateral position x at any given depth z than the TFM. Furthermore,
Figure 5b shows a lower background noise than the result for TFM. Specifically, the signal-
to-noise ratio (SNR) of Figure 5b is 23.15, while the SNR of Figure 5a is 9.86. This means
that the proposed method can achieve a better SNR than the TFM.
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Figure 5. Simulation results reconstructed by TFM and proposed method. A in (a,b) represents the imaging result of the
tenth SDH of the specimen from left to right. (a) The image reconstructed by TFM. (b) The image reconstructed by the
proposed method. (c) The local enlarged image of SDH A in (a). (d) The local enlarged image of SDH A in (b).

To quantitatively analyze the performance of the proposed method and quantify the
image resolution, a dimensionless metric termed the array performance indicator (API) [11]
was adopted and defined as

API = A−6dB/λc
2 (31)

where A−6dB is the image area in which the amplitude is higher than−6 dB of its maximum
value in the defined imaging area, and λc is the wavelength at the center frequency.

As well as the API, the full width at half maximum (FWHM) was introduced to
represent the −6 dB lateral resolution of the results. Table 2 lists the APIs and FWHMs of
five representative SDHs, where the number of the SDH represents the order of the SDH
from left to right. From the table we can see that the average API of the result reconstructed
by the TFM was 0.7264, while that of the result of the proposed method was 0.7070. In
addition, the FWHM of the proposed method’s result was 0.9738 mm, which is about 4.5%
less than the result of the TFM. The table shows that the proposed method has a small
advantage compared to the TFM in lateral resolution. Table 2 also lists the time costs for
the image reconstruction with these two methods. The TFM took about 258.12 s, and the
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proposed method took only 4.31 s to reconstruct the image. The proposed method shows a
huge computational efficiency advantage compared with the time-domain TFM.

Table 2. Representative APIs and time costs with different imaging methods in simulation.

Methods
SDH 2 SDH 4 SDH 6 SDH 8 SDH 10 Average Time

CostAPI FWHM API FWHM API FWHM API FWHM API FWHM API FWHM

Time-
domain

TFM
0.7068 0.9937 0.7013 1.0313 0.7233 1.05 0.7356 1.0125 0.7648 1.0125 0.7264 1.02 258.12 s

Proposed
method 0.7666 1.0813 0.6853 1.0125 0.6670 0.9 0.6756 0.9188 0.7431 0.9562 0.7070 0.9738 4.31 s

Difference +8.5% +8.8% −2.3% −1.8% −7.8% −14.3% −8.2% −9.3% −2.8% −5.6% −2.3% −4.5% −98.3%

Note: the unit of FWHM is millimeters (mm).

Therefore, the simulation results show that compared to the TFM, the proposed
method can avoid the distortion of the reflectors and improve the SNR of the images while
achieving a relatively low API. More importantly, it has a huge efficiency advantage over
the time-domain TFM.

3.2. Experiments
3.2.1. Experiment A

Three experiments were also conducted to validate the performance of the proposed
method. The setup of experiment A is shown in Figure 6. Most of the parameters were
the same as those in the simulation, except for the specimen. The specimen used in the
experiment was an aluminum block, with a sound velocity of 6450 m/s. The reflectors
were four SDHs aligned in an angular direction with a diameter of 1 mm. The horizontal
distance of these SDHs was 3 mm, as was the vertical distance. The ultrasonic transducer
used in the experiment was a linear array produced by Olympus Corporation Company
in Japan. The detailed parameters of the array were the same as those used in the sim-
ulation, and are listed in Table 1. The FMC data acquisition was implemented with the
EXPLORER 64/128 FMC equipment produced by The Phased Array Company (TPAC,
West Chester, OH, USA), and the transmission and reception parameters were as shown
in Table 3.
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Table 3. Parameters for transmission and reception in experiment.

Parameter Value

Pulse width 100 ns
Pulse voltage −100 V

Sampling frequency 50 MHz
Sample points 4096
Amplifier gain 30 dB

Digitization 14 bit
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The experimental data were also processed by both the TFM and the proposed method.
The raw dataset size was 4096 × 64 × 64 and the reconstructed image sizes were 300 × 300.
Figure 7a,b shows the results reconstructed by the TFM and the proposed method, respec-
tively. Figure 7c–f shows the local enlarged images of the four SDHs in the result of the
TFM from left to right, respectively. Figure 7g–j shows the same enlarged images in the
result of the proposed method. The results show that both TFM and the proposed method
can compensate for the wave-field rotation very well. However, as in the simulation, the
experimental result of the TFM has a problem with distortion. The proposed method can
reconstruct the reflectors more accurately. The normalized amplitudes of the experimental
results are given in Figure 8. From this figure we can see that the background noise level of
the TFM result is higher than that of the proposed method. The SNRs of the reconstruction
results of the TFM and the proposed method were 5.85 and 9.19, respectively.
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left to right, respectively. (g–j) The local enlarged images of the four SDHs in the result of proposed method from left to
right, respectively.

In order to compare the experimental results of these two methods in detail, we
calculated the APIs and FWHMs of four SDHs in the reconstructed results of the two
methods, as listed in Table 4. Furthermore, the time consumptions required for the two
methods to reconstruct the experimental result are also listed in Table 4. It can be seen that
the TFM costs about 255.89 s to reconstruct the image with an average API of 0.7302 and an
FWHM of 1.0315 mm. In contrast, the proposed method only takes 4.25 s to reconstruct the
same sized image with an average API of 0.6691 and an FWHM of 0.9726 mm. This shows
that the proposed method can enhance the −6 dB lateral resolution by about 5.7% over the
TFM and improve the computational efficiency by about 60 times.
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Table 4. APIs, FWHMs and time costs with different imaging methods in experiment A.

Methods
SDH 1 SDH 2 SDH 3 SDH 4 Average Time

CostAPI FWHM API FWHM API FWHM API FWHM API FWHM

Time-
domain

TFM
0.7640 1.0125 0.7374 1.0125 0.7204 1.0323 0.6993 1.0687 0.7302 1.0315 255.89 s

Proposed
method 0.6473 0.9652 0.6503 0.9375 0.6834 0.9750 0.6956 1.0125 0.6691 0.9726 4.25 s

Difference −15.3% −4.8% −11.2% −7.4% −5.1% −5.6% −0.5% −5.3% −8.4% −5.7% −98.3%

Note: the unit of FWHM is millimeters (mm).

3.2.2. Experiment B

The second experiment was carried out on a two-layer structure, as shown in Figure 9.
The upper layer was made of polymethyl methacrylate (PMMA), with a sound velocity
of 2337 m/s and a thickness of 20 mm. The lower layer was the same specimen used in
experiment A. The two-layer structure was immersed in water, and the distance between
the array center and the upper PMMA surface was 10 mm. The tilt angle of the linear array
was set to 8 degrees, and the rest of the experimental parameters remained the same as in
experiment A.
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Figure 10a shows the experimental result reconstructed by the proposed method. It
can be seen that the proposed method can compensate for the tilt angle very well and can
achieve a satisfactory result in the detection of two-layer structures. Figure 10b shows the
normalized amplitudes of these four SDHs in the experimental result reconstructed by
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the proposed method. We also calculated the FWHM for every SDH and the SNR of the
result, as listed in Table 5. As shown in Table 5, the proposed method achieved an average
FWHM of 1.012 mm in the detection of the two-layer structure, and the SNR of the image
was 26.18. This result is consistent with the results in experiment A. In fact, due to the
presence of the water, this experimental object should be considered a three-layer structure.
Therefore, the experimental results demonstrate the effectiveness of the proposed method
for oblique incidence detection of multi-layer structures. Furthermore, Table 5 shows that
the proposed method only costs 3.02 s to reconstruct an image with a size of 200 × 300 on
an ordinary PC.
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Table 5. FWHMs and time costs of the proposed method in experiment B.

Items FWHM: SDH1 FWHM: SDH2 FWHM: SDH3 FWHM: SDH4 Average FWHM SNR Time Cost

Values 1.038 mm 0.999 mm 0.987 mm 1.023 mm 1.012 mm 26.18 3.02 s

3.2.3. Experiment C

In order to further test the effectiveness of the proposed method in detecting defects at
different tilt angles and in different locations, experiment C was carried out. The specimen
used in this experiment was a standard B-type specimen for phased array ultrasonic testing,
produced by Shandong Ruixiang Mould Company (China, Shandong Province, Jining
City)., as shown in Figure 11a. It was made of 20# steel, with a measured sound velocity of
6012 m/s. The defects tested consisted of a set of SDHs with diameters of 1 mm arranged
along a circular arc of radius 25 mm, as marked by the red rectangle in Figure 11a. In
this experiment, we used a tilted wedge with an angle of 20 degrees for coupling, and the
distance between the first array element center and the upper surface of the specimen was
39.28 mm, as shown in Figure 11b. The sound velocity of the wedge was 2330 m/s. The
rest of the experimental parameters remained the same as in the former experiments. The
raw dataset size was 4096 × 64 × 64, and the data were imported into MATLAB 2018b for
post-processing.

To compare the imaging results, we used the TFM and the proposed method for image
reconstruction. As shown in Figure 12, both the TFM and the proposed method could
achieve imaging of the measured specimen and could compensate for the tilt angle of the
linear array very well. However, it can be seen from the figures that the reconstructed
images from both methods have shortcomings. The result of the TFM still had a distortion
problem, especially for the defects near to the upper surface of the specimen. Furthermore,
the background noise of the TFM result was very large. Although the proposed method
could overcome the image distortion problem and suppress the background noise, the echo
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energy of the defects near to the upper surface of the specimen was not as good as that
of the TFM. Furthermore, neither of the two methods could reconstruct the images of the
lowest defects well, because the refraction angle of the wave entering the specimen was
too large, resulting in too little energy reaching the lowest defects. However, the proposed
method still showed a great efficiency advantage, since the TFM cost 299.89 s to reconstruct
this image with a size of 300 × 450, while the proposed method only cost 5.01 s.
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4. Discussion

The experimental results show that the proposed method can achieve oblique inci-
dence full-matrix imaging of multi-layered structures. It has a great efficiency advantage
compared with the TFM and can suppress the background noise. It also shows an improve-
ment in lateral resolution.

However, the proposed method also has some limitations. Firstly, the imaging results
are not satisfactory and readable when the defect is in an area that the acoustic beam
cannot easily access, as shown in Figure 12b. This is due to the existence of the refraction
angle, resulting in the defect receiving very little acoustic energy. Secondly, although the
proposed method can achieve full-matrix imaging at any tilt angle mathematically, the
conversion of transverse and longitudinal waves in a solid medium must be considered in
practical applications. When the tilt angle is too large, the longitudinal waves in a solid
medium disappear. At this time, if the formula was still derived by using the velocity
of longitudinal waves, incorrect results would appear. In this case, the effectiveness of
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imaging with other types of ultrasound waves, i.e., transverse waves, should be considered
and tested in numerical simulations and laboratory experiments.

5. Conclusions

In this paper, a modified wavenumber method for full-matrix imaging of multi-layered
structures with oblique array incidence was proposed. The proposed method utilizes a
frequency-domain coordinate rotation to map the original wave field onto the virtual
measurement line parallel to the object’s surface, performs both transmission and reception
wave-field extrapolation in the rotated coordinate system, and finally obtains a total focused
image of the multi-layered structure by applying a correlation imaging condition. Since the
coordinate transformation is accurately defined in the mathematics, the proposed method
can deal with any incident angle without precision loss. It can be used in many applications,
such as immersion detection of large objects with slightly curved surfaces and oblique
incidence inspection of welds with an angled wedge. The performance of the proposed
method was evaluated by FMC imaging in an oblique incidence situation conducted both
in simulation and experimentally. Compared with the TFM, the proposed method provides
a more mathematically rigorous solution based on the wave equation, and it can suppress
the artifacts presented in the TFM. In addition, the algorithm efficiency is significantly
improved; for example, it only takes about 4.25 s to reconstruct an FMC dataset with a size
of 4096 × 64 × 64 on an ordinary PC. It was demonstrated that the proposed method is
superior to the TFM in both accuracy and efficiency.

In the future, the efficiency of the proposed method can be further improved to meet
the demands of real-time imaging and can be extended to 3D cases. Furthermore, the TFM
is shown to outperform the wavenumber algorithm at large angles relative to the array [16],
pointing the way for the improvement of the wavenumber algorithm.
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