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Abstract: Under the assumptions of linear elasticity and small deformation in traditional elas-
todynamics, the anisotropy of the medium has a significant effect on rotations observed during
earthquakes. Based on the basic theory of the first-order velocity-stress elastic wave equation, this
paper simulates the seismic wave propagation of the translational and rotational motions in two-
dimensional isotropic and VTI (transverse isotropic media with a vertical axis of symmetry) media
under different source mechanisms with the staggered-grid finite-difference method with respect to
nine different seismological models. Through comparing the similarities and differences between the
translational and rotational components of the wave fields, this paper focuses on the influence of
anisotropic parameters on the amplitude and phase characteristics of the rotations. We verify that the
energy of S waves in the rotational components is significantly stronger than that of P waves, and
the response of rotations to the anisotropic parameters is more sensitive. There is more abundant
information in the high-frequency band of the rotational components. With the increase of Thomsen
anisotropic parameters ε and δ, the energy of the rotations increases gradually, which means that the
rotational component observation may be helpful to the study of anisotropic parameters.

Keywords: rotation; translation; isotropic medium; VTI

1. Introduction

It is well known that the six-component records of ground motion include three-
component translations and three-component rotations [1]. In the past two decades, with
the development of rotational seismometers, the observation of rotations has gradually
increased, and rotations caused by earthquakes have attracted increasing attention in
the scientific and seismic engineering fields, and great progress has been made in both
theoretical research and practical applications [2–6].

In order to study the mechanism of seismological rotations, many meaningful in-
quiries have been made by means of indirect calculation, direct observation, and numerical
simulation. Aiming at the Newport–Inglewood (NI) fault in America, Wang et al. [7] used
a finite-difference method to simulate several earthquakes with magnitude 7 in different
hypocenters, and found the influence of source and receiving geological conditions on
the rotations. They also found that the variations of the source produce a great effect on
the rotations. Therefore, rotational observations may contribute to the exploration of the
mechanism of NI earthquakes. Ferreira et al. [8] simulated the rotations recorded at the
fundamental mode of surface waves with the full ray theory (FRT) for laterally smooth
heterogeneous Earth models, and found that the synthetic seismograms showed good
agreement with the real ones. With the joint observations of rotation rates and accelerations,
the one-dimensional S-wave velocity at the observing locations can be obtained. Pham
et al. [9] calculated the amplitudes of rotational rates based on the Kelvin–Christoffel
equations and found that the rotational rates caused by anisotropies were large enough
in strong earthquakes to predict the underground structures and constrain anisotropic
parameters. Tang et al. [10] developed a new method, the generalized reflection and trans-
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mission coefficient method, which could obtain the translational and rotational synthetic
seismograms in VTI media.

Barak et al. [11] performed a synthetic seismic experiment on a simple two-layer model
of a water-covered seabed, where there were isolated high-velocity spheres different from
the background medium. They found that the energy of the Scholte waves on rotational
components was stronger than that on translational components, which would be helpful
to identify different modes of waves and separate the surface waves from the body waves.
More importantly, with seven-component seismic data, including the pressure components
recorded by hydrophones, displacements recorded by three-component geophones, and ro-
tations recorded by three-component rotational seismometers, their analyses presented the
possibility to recover the vector characteristics of wave fields. Additionally, we previously
discuss the differences between body waves and surface waves projected on the rotational
components in 2D isotropic media [12], and Zhang et al. [13] found that the responses
of the anomalies with a lower velocity were more obvious on the rotational components
than on the translational components, and the energy of the shear waves on rotational
components was stronger than that of P waves.

Although there is much research about rotations at present, the characteristics of
rotations in transverse isotropic media with a vertical axis of symmetry (VTI) have not yet
been clarified, and the influence of the anisotropic parameters on rotations is still unclear.
In order to study the characteristics of the rotations generated from different sources in VTI
media and explore the significance of rotations to the research of anisotropic parameters,
we simulate the seismic rotations and translations based on the first-order velocity-stress
equations using the staggered-grid finite-difference method in 2D VTI medium, analyze the
similarities and differences between translations and rotations, and focus on the influence of
the Thomsen parameters [14] on rotations so as to promote the relationship of the rotations
and the anisotropies of the media, which can be helpful for the wave–field separation,
inversion of the anisotropic parameters and the study of the earthquake source mechanism.

2. Theoretical Foundations

Ground motion includes not only three components of linear displacements but also
three components of rotation in three-dimensional Cartesian coordinates (Figure 1). The
rotation tensor, the curl of the displacement field, is expressed as:

→
ω =

1
2
∇×→u (1)

where
→
ω is the rotation tensor and

→
u is the displacement tensor.
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In a two-dimensional plane, the seismic wave fields can be presented as two trans-
lational components, X and Z components, and a rotational component, ωy. In order to
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correlate with the general seismic velocity observation, the rotation rate vector Ry can be
expressed as:

Ry =
1
2
(

∂vx

∂z
− ∂vz

∂x
) (2)

where vx and vz are the X and Z components of the velocity, respectively; x and z are the
coordinates on the Cartesian system.

Using the staggered-grid finite-difference method [15], under the assumptions of
linear elasticity and small deformation, the one-order velocity-stress equations of the elastic
waves in 2D VTI medium can be expressed as:

∂σxx
∂x + ∂σxz

∂z = ρ ∂vx
∂t

∂σzx
∂x + ∂σzz

∂z = ρ ∂vz
∂t

∂σxx
∂t = c11

∂vx
∂x + c13

∂vz
∂z

∂σzz
∂t = c13

∂vx
∂x + c33

∂vz
∂z

∂σxz
∂t = c44(

∂vz
∂x + ∂vx

∂z )

(3)

where σxx, σzx and σzz are three stress components, t is time, ρ is density; c11, c13, c33 and
c44 are elastic coefficients, which can be calculated with [14]:

c11 = ρv2
p(1 + 2ε)

c33 = ρv2
p

c44 = ρv2
s

c13 = ρ

√[
(1 + 2δ)v2

p − v2
s

](
v2

p − v2
s

)
− ρv2

s

(4)

where vp and vs are the velocity of the P and S waves, respectively, and ε and δ are the
anisotropic parameters. We define different VTI models by giving different Thomsen
parameters to study the influence of anisotropic parameters on the translational and
rotational components. When ε = 0 and δ = 0, Equation (3) corresponds to an isotropic
medium.

Based on Equations (2)–(4), we simulate the seismic waves in discrete models with
the grids at second-order time and twelfth-order space differential approximations. In
addition, we use the Ricker wavelet with a 60 Hz central frequency to simulate the explosion
source, the radial concentrated force source, the vertical concentrated force source, and the
shear source, respectively. Furthermore, we utilize the splitting form of perfectly matched
absorbing layer boundary condition (SPML) [16] to weaken the boundary reflections.

3. Synthetic Examples

In order to study the influence of the source mechanism on rotations, we defined
model 1 as a 2D isotropic full-space homogeneous elastic medium, as illustrated in Table 1.
Since P waves theoretically do not generate rotational motion in isotropic media [9], we
compared the translational and rotational components generated from the concentrated
force and the shear source.

Table 1. Parameters of model 1.

Model vp (m/s) vs (m/s) ρ (kg/m3) ε δ

Model 1 2000 1200 2000 0 0

With a size of 200 m × 200 m, the shot in the center of the model, and the receivers
arrayed at a depth of 100 m with 1 m intervals, the translational and rotational components
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generated from different sources are shown in Figures 2–4, where the sample interval is
0.1 s and the total recording time is 0.1 s.
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In Figure 2, it is obvious that there are only S waves in the three components because
the model is isotropic and only S waves are produced by the shear source, while it can be
clearly seen that there are the first arrivals of P and S waves generated from the radial and
vertical concentrated force sources. The energy of the Ry component generated from the
concentrated force source is so weak that it needed to be magnified 10 times to be visible at
the same energy level with the other two components on the records. It can be found that
P waves are much stronger than S waves in the X component generated from the radial
concentrated force source, while S waves cause a stronger rotational motion, and P waves
are hardly visible in Ry components.

We extracted the 30th trace of the seismic records to make a further comparison
of translations and rotations, as shown in Figure 3. The influence of sources in the X
component and Ry component is much stronger than that in the Z component in the
far offset. The amplitude of P waves in the X component generated from the radial
concentrated force source is much stronger than that from the other two sources. However,
the amplitude of the S waves generated from the radial concentrated force source is weak
in all three components.

All these anomalies can be enhanced in the snapshots of different components gener-
ated from different sources (Figure 4), where there are only S waves in the Ry components.
In all snapshots, the shapes of the wavefronts in the X and Z components are round, which
is consistent with Zhang’s research [17]. It can be seen that the wavefront propagates with
reverse phase along the horizontal axis in the Ry component generated from the radial
concentrated force source, while it propagates with reverse phase along the vertical axis
in the Ry component generated from the vertical concentrated force source. However, it
propagates with the same phase around the circumference in the Ry component generated
from the shear force. The wavefronts in the X components and Z components are complex
and different from the Ry components.

Obviously, the energy of S waves is significantly stronger than that of P waves on the
Ry component, which means the Ry component may be helpful to identify different body
waves.
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4. Effects of Anisotropic Parameters on Rotations

In order to further explore the effects of anisotropic parameters on rotational motion,
we changed the Thomsen parameters δ and ε, based on the same seismic observation
system to simulate the three-component velocity fields. Eight different models are defined
as illustrated in Table 2: models 2–5 were mainly used to study the effects of ε on rotational
components by increasing ε from 0 to 0.3 as δ is constant, and model 4 and models 6–9 were
employed to explore the influence of δ by gradually increasing δ from −0.2 to 0.2 as ε is
constant. We first analyzed the simulation results under the explosion source in detail,
shown in Figures 5–12.

Table 2. Anisotropic parameters of different models.

Parameter Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

E 0 0.1 0.2 0.3 0.2 0.2 0.2 0.2
∆ −0.2 −0.2 −0.2 −0.2 −0.1 0 0.1 0.2
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The seismic records, wave field snapshots, and FK spectra of different models are
shown in Figures 5–7. Figure 5 demonstrates that, contributed by the velocity anisotropy,
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both P and S waves existed in the components in the VTI media. The energy of S waves
became stronger with increasing ε, while the effects of δ were almost invisible.

The shape of wavefronts in Ry components became elliptical in VTI media, as seen in
Figure 6. The eccentricities of the ellipse gradually increased with increasing ε, while the
eccentricity of the ellipse gradually decreased with increasing δ.

There are obvious P- and S-wave energy groups in the rotational components in the
FK spectra (Figure 7). With the increase of ε, the energy of P waves decreased gradually,
but became more concentrated at the same time, while the energy of S waves gradually
increased. However, the FK spectra of rotational components were almost unchanged with
increasing δ.

We extracted and boosted the 30th and 90th traces’ waveforms to study the effects
of ε and δ on the amplitude and phase of seismic waves, which represented the far and
near offset traces, respectively, to analyze the dynamic characteristics in detail. With
the increase of ε, the amplitude and phase of the seismic waveforms showed obvious
variations, as illustrated in Figure 8. In the near offset, with the increase of ε, the X
components changed slightly. The peak values of Z components decreased gradually, while
those of Ry components increased gradually. However, in the far offset, the peak values of
Ry components increased slightly, while the phase varied widely with the increase of ε.

The effects of δ on waves’ dynamic characteristics are shown in Figure 9. The effects
of anisotropy on the X components were nearly negligible in the far offset, while the effects
on the Ry components were obvious. The Z components changed substantially with the
increase of δ in the near offset. The waves on the rotational components changed more
obviously than those on translational components with increasing δ.

Furthermore, the influence of ε and δ on different components is shown in the ampli-
tude and phase spectra (Figures 10 and 11). We can conclude that the rotational components
had more high-frequency information than the translational components, since the spec-
tra of X components were mainly in the frequency range 60–100 Hz, Z components are
mainly in the frequency range 70–110 Hz, and Ry components in the frequency range
80–120 Hz. The amplitude variation of the Ry components was much greater than that of
the X components with the variation of ε. On the Z components, the bandwidths of the
wave fields became smaller, and the central frequencies became lower as ε increased. In
addition, δ had less of an influence on the amplitude spectra of the three components than
ε. With the increase of δ, the amplitudes of the wave fields on the X components and the
Ry components increased slightly, while the amplitudes on the Z components showed a
greater increase in the high frequencies.

In Figure 11, there are barely visible variations in the phase spectra of the X compo-
nents with variation of ε, demonstrating that ε had a minor effect on the X components. The
Z components of the four models differed mainly in the frequency range 100–200 Hz, while
they were almost the same in the low frequencies. With the increase of ε, the phase spectra
of Ry components varied more greatly than the translational components. The effects of δ
variation on the phase spectra of three components were less pronounced than the effects
of ε variation. The phase variation of X components was weak except in the frequency
range 180–200 Hz, while it was more substantial in the frequency range 90–130 Hz for the
Z components. With the increase of δ, the phase spectra of Ry components differed slightly,
but they were significantly different from the isotropic condition. It can be deduced that
rotation observations may be preferable to the study of anisotropic parameters.

Peak values of the 90th trace in different models can be seen in Figure 12. We found
that the peak values of the rotational components increased gradually with the increase of
ε, while they were almost the same with increasing δ.

To demonstrate the influence of the source on rotation, the seismic synthetic data and
snapshots of wave fields at 0.05 s generated from different sources for different models
are shown in Figures 13 and 14. There are obviously P waves and S waves in the seismic
synthetic data generated from the radial concentrated force source, while there are few P
waves in the seismograms generated from the other sources. The energy of P waves in the
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Ry components generated from the radial concentrated force source was stronger than that
generated from the vertical concentrated force source and shear source. With the increase
of ε, the energy of P waves generated from the radial concentrated force source was much
more enhanced than that of S waves, which is completely opposite to the outcome observed
with increasing δ. Since S waves existed in the Ry components generated from the vertical
concentrated force and shear source, it can be seen that the energy of S waves gradually
increased with the increase of ε and δ.
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The shape of the wavefront was an ellipse in VTI media generated from the shear
source and concentrated force source in the Ry components, while the wavefront was
round in isotropic medium. The energy of P waves was much weaker than that of S waves,
although it could barely be seen in the snapshots of wave fields generated from the shear
source and vertical concentrated force source. With the increase of ε, the eccentricity of
the wavefronts gradually increased. However, with the increase of δ, the eccentricity of
the ellipse gradually decreased to near-circular. We conclude that the sources have a great
influence on the wave fields of the Ry component.

5. Conclusions

We simulated seismic waves in VTI media with different anisotropic parameters under
different sources and analyzed the similarities and differences between the translational
components and the rotational components, especially focusing on the effects of anisotropic
parameters on the rotational motions. We drew the following conclusions from these
synthetic examples:

1. The energy of S waves is significantly stronger than that of P waves in the rotational
components, and the rotational components have more high-frequency information.

2. The wave fields of rotations propagate with different phase distributions under
different source mechanisms in space, and the vertical concentrated force source and
shear source cause much stronger rotations than the others.

3. The amplitude and phase characteristics of the rotations are more complex in VTI
media, which is helpful to distinguish VTI media from isotropic media. With the
increase of ε and δ, the energy of the rotational components increases. With the
increase of ε, the eccentricity of the wavefronts gradually increases, while with the
increase of δ the eccentricity of the ellipse gradually decreases to near-circular.
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4. Rotations are influenced more significantly by anisotropic parameters than transla-
tions, which indicates that the response of the rotations to the anisotropy is more
sensitive.

From the simulations and comparisons introduced in this paper, we can deduce that
rotation will be beneficial to distinguish VTI media from isotropic media and to predict
their anisotropic parameters.
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