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Featured Application: The application potential includes any sewage treatment system that makes
use of preventive maintenance plans for highly critical assets, and requires the utilization of an
optimized grouping strategy to improve the availability of the components involved.

Abstract: Wastewater treatment plants (WWTPs) face two fundamental challenges: on the one
hand, they must ensure an efficient application of preventive maintenance plans for their survival
under competitive environments; and on the other hand, they must simultaneously comply with the
requirements of reliability, maintainability, and safety of their operations, ensuring environmental care
and the quality of their effluents for human consumption. In this sense, this article seeks to propose
a cost-efficient alternative for the execution of preventive maintenance (PM) plans through the
formulation and optimization of the opportunistic grouping strategy with time-window tolerances
and non-negligible execution times. The proposed framework is applied to a PM plan for critical high-
risk activities, addressing primary treatment and anaerobic sludge treatment process in a wastewater
treatment plant. Results show a 26% system inefficiency reduction versus the initial maintenance
plan, demonstrating the capacity of the framework to increase the availability of the assets and reduce
maintenance interruptions of the WWTP under analysis.

Keywords: opportunistic maintenance planning; preventive maintenance; wastewater treatment;
anaerobic digestion process; mixed-integer linear programming

1. Introduction
1.1. The Relevance of Modern Maintenance Management in WWTPs

As technological development and operational efficiency increase within organiza-
tions, the production systems reveal a continuous increase of their complexity levels,
while simultaneously consumers, stakeholders, and communities demand higher quality,
reliability, and sustainability of the products and services required [1]. The interaction of
these phenomena has generated radical changes within organizations, mainly in the way
of meeting the demands of the interested parties, orienting themselves toward a holistic
and multidisciplinary approach [2]. In this scenario, modern maintenance management
has changed from being considered an auxiliary discipline necessary to maintain the opera-
tional status of equipment and assets, to becoming an essential strategic business function
in many industries, not only for improving the reliability and productivity levels of the
production systems involved, but also to increase the profitability of operations [3–5].

In the maintenance management context, the utilization of optimization tools during
the maintenance planning stage can offer substantial savings regarding Operation and
Maintenance (O&M) costs, considering that the potential for cost reduction can reach
between 10 and 20% of the maintenance budget, and the latter can even exceed total
operational costs in several industries [4,6]. On the other hand, optimized planning of
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maintenance activities in organizations can offer substantial improvements in the avail-
ability and productivity levels of the systems involved [6]; hence the need to devote a
considerable effort for the generation of cost-effective, flexible, and fast-deployable mainte-
nance plans, offering wide applicability and adaptability to different industrial settings
and environments [3,7].

In the case of the wastewater treatment process, the industry needs to optimize the
use of resources to achieve the expected service levels, which necessarily implies the use
of efficient management strategies within treatment plants to ensure their survival under
competitive industrial environments [8]. At the same time, water quality standards are
becoming more and more stringent to prevent the negative impact of wastewater dis-
charges on the environment [9]. Furthermore, this industry faces an additional challenge:
service failures and breakdowns do not only establish an operational cost increase, but also
represent a potential risk of environmental damage due to its malfunction [8]. Therefore,
wastewater treatment plants (WWTPs) must constantly develop efficient managerial strate-
gies, not only in the management of their operational resources and in the application
of maintenance plans and policies, but also in the proper management of wastewater,
ensuring the quality of service and environmental management of water resources [10,11].

1.2. Wastewater Treatment Plants and the Need for Cost-Effective Preventive Maintenance Strategies

Wastewater treatment is essential to protect human health and ensure the environmen-
tal sustainability of the planet [8]. Besides the relevance of stabilization and treatment of
effluents for human consumption, wastewater treatment-related processes represent a fun-
damental task in a wide variety of industries such as livestock, chemical, and mining [12].
In response to the industrial and government requirements and protocols, wastewater
treatment can be carried out through a wide variety of physical, chemical, and biological
processes [13]. In this regard, biological processes, including anaerobic digestion pro-
cesses, have demonstrated economic advantages over other treatment processes in terms
of invested capital and related operational costs [12].

Biosolids that are generated from the primary and secondary wastewater treatment
processes are denominated sludge. Generally, municipal sludge contains a wide variety
of organic and inorganic materials, including biomass, oils, heavy metals, synthetic ma-
terials, and pathogens; for this reason, these solids must be necessarily pretreated before
their disposal [13]. Within the wastewater treatment process, the treatment and use of
sewage sludge have become an international waste management problem. In this sense,
the digestion process in sludge treatment has become the first step in the reuse chain, repre-
senting up to 50% of the operational costs in sewage treatment plants [13,14]. Additionally,
the sewage treatment process establishes a valuable source of raw materials, especially for
obtaining nutrients, energy, and water for human consumption [9].

Within the municipal sludge treatment systems, anaerobic digestion processes have
demonstrated wide application and positive externalities as a sustainable technology [15,16].
Anaerobic digestion consists of a series of biological processes in which several microor-
ganisms decompose biodegradable materials in the absence of oxygen, differing in this
regard from aerobic treatment systems such as, e.g., activated sludge processes [13,17].
During the anaerobic digestion process, microorganisms convert the organic material into
mainly two products: digestate and biogas. The latter is mainly composed of carbon
dioxide and methane, which can be used to generate electricity and heat, starting from the
decomposition of biodegradable organic materials [18]. By the implementation of digestion
processes, the formation of odors is eliminated and pathogens are destroyed, also gener-
ating a stabilization of the organic product [19]. For these reasons, anaerobic digestion
processes have received increasing attention in several countries and organizations during
the past decades [17].

Anaerobic digesters or anaerobic reactors can be used both for sewage pretreatment
and sludge stabilization. Upflow anaerobic sludge reactors (UASB) closely resemble those
for sewage treatment, except that: (a) Recirculation of the sludge and its mechanical
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agitation are kept to a minimum or omitted; (b) the reactor is equipped in the upper
part with a system for separation of solid-gas phases [20]. This type of digester has
been successfully implemented in recent years for the treatment of municipal wastewater,
achieving high efficiency in the removal of suspended solids and biodegradable organic
matter in countries with warmer climates [21]. In addition, sludge from high-strength
wastewaters, for example, are preferably treated by anaerobic processes, thus providing
potential for energy generation while producing low-surplus sludge [12].

Although anaerobic digestion processes, in general, have demonstrated a compact
design and positive performance, they have evidenced certain difficulties, e.g., in providing
complete stabilization in the case of high resistance water treatment. For this reason, several
alternatives have been proposed to provide a cost-effective and efficient treatment for the
management of sewage sludge, such as, for example, hybrid systems which combine anaer-
obic and aerobic processes simultaneously [12]. Alternatively, wastewater treatment plants
must respond to an effective and efficient application of their maintenance plans, especially
on preventive maintenance (PM) activities, considering the environmental impact that an
operational malfunction may eventually cause. In this sense, several studies confirm that
the lack of optimal PM plans in industries tends to increase the costs of repairable assets,
deteriorating the productivity levels, and entailing social and environmental risks [22–24].

As in many reported industrial cases, sewage treatment plants have the potential
to improve cost-efficiency through an optimized strategy for the execution of PM plans,
considering that WWTP maintenance costs may represent 25% of total operational costs [8].
Additionally, the maintenance plans designed for complex systems address a wide variety
of maintenance activities, each with its specifications, execution periods, and technical
requirements. In this context, the application of PM activity grouping strategies can be
particularly useful, representing a cost-efficient solution for multi-component production
systems with high economic dependence, and where the costs associated with scheduled
and non-scheduled system stoppages (i.e., system inefficiency costs) are significantly higher
than the individual execution costs of the maintenance plan (i.e., direct execution costs).

1.3. Maintenance Grouping Strategies and Literature Review

In the maintenance planning context, the grouping strategy establishes a time span
over which a joint execution of a certain number of maintenance activities is planned
(See e.g., [25,26]). Through the application of the grouping strategy, it is possible to
reduce the system setup costs related to the preparation, assembly, or disassembly of
components when performing maintenance tasks. In the case of multi-component series
systems, the grouping strategy also allows increasing system availability and consequently
improving efficiency and productivity levels, while reducing the number of interruptions
and downtime service [27]. In this regard, the scientific literature shows a wide application
of this type of strategy in several industries, addressing the technical features of the
productive environments, as well as the complexity and interaction between its components.
In this sense, Thomas [28] originally proposed three types of multi-component system
dependencies, namely: economic, structural, and stochastic. In this way, it is possible to
classify the strategies proposed in the scientific literature, depending on the interactions
addressed in each particular case.

The economic dependence on a production system establishes that the joint execution
of maintenance activities is economically more efficient than their individual executions.
In this way, the grouping strategy then implies a reduction in total maintenance costs. The
vast majority of research related to the application of these strategies seeks to exploit this
phenomenon in economic-dependent systems (see Hameed and Vatn [29], Zhou et al. [30],
Xia et al. [31], Van et al. [32], Do et al. [26], Pandey et al. [33], Zhu et al. [34], Wu et al. [35],
Zhou and Yu [36]). Addressing economic dependency, Mena et al. [34] develops a frame-
work for planning PM activities, considering the use of time-window tolerances for the
advance or delay in the execution of activities under a controlled risk zone, facilitating
the creation of grouping schemes in a continuous-time planning horizon. Considering
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the close strategic relationship between operational and maintenance functions, recent
research extends the grouping problem from a joint optimization approach to operational
and maintenance management (See e.g., Nourelfath and Châtelet [37], Xiao et al. [38],
Bertolini et al. [39], Zhou and Shi [40], Chen et al. [41]).

In several production systems, scientific literature in the field have shown the presence
of different types of interactions or dependencies, which cannot be omitted when develop-
ing and implementing an efficient grouping strategy. For this reason, recent research in
the field addresses several dependency types in complex systems. Structural dependence,
on the one hand, includes the requirements for replacement, repair, and assembly of other
work units to carry out the maintenance activity on a certain component [28]. In this
sense, Dao and Zuo [42] address the existence of structural dependence for the evaluation
of a selective grouping and maintenance strategy in multi-state multi-component series
systems. On the other hand, stochastic dependence establishes the existence of lifetime
correlation and deterioration between the different components of the production system.
Recently, the research developed in Vijayan and Chaturbedi [43] simultaneously addresses
the economic and stochastic dependence in multi-component systems, while research
works such as Lu and Zhou [44], and Fan et al. [45] address the stochastic dependence
phenomenon by modeling the deterioration of the components.

In the context of sewage treatment plants, some studies have addressed the impact
of maintenance and renewal policies on the performance and efficiency of the plants,
revealing a strong relationship between the management and application of said policies,
the proportion of O&M costs, and the productivity levels. Hernández-Chover et al. [8]
assess the effect of maintenance strategies on the efficiency of the facilities for a sample of
WWTPs, establishing a correlation analysis between the non-parametric efficiency indicator
data envelopment analysis (DEA) and the maintenance cost items. The results show that
higher investment in preventive maintenance offers not only a reduction in total repair costs,
but also a positive effect on overall efficiency indicators. Similarly, Ozgun et al. [9] propose
the determination and analysis of cost functions in several full-scale sewage treatment
plants, disaggregating capital costs (investment and equipment), and O&M costs on a
sample of facilities in Istanbul. The study establishes, corroborating the results of previous
studies, that higher treatment levels increase O&M costs, especially in tertiary treatment
plants, reaching 58% of the total costs. This fact could be partly explained by the number
and complexity of the components required for tertiary treatment. Additionally, O&M
costs are fundamentally composed of energy supply costs and labor costs, reaching 39%
and 31% of the total costs in tertiary treatment plants, respectively. These research works
reveal the relevance of both energy cogeneration and the implementation of maintenance
strategies to improve the cost-efficiency of wastewater treatment facilities.

1.4. Research Contribution

Despite the extensive amount of research in the field, to the best of our knowledge,
there is no evidence of case studies observed for the application and implementation of
preventive maintenance grouping strategies in sewage treatment plants. However, recent
studies reveal a positive impact on the application of maintenance policies in the industry,
establishing a high correlation between investment in preventive maintenance, savings in
energy consumption, and increases in global efficiency indexes [8]. In this way, the research
gap reveals two fundamental aspects that this study seeks to exploit: (1) The absence of
case studies that address the application of maintenance grouping strategies in the water
treatment industry; (2) and besides, the need for adaptive, flexible, and fast implementation
strategies of PM plans in the wastewater facilities in response to efficiency, productivity,
and quality of service requirements. In summary, this research proposes a new strategy to
improve cost-efficiency and asset availability in wastewater treatment plants, with a focus
on the implementation of the grouping framework during the maintenance planning and
scheduling stages.
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The framework presented below considers the extension of the formulation originally
presented in Mena et al. [46], addressing the application of new criteria to improve the
applicability and adherence of the strategy in industrial environments, through the incorpo-
ration of time-window tolerances for the creation of opportunistic grouping schemes and
non-negligible PM execution times. Following the research line, the framework proposed in
this article seeks to improve the availability level of complex production systems, reducing
the number of system interruptions, while minimizing maintenance costs through the
distribution of stoppage costs for PM activities.

The article is structured as follows: Section 2 presents the established Methodology
for the application of the opportunistic grouping strategy; Section 3 presents the results
obtained under the application of the strategy; Section 4 discusses the results and their
impact on the analyzed case study; Section 5 establishes recommendations, limitations,
and future research in the field.

Research gaps found in the literature:

• Absence of case studies addressing formulation and implementation of maintenance
grouping strategies in the wastewater treatment industry;

• New and tailored strategies for an adaptive, flexible, and fast implementation of PM plans
in the wastewater facilities, seeking to improve cost-efficiency and quality requirements.

Main contributions of the study:

• Presentation of a novel case study for the implementation of preventive maintenance
execution strategy in wastewater and sludge treatment facilities;

• Framework formulation and computational optimization of a grouping strategy for
preventive maintenance activities, seeking to minimize the number of planned inter-
ruptions, fixed maintenance costs, and system downtime;

• Adaptation of the grouping strategy to the case study under analysis, in response to
the requirements of maintenance cost reduction, productivity, and quality of service
required on wastewater facilities;

• In-depth discussion of results and recommendations with a focus on managerial insights.

2. Materials and Methods

The research methodology addresses five essential aspects: the presentation and
context of the sludge and wastewater treatment process in the case study; the formulation
of the optimization model for the opportunistic strategy; computational implementation
and programming settings; and the discussion of the proposed performance indicators.

2.1. Wastewater Treatment Process: Case Study

The research addresses the study of the primary and sludge treatment in a WWTP
for human consumption. The first stage considers a preliminary treatment, which consists
of the removal of coarse fine solids, and sand. The preliminary treatment is followed by
the sedimentation process, removing approximately 40% of biochemical oxygen demand
(BOD) and 50% total suspended solids (TSS). After the primary treatment by flocculation
and settling process, the water effluent continues its course to the secondary treatment.
At the same time, the WWTP also considers the biologic treatment of sludge generated
from the lamellar settling stage, going through an anaerobic digestion process, until its final
disposal in a storage silo to become a sanitary landfill. The primary wastewater treatment
process is set up from the stages described in Figure 1.
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Figure 1. Wastewater treatment process diagram for the case study. Source: Own elaboration.

In the WWTP understudy, it is possible to consider three fundamental processing
lines: wastewater, biogas, and sludge treatment. The sludge is produced as waste from the
primary treatment phase and is transformed to treated sludge or safe biosolids, through
three main processes: sludge thickening, anaerobic digestion, and dehydration using
centrifugal pumps for proper handling and final disposal.

2.1.1. Effluent Treatment Process

The water flow mainly comprises the primary treatment process. The objective of
this stage is to remove the heavy solids from the stream, as well as eliminate possible fats
and oils spilled on the wastewater on its way to the plant. During this stage, the inlet
flow measurement to the plant is first established. Later, the retention of the bulky waste
takes place before the impact grates, to go through the roughing and sieving processes.
Once the high granulometry particles have been eliminated, the effluent continues its
course toward grinding and degreasing. The residues are extracted and diverted to the
fat concentrator and the sand classifier. Finally, the watercourse drifts to the mixing and
flocculation chambers, concluding in the primary sedimentation based on lamellar settlers.
The flow is measured again at the inlet of the settler, where the final effluent is available for
secondary treatment.

2.1.2. Sludge Treatment

The sludge treatment line contemplates the sifting, thickening, stabilizing, and dewa-
tering of the sludge from the sedimentation or primary clarification process. This stage
is based on the biological treatment of sludge, through the anaerobic digestion process.
After removing the waste through a sieving process, the sludge is pretreated considering a
thickening process, in order to obtain thickened sludge with an appropriate concentration
for entering the sludge digesters. The purpose of the thickening process is to reduce the
volume of sludge by partially removing useful water. In the thickener, the sludge is agitated
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and remains in the chamber for a prolonged period, where the heavier particles settle at
the bottom of the thickener, separating the useful water from the sludge, the former being
extracted by mechanic suction.

The sludge is subsequently derived from the anaerobic digesters for its stabilization.
This stabilization is achieved through a biological procedure that allows degradation of the
remaining organic matter, utilizing a biological fermentation carried out in a vacuum cham-
ber [13]. A variety of gases are obtained from the chemical reaction processes involved in
fermentation, mainly methane and carbon dioxide. To improve the mesophilic stabilization
process, the sludge is preheated at the inlet of the digester to maintain a temperature of
35 ◦C. For this purpose, the sludge building contains a system of hot water boilers, spiral
water, sludge and heat exchangers, and horizontal centrifugal pumps to propel the hot
water to the exchangers. Finally, the stabilized sludge is stored in a buffer tank and later
dried using decanter centrifuges. The dewatered sludge is finally transported for its storage
in silos.

2.1.3. Gas Processing and Power Generation

Sewage treatment comprises high energy-consuming processes, whose electricity
consumption contributes up to 30% of total operating costs, and the treatment and disposal
of sludge constitute about 20% of the total operating costs [47]. From the total electricity
consumption of the plant, 35% is used for the treatment of the sludge and its disposal [48].
A considerable part of the thermal energy is required to manage the sludge produced
during the digestion process. The biogas generated in the anaerobic digestion process can
be used to generate combined heat and power (CHP) for energy cogeneration [48].

During the sludge stabilization process, biogas is obtained as a result of a methanogen-
esis reaction, which can be used for the production of electrical energy and the consumption
of the plant. In the gas processing line, biogas is produced, stored, treated, and the obtained
energy is reused in the combustion process for energy use within the treatment plant [49].
In this sense, the yield of the biogas and the digested matter are interdependent: while
the former increases, the latter decreases. Additionally, the organic solids generated in the
anaerobic digestion process can be used as fertilizers, so their agricultural application can
be more environmentally benign [48].

A portion of biogas is used during the digestion of sludge, as fuel for the generation
of electrical energy in the plant. The remanent biogas is carried out in the sludge heaters
used to maintain the digester under mesophilic temperature, supplying energy to the heat
exchanger. As the sludge heats up and enters the digesters, the water cools and can be
returned to the engine cooling system. Finally, the odors are extracted through a network of
ducts that will connect the processes with the deodorization system. Figure 2 summarizes
the different assets involved in the anaerobic digestion process within the WWTP.

Based on the primary treatment and sludge treatment described in Section 2.1, and the
application of a criticality analysis of the assets, it is possible to identify fifteen (15) main-
tenance activities that are critical and highly hazardous to the operation of the WWTP.
These activities correspond to different essential tasks for the operation of the different
areas and processes involved in wastewater treatment. To carry out each of these activities,
it is necessary to stop the continuous process in the wastewater primary treatment or
in the sludge treatment, which involves a loss in the availability of the assets involved.
The information on the preventive maintenance plan is summarized in Table 1.
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Figure 2. Anaerobic digestion process for the case study.

Table 1. Preventive maintenance plan for highly critical and hazardous activities. Case study.

ID Area/Process Activity Description Execution Periodicity (w) Execution Time (h)

1 Roughing Inspection of sensor chains
and electrical connections 20 8

2 Grit removal Inspection of aerators for
desanding process 48 8

3 Roughing
Grit Removal Change of luminaires 36 5

4 Grit removal Bridge repair 18 96

5 Mixing
Inspections and

unclogging of submersible
pumps

15 24

6 Homogeneization Agitator check 10 24
7 Deodorization Tower cleaning 50 72
8 Gas flow line Equipment maintenance 4 72

9 Electrical distribution
Scheduled inspection of

medium voltage
equipment

1 1

10 Dehydration Inspection of agitator and
electrical cables 12 24

11 Electrical distribution MT switchgear 30 1

12 Sludge digestion
Check flow meters and gas

flow leaks in purge
chambers

24 4

13
Sludge

digestion—Digester
room

Checking and cleaning the
heat exchanger and

controller
20 6

14 Sludge digestion Temperature probe and
thermostat inspection 28 2

15
Sludge

digestion—Digester
room

Three-way valve and
actuator inspection 35 5
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2.2. Opportunistic Grouping Strategy for the Preventive Maintenance Plan
2.2.1. Maintenance Grouping Strategy Framework Formulation

The grouping strategy proposed below considers an extension of the research origi-
nally presented in Mena et al. [46], which incorporates the use of time-window tolerances
for the creation of grouping schemes during the planning stage of preventive maintenance
activities. The extended formulation, as presented below, considers the incorporation of
new applicability criteria to improve adherence and adaptation of grouping strategies
under several industrial environments, including wastewater treatment plants.

Consider an arbitrary set I that includes a total of |I| maintenance activities to be
planned on a fixed planning horizon T, characterized by a continuous-time analysis and
set by the planner according to scheduling requirements. Consider Ji as the set of total
executions to be scheduled for each i ∈ I. Considering that the most common scenario is to
establish a fixed frequency for each PM i ∈ I activity, the framework contemplates a fixed
execution periodicity Ti < T and known fixed execution times pi. As in the base formula-
tion presented in Mena et al. [46], the framework originally establishes a time window over
which each activity can delay or advance its execution time ts

i, j, by a maximum of wi = e · Ti
time units, where e represents a tolerance factor, expressed in terms of a percentage. In this
way, the length of the time window wi depends exclusively on the periodicity associated
with each PM activity i, and in turn, ts

i, j ∈
[
t f
i, j−1 + Ti − ei·Ti, t f

i, j−1 + Ti + ei·Ti

]
, so the

start time ts
i, j depends directly on the execution completion time t f

i, j−1. In this way, the
start time can be modified with respect to its tentative execution date, which corresponds to

ts
i,j = t f

i,j−1 + Ti (1)

Therefore, the use of tolerance seeks to generate simultaneous executions of work activ-
ities, thus establishing grouping schemes throughout the planning horizon (See Figure 3a).
The framework defines the existence of a work package when two or more executions (i, j)
and (i′, j′) satisfy the following condition:

ts
i,j = ts

i′ ,j′ , ∀i, i ∈ I : i 6= i′ (2)

This means that a work package is necessarily formed if two or more selected activities
are executed in parallel and at the same start time. Therefore, the grouping definition stated
in expression (2) establishes that the time windows of the executions (i, j) and (i′, j′) must
overlap to generate new grouping schemes. This formally implies that two activities can
be grouped only if the following condition is satisfied, with respect to the time-window
tolerance definition:[

t f
i,j−1 + Ti − ei·Ti, t f

i,j−1 + Ti + ei·Ti

]
∩
[
t f
i′ ,j′−1 + Ti′ − ei′ ·Ti′ , t f

i,′ j′−1 + Ti′ + ei′ ·Ti′
]
6= ∅ (3)

The definition of grouping schemes presented is based on two main advantages.
On the one hand, simultaneous execution of PM activities allows sharing fixed mainte-
nance costs in economic-dependent systems, reducing the number of system interruptions
while reducing downtime in multi-component series processing lines. On the other hand,
the definition allows to reduce the complexity of the problem arising in other overlapping
conditions, e.g., in the case where ts

i, j 6= ts
i′ , j′ and max

{
ts
i, j, ts

i′ , j′

}
≤ min

{
t f
i, j, t f

i′ , j′

}
.
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Figure 3. (a) Impact of the grouping strategy on the periodicity and tentative executions; (b) impact
of grouping schemes over the system unavailability.

As a general rule, it is satisfied that pi 6= pi′ . Therefore, the existence of grouping
schemes generates that t f

i, j − ts
i, j ≥ pi, given the difference between the repair times of the

activities involved (See Figure 3b). Therefore, it is necessary to distinguish the unavailability
time ri, j, versus its individual execution time pi, for each of the executions (i, j) ∈ I × Ji.
This is necessary considering the relationship between the completion time and the start
time of the same activity, i.e., t f

i, j − ts
i, j = ri, j ≥ pi. In this way, the unavailability time for

each execution (i, j) is determined by the occurrence of the grouping schemes, which is
formally expressed as

ri,j = max
i, i′ ∈ I :
i 6= i′,

zi,j,i′ ,j′ = 1

{pi′} (4)

where zi, j, i′ , j′ represents a grouping binary variable which takes the value of 1 if the
pairs (i, j) and (i′, j′) form a work package (or equivalently, an opportunistic group).
As indicated above, the resumption time of a finished execution can be modified due to the
formation of grouping schemes, which affect the future planning of the execution times.
Besides, considering that ts

i, j and t f
i, j depend on ri, j, which in turn depends on the grouping

decision (i.e., the value of the binary variable zi, j, i′ , j′ ), it is not possible to determine a

priori the set of values
{

ts
i, j, t f

i, j

}
i∈I, j∈Ji

. Therefore, considering that Ji corresponds to a

known parameter, the following procedure will be considered to determine the number of
scheduled executions:

Ji =
{

j ∈ Ji : j = 1, 2, . . . , b T
r+Ti+eiTi

c
}

, ∀i ∈ I (5)
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where r = max
i∈I
{pi}. Once Ji has been determined, it is then necessary to determine the

feasibility of the groupings between the different activities that compose the PM plan. Con-
sidering that the time-window tolerances impose grouping feasibility constraints, a search
algorithm is proposed in order to explore feasible grouping schemes, thus improving the
processing time of the optimization model. The search Algorithm 1 is presented below:

Algorithm 1: Generation of feasible PM grouping pairs

Input: Store pi, Ji, ∀i ∈ I
1: P← {pi : i ∈ I} ; N ← [ ]
2: C = 0
3: For each i ∈ I:
4: C ← C + |Ji|
5: R← PC (generate cartesian product set)
6: For each instance p ∈ R:
7: r ← [ ], Np ← [ ], M← [ ]
8: For each i ∈ I, j ∈ Ji:
9: pi,j ← p[i, j]
10: ri,j ← pi,j
11: r[i, j]← ri,j
12: For each i ∈ I:
13: Calculate and store Ni with r[i, ·]
14: For each i, i′ ∈ I :
15: Np = {(i, j, i′, j′) : i′ > i ∧ Ni ∩ Ni′ 6= ∅}, ∀ j ∈ Ji, j′ ∈ Ji′

16: If NP 6= ∅ :
17: For each (i, j, n, o) ∈ Np:
18: Add (i, j, n, o) to M
19: For each (i, j, n, o) ∈ M :
20: If (i, j, n, o) /∈ N:
21: Add grouping pair (i, j, n, o) to N
Output: N set

The algorithm begins by generating a set of arbitrary values
{

ri, j
}

i∈I, j∈Ji
, obtained

from a sample of individual execution times {pi}i ∈I . A set of values then establishes an
arbitrary instance for the activities and executions {(i, j)}(i∈I, j∈Ji)

, from which is possible
to obtain each feasible grouping pair {(i, j, i′, j′) : i, i′ ∈ I; j ∈ Ji, j′ ∈ Ji′} for a given in-
stance. The sample for each scheme can be approached through an exhaustive searching
process, iterating over the Cartesian product R = PC, where P = {pi : i ∈ I}; C = ∑i∈I |Ji|,
obtaining in this way all possible grouping combinations. Each scheme allows the con-
struction of the set Ni, defined as:

Ni =
{[

t f
i,1 + ri,1 + Ti − eiTi, t f

i,1 + ri,1 + Ti + eiTi

]
, . . . ,

[
t f
i,|J| + ri,|J| + Ti − eiTi, t f

i,|J| + ri,|J| + Ti + eiTi

]}
, ∀i ∈ I (6)

In turn, the set Np contains all the information of the feasible groping pairs for each ar-
bitrary iteration instance

{
ri, j
}

i∈I, j∈Ji
. This is formally defined by the following expression:

Np =
{(

i, j, i′, j′
)

: i > i′ ∧ Ni ∩ Ni′ 6= ∅
}

, ∀j ∈ Ji, ∀j′ ∈ Ji′ ; i, i′ ∈ I (7)

Once all the possible grouping pairs (i, j, i′, j′) have been determined for each in-
stance, the tuples are incorporated and stored in the definitive set of grouping schemes
N. According to Mena et al. [46], the set N defines the solution space (feasible group-
ing pairs) for the clustering binary decision variables zi, j, i′ , j′ . Therefore, the presented
framework seeks to address two fundamental planning decisions: the grouping schemes
(i.e., the optimal set

{
zi, j, i′ , j′

}
(i,j,i′ ,j′) ∈ N

), and the execution time scheduling of the ac-

tivities (i.e., the optimal set
{(

ts
i,j, t f

i,j

)}
j∈ Ji , i∈I

), considering the use of time-window
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tolerances. In this regard, a conservative approach is taken into account for the use of the
aforementioned tolerance, to maintain as much as possible the tentative PM execution
plan. This approach is applied considering that the advancement or delay of the executions
implies incurring in suboptimal economic performance (advancing), or in a greater occur-
rence of failures (delaying) [46]. Considering the assumption that the system unavailability
corresponds exclusively to the occurrence of PM activities (i.e., system downtime is the
exclusive result of repair times associated with scheduled activities), the objective function
corresponds to the minimization of system unavailability, or equivalently, the time out of
service. The framework will be modeled through the MILP paradigm for optimization,
considering the following assumptions:

General assumptions for the integrated framework:

• The system contemplates a multi-component series arrangement, where each preven-
tive maintenance activity involves a system shutdown;

• The impact of stochastic and structural interactions on the system can be neglected;
• The system considers a uniform continuous (24 h) operational regime;
• The system considers a two-state operational condition (i.e., the system is necessarily

under repair or under operation);
• The execution of grouped PM activities always involves a simultaneous/parallel execution;
• The execution of the PM activity returns the related equipment to its initial operating

conditions (perfect maintenance).

2.2.2. Illustrative Example

The aspects addressed in Section 2.2.1 determine the application of new applicability
criteria under this opportunistic grouping framework. In order to illustrate the application
of the grouping schemes, consider below the following applied example, addressing the
planning of four PM activities in a time horizon of 8 (t.u.), whose periodicities and execution
times are specified in Table 2.

Table 2. Application example. Instance specifications.

Sets and Parameters Notation Value

Planning horizon T 8
Execution tolerance ei ei = 0.15, ∀i ∈ I
Scheduled activities |I| 4

Activity Periodicity Ti (t.u.) Execution time pi (t.u.)

1 3 0.2
2 5 0.1
3 7 0.3
4 4 0.2

Figure 4 represents a preliminary grouping scheme through the application of Algorithm
1, considering the initial instance where ri, j = pi, ∀i ∈ I. The intervals colored in blue repre-
sent the time-window tolerances, while the grey intervals represent the proposed intersections
for each activity. In this scenario, the number of preliminary grouping pairs established
and stored in the set Np corresponds to Np = {(1, 1, 4, 1), (1, 2, 2, 1), (1, 2, 3, 1), (2, 1, 4, 1)}.
As observed in Figure 4, the time window for execution (1,2) depends directly on the execution
time of the previous execution (1, 1). For example, if z1,2,2,1 = 1 is assigned, then its feasibility
will depend exclusively on the use of the tolerance time windows (i.e., an execution delaying)
of the previous execution (1, 1). Implementing Algorithm 1 for all the generated instances,
the set of total grouping pairs delivers N = {(1, 1, 4, 1), (1, 2, 2, 1), (1, 2, 3, 1), (2, 1, 4, 1)},
maintaining the preliminary results from the initial instance.
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Figure 4. Representation of the use of tolerances for the generation of feasible grouping schemes.

The grouping scheme of the previous initial solution delivers five maintenance in-
terventions with a system availability equivalent to 1.0 (t.u.). The feasible solution as-
sociated with the tentative maintenance plan is given by zi, j, n, o = 0, ∀ (i, j, n, o) ∈ N;
ts
1,1 = 3.0, ts

1,2 = 6.65, ts
2,1 = 4.25, ts

3,1 = 6.65, ts
4,1 = 4.25. The feasible grouping scheme pre-

sented in Figure 5 is depicted by the set {z1,1,4,1 = 0, z1,2,2,1 = 0, z1,2, 3,1 = 1, z2,1,4,1 = 1}.
This feasible solution is traduced into system unavailability of 0.7 (t.u.), thus generating
three interventions in total. Considering that the initial execution for execution (1, 1) corre-
sponds to ts

1,1 > T1, the time-window tolerance considered for ts
1,2 is reduced, discarding

the feasibility of grouping the pair (1, 2, 2, 1), thus forcing z1,2,2,1 = 0.

Figure 5. Illustrative example. Grouping scheme for a feasible solution.

The proposed grouping schemes still allow a further reduction in system unavail-
ability. Figure 6 establishes the optimal solution for the illustrative example, considering
the solution {z1,1,4,1 = 1, z1,2,2,1 = 0, z1,2,3,1 = 1, z2,1,4,1 = 0}, generating three system in-
terventions with total unavailability of 0.6 (t.u.). The new optimized scenario establishes a
40% reduction in the downtime associated with the base scenario derived from Figure 4,
allowing substantial savings in fixed maintenance costs and considerably improving the
availability of the production system.
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Figure 6. Application example. Schematic representation of the optimal solution for the instance.

2.2.3. An Optimization Model for the Maintenance Grouping Framework

Based on the proposed framework, the optimization model considers the following
decision variables and parameters (See Table 3).

Table 3. Summary and description of decision variables.

Decision Variable Description Nature

ts
i,j

Start time for the j-th
execution of activity i ts

i,j ∈ R+
0

t f
i,j

Resumption time for the j-th
execution of activity i t f

i,j ∈ R+
0

ri,j
Detention time assigned to the

j-th execution of activity i ri,j ∈ R+
0

di,j

Auxiliary variable for
downtime accountability

related with the j-th execution
of activity i

di,j ∈ R+
0

zi,j,n,o

Binary grouping variable,
where zi,j,n,o = 1 if the j-th

execution for activity i is part
of the group linked to the o-th

execution of activity n

zi,j,n,o ∈ {0, 1}

vi,j,n,o Auxiliary variable vi,j,n,o ∈ {0, 1}
ui,j Auxiliary variable ui,j ∈ {0, 1}

The following optimization model is formulated under the mixed-integer linear pro-
gramming (MILP) paradigm. The model considers the following set of constraints for the
use of time-window tolerances for the opportunistic grouping scheme:

min ∑ jεJi
i ε I

di,j (8)

s.t.
ts
i,j ≤ t f

i,j−1 + Ti + ei·Ti,∀j ∈ J, ∀i ∈ I (9)

ts
i,j ≥ t f

i,j−1 + Ti − ei·Ti,∀j ∈ Ji, ∀i ∈ I′ (10)

t f
i,j = ts

i,j + ri,j,∀j ∈ Ji, ∀i ∈ I (11)
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ts
i,j ≤ t f

i,j−1 + Ti + M

∑ (a, b, n, o) ∈ N,
(a, b) = (i, j)

za,b,n,o + ∑ (n, o, a, b) ∈ N,
(a, b) = (i, j)

zn,o,a,b

,∀j ∈ Ji, ∀i ∈ I (12)

ts
i,j ≥ t f

i,j−1 + Ti −M

∑ (a, b, n, o) ∈ N,
(a, b) = (i, j)

za,b,n,o + ∑ (n, o, a, b) ∈ N,
(a, b) = (i, j)

zn,o,a,b

,∀j ∈ Ji, ∀i ∈ I (13)

ts
i,j ≤ ts

n,o + M
(
1− zi,j,n,o

)
,∀ (i, j, n, o) ∈ N (14)

ts
i,j ≥ ts

n,o −M
(
1− zi,j,n,o

)
,∀ (i, j, n, o) ∈ N (15)

zi,j,k,l + zk,l,n,o ≤ 1 + zi,j,n,o,∀ j ∈ Ji, l ∈ Jk, o ∈ Jn, ∀i, k, n ∈ I :(i, j) 6= (k, l) 6= (n, o) ∧ (i, j, k, l), (k, l, n, o), (i, j, n, o) ∈ N (16)

ri,j ≥ zn,o,i,j·pn,∀ (n, o, i, j) ∈ N (17)

ri,j ≥ zi,j,n,o·pn,∀ (i, j, n, o) ∈ N (18)

ri,j ≥ pi,∀j ∈ Ji, ∀i ∈ I (19)

ri,j ≤ zi,j,n,o·pn + M(1− va,b,n,o),∀ (i, j, n, o) ∈ N,∀ (a, b, n, o) ∈ K, (a, b) = (i, j) (20)

ri,j ≤ zn,o,i,j·pn + M(1− va,b,n,o),∀ (n, o, i, j) ∈ N, ∀ (a, b, n, o) ∈ K, (a, b) = (i, j) (21)

ri,j ≤ pi + M
(
1− ui,j

)
,∀j ∈ Ji, ∀i ∈ I (22)

∑ (a, b, n, o) ∈ K,
(a, b) = (i, j)

va,b,n,o + ui,j ≥ 1, ∀j ∈ Ji, ∀i ∈ I (23)

vi,j,n,o ≤ zi,j,n,o,∀ (i, j, n, o) ∈ N (24)

vn,o,i,j ≤ zi,j,n,o,∀ (i, j, n, o) ∈ N (25)

di,j ≥ ri,j −M

∑ (a, b, n, o) ∈ N,
(a, b) = (i, j)

za,b,n,o

, ∀j ∈ Ji, ∀i ∈ I (26)

Under the utilization of constraints (9) and (10), it is possible to limit the execution
time according to the width of the specified time window for each execution (i, j). The set of
constraints (11)–(16) establishes the adaptation of the base formulation for the application
of the grouping strategy with time windows of tolerances, according to Mena et al. [46].

To correctly quantify the downtimes associated with each execution pair (i, j) in the
event of grouping schemes, it is necessary to incorporate the following sets of additional
constraints to the base formulation. The set of constraints (17)–(19) establishes in a first
instance suitable lower bounds for the measurement of ri, j. In this way, if a certain
execution (i, j) belongs to a work package, then the constraints (17) and (18) state that

ri,j ≥ max
i, i′ ∈ I :

i 6= i′,
zi,j,i′ ,j′ = 1

{pi′} (27)

Otherwise, the expression satisfies that ri, j ≥ pi, through constraint (19). Constraints
(20)–(22) establish several upper bounds to control the growth of the variable ri, j, through
the incorporation of the auxiliary binary variables ui, j and vi, j, avoiding an overestimation
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of the unavailability associated with each execution. In this sense, constraint set (23) ensures
that for the set of variables

{
ui, j, vi,j,k,l , vi,j,n,o

}
, only one of them is activated for each pair

(i, j), establishing precisely the best adjusted upper bound, so that the expression (27) is
translated into:

ri,j = max
i, i′ ∈ I :

i 6= i′,
zi,j,i′ ,j′ = 1

{pi′} (28)

In this way, the set of constraints (17)–(23) allows a correct assignment of the downtime
values through variable ri,j. Constraints (24) and (25) limit the growth of these variables in
the absence of grouping schemes, so that vi, j, n, o = 0, if zi, j, n, o = 0. Therefore, constraints
(16)–(25) generate the following behavior: if the tuple (i, j) is grouped, then its associated
downtime corresponds to the expression (28); otherwise, this time corresponds to ri, j = pi.
Additionally, constraint (26) is proposed to correctly count the unavailability associated
with each work package only once. Finally, the objective function corresponds to the
minimization of expression (8). In this way, the counting of di, j corresponds exactly to the
unavailability of the system, so that expression (8) corresponds to the minimization of the
system’s downtime. In summary, the model conformed by the objective function (8) and
constraints (9)–(26) corresponds to the optimization model for the opportunistic grouping
framework proposed in Section 2.2.1.

2.2.4. Computational Implementation and Optimization Settings

The framework presented in Section 2.2.3 responds to the MILP mathematical pro-
gramming paradigm, whose computational implementation has been widely extended in
optimization problems, especially on operations and maintenance management, including
the planning and scheduling phases, logistics, distribution, and multi-product optimiza-
tion [50]. In decision-based optimization problems, it is common to incorporate not only
quantities attributable to continuous variables but also discrete variables and non-linearities
that can be replaced by piecewise linearizations [50]. In these cases, the MILP paradigm is
adjusted responding to the requirements through Linear Programming-base Branch and
Bound solvers, which allow, in addition to the generation of strict upper and lower bounds,
to obtain performance metrics regarding the optimization of the solutions obtained, im-
proving computing times, and decreasing computational costs through the decision tree
pruning of integrality constraints [51]. In this way, these algorithms are characterized by
the obtention of deterministic optimal solutions, considering only exact parametrizations.

Despite the approach of these algorithms, a variety of highly complex problems,
including maintenance activity grouping problems [52], can offer a large number of ramifi-
cations of the decision tree, reducing the quality of upper and lower bounds, and therefore
generating a suboptimal solution [50]. However, new commercial alternatives combine
sophisticated techniques that combine the use of Branch and Bound algorithms with Branch
and Cut, e.g., engines such as CPLEX or Gurobi. Using commercial optimization engines
to solve the MILP model, the programming stages are described in detail below:

1. Definition of instance sets and parameters: In the first stage, the script defines the
parametric set that characterizes the instance presented through the PM plan in
Section 2.1. This implies incorporating information such as the number and frequency
of activities, the execution tolerance factors, and repair times per activity.

2. Embedding MILP solver: The Gurobi solver is implemented using Python program-
ming language for its optimization and obtaining results. To do this, a general
optimization instance is defined over which the sets of constraints that make up the
formulated framework are loaded. The optimization engine is executed under stan-
dard searching settings, aiming at an intensification strategy to improve the optimality
of the solution found, at the expense of higher computing times.
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3. Determination of performance indicators and rendering process: Once the best so-
lution found by the Gurobi solver has been obtained, the results are compiled and
stored in sorted list-type data, on which the information of each of the performance
indicators is obtained according to the definition specified in Section 3. To calcu-
late these indicators, the use of specialized programming packages is considered
to manipulate the data using real intervals, allowing the operations of union and
intersection of sets in the system unavailability estimation. The graphic material
is then rendered under the Python programming language, using the information
stored from the compilation.

3. Results

The computational results were measured through a 2.6 GHz processor and 8 GB
of built-in RAM, considering a 64-bit architecture. The implementation was carried out
using the Gurobi optimization solver, embedded with Pyomo programming language.
Different performance indicators were considered to measure and quantify the results
of each maintenance plan, under several tolerance factors. In addition to the system
availability indicators and related indicators, it is also relevant to measure the effective use
of the tolerance time windows, with respect to the estimated optimal grouping scheme.
In this sense, the following percentage indicators of average advancement AAV and average
delay DAV of the activities are presented in (29)–(30), where the sets I J− and I J+ exclusively
consider the number of early or late execution pairs (i, j), respectively:

AAV =
∑(i,j)∈I J−0

((
ts
i,j−1+Ti

)
−ti,j

)
eTi

∑i∈I |Ji|
,I J− =

{
(i, j) : ts

i,j −
(

ts
i,j−1 + Ti

)
< 0, ∀i ∈ I, j ∈ Ji

}
(29)

DAV =
∑(i,j)∈I J+0

(
ts
i,j−

(
ts
i,j−1+Ti

))
eTi

∑i∈I |Ji|
,I J+ =

{
(i, j) : ts

i,j −
(

ts
i,j−1 + Ti

)
> 0, ∀i ∈ I, j ∈ Ji

}
(30)

Additionally, the percentage frequencies of advanced, delayed, and conservative
executions of PM activities will be reported as auxiliary indicators for each instance. These
performance indicators are defined through the expressions (31)–(33) as follows:

f A =
|I J−|

∑i∈I |Ji|
, I J− =

{
(i, j) : ts

i,j −
(

ts
i,j−1 + Ti

)
< 0, ∀i ∈ I, j ∈ Ji

}
(31)

f D =
|I J+|

∑i∈I |Ji|
, I J+ =

{
(i, j) : ts

i,j −
(

ts
i,j−1 + Ti

)
> 0, ∀i ∈ I, j ∈ Ji

}
(32)

f 0 =

∣∣I J0
∣∣

∑i∈I |Ji|
, I J0 =

{
(i, j) : ts

i,j −
(

ts
i,j−1 + Ti

)
= 0, ∀i ∈ I, j ∈ Ji

}
(33)

Considering the complexity in the representation of the instances, as well as the diffi-
culty of presenting them explicitly, the results of the computational implementation under
several tolerance factors are summarized in Table 4. For the implementation of the group-
ing strategy, it was considered an annual planning horizon (52 weeks), and a maximum
tolerance factor of 5%, according to the standard percentages proposed in [46]. According
to the reported optimality gap, results reveal that the optimization model has reached
optimal solutions for each one of the instances. Simultaneously, a consistent increase in
the tolerance factor offers, in turn, a progressive decrease in the system unavailability.
The results show the capacity of the formulated framework to generate new grouping
schemes as the tolerance factor increases. This observation is corroborated by the progres-
sive decrease in the number of activities carried out on their tentative date. Alternatively,
the performance indicators AAV and DAV do not show a systematic behavior related to the
tolerance factor, as well as f A and f D.
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Table 4. Performance indicators for instances under several tolerance factors.

Tolerance Factor (e)
(%)

Best Value
(Weeks)

Optimality
GAP (%)

Resolution
Time (s) AAV (%) DAV (%) fA (%) fD (%) f0 (%)

0.00 7.98 0 0 0 0 0 0 100
1.00 7.59 0 0.1327 11.20 27.79 39.53 37.91 32.56
2.00 7.45 0 0.3022 10.57 32.15 44.18 30.23 25.58
3.00 6.87 0 0.3352 21.58 18.74 32.56 46.51 20.93
4.00 5.89 0 0.6390 35.87 12.04 23.25 55.81 20.93
5.00 5.87 0 0.9753 20.78 26.92 37.21 46.51 16.28

Additionally, the results show an increase in the computing times related to each
optimal solution as the tolerance factor increases. This is directly related to the increase
in the number of feasible grouping schemes as the time-window tolerances increase their
width for each execution pair. Therefore, an increase in the number of grouping schemes
implies a greater number of decision variables. However, the computing processing times
do not exceed more than 1(s) to solve the optimality problem, which is not a limitation for
solving grouping schemes to optimality in reasonable computational times.

Table 5 presents the results of unavailability by scenario, and the reduction of ineffi-
ciency, measured as the percentual difference between the system unavailability reported
from the initial solution with null tolerance factor (i.e., tentative execution plan), and the
unavailability reported by the optimal solution. As observed in the previous results,
the reduction of inefficiency through the application of the framework increases progres-
sively as the tolerance factor increases, achieving a reduction of 26% in the downtime
of the system under a 5% tolerance factor, reducing unavailability from eight weeks to
six weeks. Additionally, what is observed is a decrease in the progressive reduction of
inefficiency by consecutively reaching a higher tolerance factor. For example, going from
2% to 3% in the increase of the allowable tolerance causes an increase of almost 6% in the
reduction of inefficiency, while going from 4% to 5% only reports a 0.2% in the reduction
of unavailability.

Table 5. Results of unavailability of the system and reduction of inefficiency, for different tolerance
factors.

Tolerance Factor (e) (%) System Unavailability
(Weeks) Inefficiency Reduction (%)

0.00 7.98 -
1.00 7.59 4.6
2.00 7.45 6.6
3.00 6.87 13.9
4.00 5.89 26.2
5.00 5.87 26.4

The use of the tolerance time windows, as well as the assignment of the execution
times and conformed grouping schemes, can be presented employing a Gantt chart-based
representation, according to the nomenclature presented in Figure 3. Figure 7 represents
the base PM plan of the critical activities analyzed for a planning horizon of 52 weeks.
As observed, system stoppages are represented by grey vertical lines, while system un-
availability is represented by green bars. The initial tentative maintenance plan includes a
total of 35 stoppages, generating system unavailability of approximately 8 weeks per year.



Appl. Sci. 2021, 11, 10853 19 of 25

Figure 7. Optimal grouping schemes for the case study under tolerance factor e = 0%, considering a 52-week planning
horizon. (a) First semester (weeks 1–26); (b) Second semester (weeks 27–52).

If the application of a tolerance factor of 5% is now considered, then the number
of stoppages is reduced to 19, which implies an inefficiency reduction of almost 30%,
compared to the base case, which offers a gain equivalent of two-week system availability
per year. What is observed in this scenario (See Figure 8) is the use of the time-window
tolerances for the generation of grouping schemes, thus allowing to considerably reduce
the number of interruptions while increasing the availability of the system.
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Figure 8. Optimal grouping schemes for the case study under a tolerance factor e = 5%, considering a 52-week planning
horizon. (a) First semester (weeks 1–26); (b) Second semester (weeks 27–52).

4. Discussion

Although the results obtained from the computational implementation are consistent,
it is necessary to discuss the limitations and computational complexity issues that the
framework includes. In the first term, the values associated with the deviation indicators
from the tentative maintenance plan cannot be underestimated. Although the optimal
maintenance plan establishes a considerable reduction in the unavailability of the system as
the tolerance factor increases, the number of activities maintaining their tentative execution
date does not exceed 20% of the total executions.

In this sense, it is necessary to consider that the deviation from the tentative execution
date of the PM activities implies a risk: the advance of activities on its part implies a poor
economic performance, while its delay may increase the probability of failure occurrence
in certain assets [52]. This may bring a considerable impact on the degradation of the
assets, and therefore, on the probability of critical failures of the components if a previous
estimation of the tolerance factor is undertaken. Hence the need to estimate, based on
advanced optimization techniques and expert recommendations, the use of tolerance based
on a controlled risk zone, which does not involve malfunctions that affect the economic
performance of the plant, as well as the potential failures that may put the health of the
personnel and the environment at risk.
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On the other hand, it is necessary to discuss the resolution times reported in the
computational implementation. Although the different instances have reported a reason-
able computing time, what is observed is a consistent increase in the number of decision
variables, as well as in the number of constraints and the computing times reported (See
Figure 9). This must be taken into account when considering an increase in the number of
PM activities to plan and schedule, which may eventually cause an increase in computing
times or a suboptimal grouping scheme. In this sense, it is necessary to establish that the
size of the MILP model previously presented, and therefore its complexity does not depend
exclusively on the tolerance factor.

Figure 9. Computing times under several tolerance factor values. WWTP case study.

Considering that the proposed MILP model is implemented through the use of a
commercial solver, what is proposed as a measure of complexity is a theoretical expression
for calculating the maximum number of variables and constraints, which directly depend
on the number of executions, and indirectly, on the number and periodicity of activities, as
well as the tolerance of execution of each one of them. In order to quantify the problem
complexity, consider the following expression for the determination of the number of
variables and constraints involved in the framework. Let the quantities ĵ, n̂, k̂, and v̂ be
defined as:

ĵ = ∑
i∈I
|Ji|

n̂ =

(
ĵ
2

)
=

ĵ!
2!
(

ĵ− 2
)
!

k̂ = Vĵ,2 =
ĵ!(

ĵ− 2
)
!
= 2n̂

v̂ =

(
ĵ
3

)
=

ĵ!
3!
(

ĵ− 3
)
!

Then it is possible to calculate, considering the set of values
{

ĵ, n̂, k̂, v̂
}

, the maximum
theoretical number of variables and constraints, considering the limit case when e → ∞
(i.e., there are no grouping feasibility constraints by the use of tolerance time windows).
Table 6 shows the experimental values and the maximum theoretical value for the evaluated
instance, considering that ĵ = 43. As can be seen, the number of variables and constraints
increases progressively and approaches to maximum theoretical values when the tolerance
factor increases. This makes it possible to quantify the level of complexity of the formulated
framework, and also evidence the combinatorial explosion phenomenon detected in [46].
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Table 6. Number of variables and constraints under several tolerance factor values (e).

Case Number of Total
Variables

Number of Binary
Variables

Number of
Continuous Variables

Number of
Constraints

Theoretical 5 ĵ + n̂ + k̂ ĵ + n̂ + k̂ 4̂j 9 ĵ + 9n̂ + v̂
e = 0% 351 179 172 679
e = 1% 441 269 172 978
e = 2% 501 329 172 1196
e = 3% 531 359 172 1305
e = 4% 579 407 172 1487
e = 5% 624 452 172 1663

Max. Theoretical 2924 2752 172 13,287

The size and complexity of the model depend directly on the total number of execu-
tions to be planned, and the latter depends in turn on a variety of parameters, including
the execution periodicity, the number of activities to be planned, as well as the length of
the planning horizon. In this sense, it is important to observe that the grouping problem
presented here can be conceived as a variant of the Set Covering Problem, a problem
widely documented as an NP-Hard class problem [53,54]. In this sense, it is necessary to
take into account the occurrence of the combinatorial explosion phenomenon for larger
instances [46,52].

Additionally, the above-analyzed framework considers an unlimited availability of
resources for its execution. In a scenario of scarce availability of resources, the optimal
maintenance plan presented here may have to undergo considerable modifications. In this
case, it will be necessary to include new decision variables that address the problem of
resource allocation, thus considerably increasing the complexity levels and computational
tractability of the optimization model previously presented.

5. Conclusions and Managerial Recommendations

The research proposes the framework formulation and optimization model for the
opportunistic grouping strategy in the planning of preventive maintenance activities for a
wastewater treatment plant. A review of the operating context, as well as the formulation
of the framework and the respective optimization model, is addressed in detail through
this research. The computational results from the implementation of the model reveal
in turn a considerable decrease in the level of unavailability associated with the primary
treatment line and sludge treatment, which implies the potential to greater cost-efficiency
and an increase in productivity and performance levels through optimized strategies for
maintenance management in the WWTP under analysis.

However, it is necessary to consider the limitations and the challenges that the frame-
work formulation pose, among which are the consideration of a fixed periodicity under
perfect maintenance assumption, and the incapability to stochastically include the failure
phenomenon and its impact on maintenance plans. Other challenges posed through this
research include: the impact of the maintenance execution and opportunistic groups model-
ing with multiple failure modes per equipment; the incorporation of different maintenance
policies and grouping strategies with a focus on repairable systems; and alternatively,
the possibility of modeling degradation, along with stochastic and structural interaction of
the components involved in the complex production systems. These limitations in turn
represent research lines and suggestive challenges that will be addressed in future re-
search, which are directly related to the capacity of the framework to improve its flexibility,
adherence, and applicability of the grouping strategy in several industrial settings.

Based on the computational implementation and the obtained results, several recom-
mendations and insights focused on the maintenance management decision-making are
presented below:

• The maintenance grouping framework must be applied, restructured, and updated
periodically to ensure effectiveness as an operational support tool. Said update process
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must be managed both at an operational level, (through the requirements of parts
and pieces, personnel qualification, and repair and logistic-delay times) as well as
at a tactical level, (e.g., faced with the incorporation or redesign of tasks through
maintenance plan design tools such as Reliability Centered Maintenance).

• The framework assumes that components can necessarily share fixed setup costs
through the clustering process. This information must be corroborated at a tactical
level, by reviewing the procedures for the execution of PM activities, as well as
the effect of said activities on the productivity level or on the treatment plant cost
function. Otherwise, the framework formulated will not allow to optimally improve
the cost-efficiency of the current maintenance plan.

• It is also assumed that a certain work package can share a setup cost, regardless of
the number of grouped components. This necessarily implies that the more compo-
nents are added to a group, the greater the fixed maintenance cost savings. However,
the structure of fixed maintenance costs is generally complex, and besides, the avail-
ability of resources is generally scarce and limited. Additionally, there may be activi-
ties that may not eventually be grouped due to the existence of technical constraints
(assembly/disassembly procedures, technical infeasibility due to physical/layout lim-
itations). In this case, it is necessary to review the implementation of new constraints
to ensure the grouping feasibility and the application of resource and budgetary
restrictions. Future research works aim to address the aspects mentioned above to
consistently improve the applicability of the framework in different industrial settings.

• Regarding the relationship between the framework and risk management, the evi-
dence shows the exclusion of uncertainty metrics when defining risk, and the lack of a
clear definition of probability obtained in the risk assessment standards for sewage
treatment systems. Considering that the tolerance level implicitly establishes a certain
risk-acceptance level, it is important to establish the risk tolerance that the system can
allow without affecting the performance of the treatment plant. In this regard, it is
relevant to set the execution tolerance level based on the expertise, using tools such
as single-component multi-attribute optimization with a focus on risk management.
In this regard, it is important to consider the dependencies or critical interactions
between the components of the system, considering at least three main consequence
types: fatalities, injuries, and economic losses, which must be estimated on organiza-
tions, environment, and stakeholders.
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