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Abstract: This paper presents a novel meta-functional auxetic unit (MFAU) cell designed to improve
performance and weight ratio for structural bridge bearing applications. Numerical investigations
were conducted using three-dimensional finite element models validated by experimental results.
The validated models were exposed to compression and buckling actions to identify structural
failure modes, with special attention placed on the global behaviours of the meta-functional auxetic
(MFA) composite bridge bearing. This bearing uses an unprecedented auxetic sandwich core design
consisting of multiple MFAU cells. Numerical predictions of the elastic local critical buckling loads of
the MFAU cell were in excellent agreement with both the analytical and experimental results, with an
observed discrepancy of less than 1%. These results demonstrate that local buckling failures of MFAU
cells can potentially be incurred prior to yielding under compression due to their slenderness ratios.
Surprisingly, the designed sandwich core used in the MFA composite bridge bearing model can
mimic an auxetic structure with significant crashworthiness, implying that this novel core composite
structure can be tailored for structural bridge bearing applications. Parametric studies were thus
carried out in order to enrich our insight into the MFA composite elements. These insights, stemming
from both experimental and numerical studies, enable a novel design paradigm for MFAU that can
significantly enhance the structural performance of MFA composite bridge bearings in practice.

Keywords: meta-functional auxetic unit (MFAU) cell; local failure modes; auxetic behaviour

1. Introduction

To date, one of the most widely adopted design approaches for highway bridges
subject to static and dynamic conditions is the performance-based design concept [1–3]. As
such, a designer needs better insight into structural requirements and responses in order
to determine failure modes of each individual component of a bridge structure prior to
the installation of metamaterials in practice. Common elastomeric bridge bearings, also
called laminated rubber bearings (LRBs), are comprised of rubber layers and steel shims,
resulting in a tradeoff between horizontal flexibility and high vertical stiffness. During
dynamic loading, these bearings are vital components in a bridge system because they
must alternately experience vertical forces and large horizontal displacements induced by
the bridge deck. This leads to tensile (uplift) and compressive deformation to the LRBs,
due to the rotation of a pier cap around a transverse axis [4]. In addition, these bearings
are vulnerable to tensile loading, resulting in local failures in the interior of rubber as a
well-known cavitation phenomenon if they are not bolted through top and bottom external
plates [5–8]. Unlike compression loading, the rubber is capable of easily sustaining large
pressures without sustaining damage, as the tensile stresses are very low during the initial
cavitation stage [6]. Under exceptional earthquakes, the horizontal displacement can range
from 150 percent to more than 300 percent shear strain. Another failure of rubber bearings
is rollover for dowelled bearings [9]. These limit states are not examined in this work.
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In our previous work [10], we reviewed numerous recent studies on the development
of elastomeric bridge bearings using fibre reinforcement (fibre-reinforced rubber bearings,
FRRBs), which exhibit improved mechanical properties [11–22]. In contrast to LRBs, the
fibre reinforcement used in FRRBs offers such benefits as light weight, lower stresses in
bearings, and simple installation [10]. Nevertheless, the materials used in these bearings,
whether reinforced by steel or fibre, can be better designed in order to obtain specific
properties under expected loading conditions using metamaterials which cannot be found
in nature [23,24]. Their properties are obtained from the structural design rather than from
their constituent materials. Recently, many researchers have investigated auxetic structures
used for sandwich cores in a range of engineering applications. Auxetic structures possess
the novel property of a negative Poisson’s ratio (PR) [9,25,26]. Negative PR materials are
well-known for their excellent of lateral contraction behaviour and resistance to expansion
when exposed to compression and tension, respectively [27–34]. While common natural
materials, also referred to as positive PR materials, exhibit swell behaviour perpendic-
ular to compressive loading and contraction behaviour under tensile loading, as given
in Figure 1 [25,35], these auxetic materials provide a wide range of engineering advan-
tages with superior mechanical properties such as shear resistance [9], higher fracture
toughness, lower fatigue crack propagation [36–41], vibration mitigation [42], indentation
resistance [43], crashworthiness [44,45], light weight [46], energy absorption [47,48], etc.
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Therefore, auxetic structures are likely to be the ideal core for sandwich panels. A
conventional sandwich panel consists of a lightweight core, for instance honeycomb [49–55],
foam [56–58], etc. They are adhesively connected to two relatively thin facets which have
high stiffness and strength. Numerous studies have been performed on sandwich panels
with a two-dimensional auxetic metamaterial core to determine their vibration and bending
behaviours [49–55]. On the other hand, there are only a few studies regarding sandwich
panels with a three-dimensional auxetic lattice metamaterial core. In one study [59], it was
found that the use of the designed auxetic cellular core had enhanced dynamic response.
For impact resistance applications, sandwich plates with an auxetic lattice core confined
between two thin metal facets have been proposed, and results show that the modelling of
a lattice core can be used for beam components which have massive solid elements instead.
On the other hand, to the best of our knowledge following a critical review of the available
literature, there are no extant studies determining the local failure modes and critical
buckling loads of a meta-functional auxetic sandwich core for bridge bearing applications.

In this paper, we present a new design and analysis of a novel unit cell structure with
a negative Poisson’s ratio (which cannot be found in nature [23,24] but can be synthetically
3D-printed) for composite bridge bearings. This designed novel structure is investigated
in order to identify its local failure modes and critical buckling loads under compression,
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as well as to observe the overall behaviour of an MFA composite bridge bearing model
with an auxetic sandwich core made of these novel unit cells under compression. Ad-
ditionally, the buckling failure curve of an MFAU cell is presented in order to predict
its buckling behaviour for design and development in the near future. This proposed
auxetic 3D unit cell, fabricated through additive manufacturing, should have an extensive
range of versatility in applications including anomalous elastic wave polarization [60],
acoustic metamaterials for dominated band gaps [61,62], and sandwich structure cores for
bridge bearing applications under vibration. Numerical model design, including the 3D
printed rubber-like material used, will be detailed in the following section, followed by
the comparative results and discussion of the analytical and numerical buckling analysis.
Furthermore, the model validation for additive manufacturing is conducted by comparing
the numerical and experimental results.

2. A Numerical Model for an Auxetic Sandwich Core Used for Bridge Bearings
2.1. An MFAU Cell Computer-Aided Design (CAD) Model

In this section, the designed MFAU cell model of a sandwich core for bridge bearing
is provided, as shown in Figure 2. It is characterised by a re-entrant shape and selected for
its negative Poisson’s behaviour. Additionally, the selection of this structure is based on
a relatively simple design that which is able to be produced by additive manufacturing.
The MFAU cell has a three-dimensional geometry developed from a well-known two-
dimensional re-entrant auxetic unit (AU). The benefit of using a 3D AU cell is that it allows
for biaxial response in all loading directions, instead of the common uniaxial response of a
2D AU cell [63,64]. Compared to honeycomb structures, the MFAU cell designed in this
paper is a truss-like structure for bridge bearing applications. Importantly, it maintains its
auxetic behaviour at high strains, which is required for the exceptional loading conditions
of bridge bearing designs. The configuration parameters used in this MFAU model include
the length of the diagonal strut L, and two angles, β and α. The dimensions of the AU
cell model are depicted in Figure 2, where L = 12.57 mm, β = 56.16◦, and α = 37.30◦.
To avoid contact between the beams and ensure effective auxetic behaviour, these angle
parameters are limited. The height of the beams set in the vertical direction is represented
as m = 3 mm, while the connective beams set in the horizontal direction can be determined
as n = L cosα sinβ(1 − tanα) + 1. The eight struts of the upper and lower bases have a
square cross-section of width, w = 1.50 mm. Unlike the other beam components, they have
a circular cross-section of radius, a = 1.50 mm. The MFAU cell has a square base, and the
width is determined as K = 2L cosα. The whole height of the model is M = 2m + 2L cosβ,
and the whole width is K. The thickness of all components is 1.50 mm. As demonstrated in
Figure 2, the three-dimensional MFAU cell structure is 21.50 × 21.50 × 21.50 mm in size.

2.2. Effective Poisson’s Ratio of the MFAU Cell Model

Poisson’s ratio (PR) was first introduced by Simeon Dennis Poisson [65]. In this paper,
the effective PR of the MFAU cell model is defined as the ratio of transverse engineering
strain, induced by the lateral deformation, to axial engineering strain, which is induced by
the vertical deformation. Figure 3 illustrates the procedure for determining the effective PR
of the model. The lower base is simply supported in the vertical direction, while a uniform
static force is applied on the upper base of the MFAU cell model.
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3. Materials and Methods

In this work, we focused on the modes of local failures and the local critical buckling
loads of a 3D novel auxetic unit cell for composite bridge bearings. Using a metastructure
with negative Passions’ ratio, we observed the overall compressive behaviour of an MFA
composite bridge bearing with an auxetic sandwich core in order to obtain its compressive
stiffness. The MFAU cell can be fabricated via additive manufacturing from a thermoplastic
polyurethane (TPU) material; because of its complex structure, traditional manufacturing
is unable to meet the requirements. The TPU material is a common 3D printing material
and possesses rubber-like properties. Hence, it shows high elasticity, flexibility, shock
resistance, thermoplasticity, and high hardness, as well as outstanding abrasion and tear



Appl. Sci. 2021, 11, 10844 5 of 15

resistance [66–68]. For the material properties used in the MFAU cell and MFA composite
bridge bearing models for simulations, TPU had the following properties [69]: Young’s
modulus 2410 MPa; density 1235 kg/m3; Poisson’s ratio 0.39; yield strength 21 MPa;
and ultimate tensile strength 38.4 MPa. In the MFA composite bridge bearing model, a
proposed material for additive manufacturing shown in the application section which has
more vertical stiffness than the TPU material was selected for simulation. In addition, a
titanium carbide material was used for one facet connected to the auxetic sandwich core
model due to its high strength-to-weight ratio and improved vertical stiffness for composite
bridge bearing applications under compression.

The buckling analysis, in both analytical and numerical methods, was chosen because
of the geometry of the model, which is a truss-like structure. It is important to mention that
buckling is not a proportional phenomenon; it is instead likely to be a critical one. When
the compression level is relatively low, the behaviour of the component shows stability
without overall buckling behaviour. However, when the compressive loading takes place
at a critical level, the buckling behaviour appears suddenly. Obviously, the buckling
corresponds to the stiffness of the component and not to its strength. In addition, the fully
compressive behaviour of the composite bridge bearing with an auxetic sandwich core
using the proposed material was investigated to observe its vertical stiffness, as presented
in the result section. Model validation for the compression analysis was achieved by
comparing the vertical stiffness between the numerical and experimental results.

3.1. Analytical Analysis

In analytical buckling analysis, Euler buckling theory is a fundamental theory elu-
cidated in many reviews. It is important to note that the linear Euler buckling equation
found in these reviews is valid only when the material is still within its elastic limit (that
is, the critical slenderness ratio of a material, αcri , is less than the slenderness ratio of a
column, αcol). The slenderness ratio αcol is defined as Le f f /R , where R is the least radius

of gyration; R is defined as
√

Imin
A . The slenderness ratio of a material αcri is expressed as√

2π2E
σy

, where σy is the yield strength of a material. However, if the value of αcri is higher
than the value of αcol , the critical buckling load is calculated by using the Johnson equation,
as shown below:

Fcri = A
[(

σy
)
− 1

E

( σy

2π

)2
(αcol)

2
]

. (1)

As mentioned, the classical buckling analysis does not depend on a material’s yield
strength. Therefore, yield considerations are required in the buckling analysis of a column
in order to obtain a stress (Euler’s load divided by the cross-section area of the column,
A, given in the equation below) and compare this value to the yield strength of a ma-
terial to identify a failure mode of the material under compression if yielding appears
before buckling.

σcri =
Fcri
A

(2)

3.2. Numerical Analysis

To conduct numerical analysis, two 3D CAD models for the MFAU cell and MFA com-
posite bridge bearing using a sandwich core (5 × 5 × 3 unit cells) were generated by Fusion
360 software, as shown in Figure 4. Then, a 3D finite element method-based approach
using Siemens NX 12.0 Nastran (Siemens, Munich, Germany) software was followed in
order to simulate the analytical buckling analysis on the two column components (vertical
and diagonal) of the MFAU cell, as shown in Figure 5c.
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unit cell (c), and the MFA composite bridge bearing (d).

Two 3D column finite element models with the same boundary condition used in the
analytical analysis (free–fixed) were produced, with 1925 and 5872 tetra10 elements for
the vertical and diagonal columns, respectively. These two solid element models had a
very refined mesh (0.2 mm element size). The compressive load of 1 N was applied to
each component in the vertical direction, as shown in Figure 5a,b. When the simulation
of the eigenvalue problem was carried out, the obtained buckling load factor, δ, was used
for calculating critical loads for the two components. To obtain the critical loads, the
initial compressive loads were multiplied by the buckling load factor, δ. Furthermore,
the numerical investigation included the overall compressive behaviour of the MFAU
cell under the highest local critical buckling load obtained. In terms of bridge bearing
applications, a full three-dimensional model consisted of 13,319 and 2,301,690 tetra10
solid elements for the MFAU cell and MFA composite bridge bearing model, respectively.
Their entire three-dimensional tetrahedral method is presented in Figure 5c,d. Both solid
elements models had the same element size, 1 mm. The highest local critical buckling load
face was imposed on the top surface of the MFAU cell model; for the other model, the
enforced displacement constraint of 4 mm was applied to the top surface of a thin metallic
facet connected to the top surface of the auxetic core by using a glue surface-to-surface
contact. The base of each model was fixed.

Validation of the simulations was carried out by comparing the numerical critical
buckling loads of the two column components of the MFAU cell with the analytical ones
under the free-fixed condition, as shown in Figure 6. Under compression, the diagonal
column showed an analytical critical buckling load of 9.68 N and a numerical one of
9.74 N (relative error 0.62 per cent), while in the case of the vertical column it presented
an analytical critical buckling load of 108.28 N and a numerical one of 109.55 N (relative
error 0.70 per cent). In fact, the relative error of the vertical column would be higher if the
actual critical buckling load were calculated from the Johnson formula instead of the Euler
formula, due to the slenderness ratio of the TPU material being less than the critical one.
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4. Results

The analytical and numerical results presented herein were obtained using a Johnson–
Euler buckling approach and the finite element method (FEM), using Siemens NX 12.0
Nastran (Siemens, Munich, Germany) software for the analytical and numerical approaches,
respectively.

4.1. Analytical Results

Table 1 presents the analytical results of the critical Euler and yield load analysis for
each component of the MFAU cell, based on the linear Euler and Johnson theory. In this
section, the critical slenderness ratio of the TPU material, αcri, is compared with that of
each column component, αcol . As mentioned, if the slenderness ratio of a material is less
than that of each column component, the Euler theory is valid for the analysis, while if
the value of αcri is higher than the value of αcol , the Johnson theory is employed instead.
As can be seen in Table 1, the two column components of the MFAU cell model, which
are set for a free-fixed boundary condition, fail in buckling before yielding under uniaxial
compression. It is important to mention that this boundary condition was chosen because
it can potentially predict the critical buckling load in a worst-case design, and because it is
difficult to identify the boundary conditions of both columns in the MFAU cell model due
to its complex geometry.

Table 1. Analytical buckling results for both column components.

Vertical Column Diagonal Column

αcri< αcol 47.60 > 20 47.60 < 67.04
Theory Johnson Euler
Fcri (N) 34.00 9.68
Py (N) 37.17 37.17

σcri (MPa) 19.21 5.47
σy (MPa) 21.00 21.00

Mode of failure Buckling Buckling

Nevertheless, the value of the critical buckling load of the vertical column is close to
the load at the yield point of the TPU material. This means that the failure behaviour of
the vertical column can alternately fail in buckling and yielding if the higher load level is
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applied to the MFAU cell model. While the critical load of the diagonal column is 0.26×
of the yield load of the material, the column first shows buckling behaviour in the linear
elastic region before yielding as the compressive loading is applied. It is worth noting that
the independent buckling behaviour of each component will be provided in the following
section through the numerical results.

4.2. Numerical Results

The results of the finite element model calculations in this paper are based on linear
Euler buckling theory. Obviously, the numerical results of the critical buckling load analysis
for the diagonal column are in good agreement with the analytical solutions, as shown in
Table 2, while in the case of the vertical column there is a large difference in the critical
buckling load analysis between the numerical and analytical results. This is because the
critical buckling load obtained from the FEM tends to overestimate Euler’s critical load
when the critical slenderness ratio of a material is higher than that of a column. To address
this issue, the nonlinear Euler buckling analysis should be conducted and compared to the
critical buckling load obtained from the analytical calculation using the Johnson equation,
which is more accurate for the calculation in this case. It is important to mention that in this
paper we focus on the linear buckling analysis in order to identify the local failure modes
of a meta-functional auxetic unit cell for bridge bearing using a linear isotropic material,
which at low strain is TPU. Furthermore, Figures 7 and 8 demonstrate the numerical
buckling behaviour (including displacement and stress distribution) of the vertical and
diagonal columns with a free–fixed boundary condition under compression, respectively.

Table 2. Numerical buckling results for both column components.

Vertical Column Diagonal Column

Buckling load factor, δ 109.55 9.74
Fapplied (N) 1 1

Fcri (N) 109.55 9.74
Relative error (%), compared to analytical results overestimation 0.62

Type of failure Buckling Buckling
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Therefore, it can be concluded that the local buckling behaviours of the MFAU cell
using a TPU material with rubber-like properties for bridge bearing applications are
dominated by the diagonal column at the critical buckling load of 9.74 N, and that local
buckling failure occurs in both columns before yielding. Furthermore, the results of the
overall behaviours of the MFAU cell and the MFA composite bridge bearing both exhibit
auxetic behaviour (contraction) under compression and have a local buckling failure located
on the vertical and diagonal columns, as shown in Figures 9 and 10.
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For the bridge bearing applications, we found that the previous MFAU cell model
using a TPU material was not suitable for the applications due to its low compressive
stiffness. Therefore, in this paper, the selection of an optimised material for the MFA
composite bridge bearing model was considered, especially for Young’s modulus, in order
to act as a typical bridge bearing. The variation of the mechanical properties used in
this model is given in Table 3. Surprisingly, the auxetic sandwich core used in the MFA
composite bridge bearing model (given in Figure 11) was still stable in the vertical direction
under compression, while the core showed auxetic behaviour. In addition, Figure 12
demonstrates that the appearance of individual area corresponds to the mechanisms of
deformation and the interactions among these novel unit cells at different strain regions
(0, 20, and 40 per cent of strain, respectively), which has been widely investigated in
many studies.
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Table 3. The various Young’s moduli used in the MFA composite bridge bearing model.

Simulation Young’s Modulus, E (GPa)

Model 1 200
Model 2 300

Proposed model 350
Model 3 400
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In order to validate the MFA composite bridge bearing model for practical use,
Figure 13 shows the comparative results for vertical stiffness of the model with various
Young’s moduli, presented in Table 3, and a common bridge bearing under compression
at a vertical displacement of 4 mm, comparing numerical predictions and experimental
measurements, respectively. It is clear that there is a small difference in vertical stiffness
between the numerical and observed experimental results on the curve of the figure, with
the proposed material having a compressive stiffness close to that typical of the common
bridge bearing used in the model (less than 0.78%). This means the proposed model acts
as a typical bridge bearing which can possibly resist the weight of a superstructure of
a common bridge. However, the model should be further investigated using static and
dynamic shear analysis in order to ensure better performance in reality. Note that the
proposed material is considered as a linear material and the proposed model would be
fabricated using a 3D printed composite with a high stiffness to density ratio (Cyanate
ester/HM carbon fibre) composed of polymer (30%) and carbon fibre (60%), as obtained
from the CES Edupack 2019 (Granta Design, Cambridge, UK) [70] software and as given in
Figure 14. The experimental measurements are based on the journal provided in [71].
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5. Conclusions

In this article, we have proposed a novel 3D meta-functional auxetic unit (MFAU) cell
with a negative Poisson’s ratio (NPR) for 3D printed composite bridge bearing applications.
Experimental results have been used to validate numerical models. The models have been
used for parametric studies and tailored design of the MFAU in order to develop new
insights. The key benefit of using a designed structure with NPR is a high-performance
to weight ratio. Their performance under compression was analytically and numerically
studied, considering the local buckling failures and also determining the critical buck-
ling loads and the buckling failure curve of the MFAU cell. Validation of the proposed
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model for additive manufacturing was conducted to obtain vertical stiffness by comparing
experimental results. Major conclusions include:

• Local buckling failure can potentially appear before yielding in the vertical and
diagonal columns of the MFAU cell under compression.

• The comparative results of the critical buckling load analysis of the vertical and
diagonal column between the analytical solutions and the numerical predictions are in
good agreement, with less than 0.70% and 0.62%, respectively, when the TPU material
is in a linear elastic regime.

• The failure curve of the MFAU cell model has been identified in order to predict its
local buckling phenomena based on the slenderness ratios.

• For bridge bearing applications, the overall compressive behaviour of the MFA com-
posite bridge bearing model shows auxetic behaviour (contraction), with promising
crashworthiness under compression.

• For additive manufacturing, the findings in this paper indicate that the MFA composite
bridge bearing model using a proposed material can, when compared to experimental
results, perform well under compression as a common bridge bearing. Thus, fabri-
cation by 3D printing and the development of this design for application could be
possible for practical use in the near future.

In short, robust analyses demonstrate that the proposed novel 3D auxetic sandwich
core model is promising for composite bridge bearing applications. Further studies on
the compression–shear behaviour of this novel core model for different environmental
conditions will be presented in the future.
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