Electrospinning Preparation of GaN:ZnO Solid Solution Nanorods with Visible-Light-Driven Photocatalytic Activity toward H2 Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ga(NO3)3-Zn(NO3)3/PAN Nanofibers and GaN:ZnO Solid Solutions
2.3. Preparation of Rh2−yCryO3-GaN:ZnO Photocatalyst
2.4. Characterization
2.5. Photocatalytic Measurements
3. Results and Discussion
3.1. Physicochemical Properties of the Obtained Samples
3.2. Photocatalytic H2 Evolution Performance
3.3. The Mechanism of the Photocatalytic Reaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.D.; Liu, J.Y.; Shangguan, W.F. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chin. J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Qin, Z.Z.; Chen, L.Y.; Ma, R.J.; Tomovska, R.; Luo, X.; Xie, X.L.; Su, T.M.; Ji, H.B. TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production. J. Alloys Compd. 2020, 836, 155428. [Google Scholar] [CrossRef]
- Wang, J.H.; Shen, Y.F.; Liu, S.Q.; Zhang, Y.J. Single 2D mxene precursor-derived TiO2 nanosheets with a uniform decoration of amorphous carbon for enhancing photocatalytic water splitting. Appl. Catal. B-Environ. 2020, 270, 118885. [Google Scholar] [CrossRef]
- Fu, B.; Wu, Z.J.; Cao, S.; Guo, K.; Piao, L.Y. Effect of aspect ratios of rutile TiO2 nanorods on overall photocatalytic water splitting performance. Nanoscale 2020, 12, 4895–4902. [Google Scholar] [CrossRef] [PubMed]
- Miseki, Y.; Sayama, K. Photocatalytic water splitting employing a [Fe(CN)6]3−/4− redox mediator under visible light. Catal. Sci. Technol. 2019, 9, 2019–2024. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, D.Q.; He, R.; Yuan, R.S.; Xie, T.F.; Li, Z.H. Rational design of Z-scheme PtS-ZnIn2S4/WO3-MnO2 for overall photo-catalytic water splitting under visible light. Appl. Catal. B-Environ. 2019, 258, 117948. [Google Scholar] [CrossRef]
- He, C.; Han, F.S.; Zhang, J.H.; Zhang, W.X. The In2SeS/g-C3N4 heterostructure: A new two-dimensional material for photocatalytic water splitting. J. Mater. Chem. C. 2020, 8, 6923–6930. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhang, Q.; Liang, L.W.; Chen, L.T.; Wang, Y.Y.; Tan, X.Q.; Wen, L.; Huang, H.Y. In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution. R. Soc. Open Sci. 2019, 6, 190433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-C.; Hou, Y.X.; Feng, F.-D.; Wang, W.-X.; Shi, W.; Zhang, W.Q.; Li, Y.; Lou, H.H.; Cui, C.-X. A recyclable molten-salt synthesis of B and K co-doped g-C3N4 for photocatalysis of overall water vapor splitting. Appl. Surf. Sci. 2021, 537, 148014. [Google Scholar] [CrossRef]
- Chen, H.F.; Tan, C.L.; Zhang, K.; Zhao, W.B.; Tian, X.H.; Huang, Y.W. Enhanced photocatalytic performance of ZnO monolayer for water splitting via biaxial strain and external electric field. Appl. Surf. Sci. 2019, 481, 1064–1071. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Zhang, Z.; Meng, S.G.; Wang, Y.X.; Li, D.Z. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chem. Eng. J. 2020, 393, 124676. [Google Scholar] [CrossRef]
- Cai, X.F.; Huang, Y.W.; Hu, J.Z.; Zhu, S.W.; Tian, X.H.; Zhang, K.; Ji, G.J.; Zhang, Y.X.; Fu, Z.D.; Tan, C.L. Tuning photocatalytic performance of multilayer ZnO for water splitting by biaxial strain composites. Catalysts 2020, 10, 1208. [Google Scholar] [CrossRef]
- Suzuki, T.M.; Tanaka, H.; Morikawa, T.; Iwaki, M.; Sato, S.; Saeki, S.; Inoue, M.; Kajino, T.; Motohiro, T. Direct assembly synthesis of metal complex–semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction. Chem. Commun. 2011, 47, 8673. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Miyahigashi, T.; Kotani, H.; Ohkubo, K.; Fukuzumi, S. Photocatalytic hydrogen evolution under highly basic conditions by using ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion. J. Am. Chem. Soc. 2011, 133, 16136–16145. [Google Scholar] [CrossRef]
- Tschierlei, S.; Karnahl, M.; Presselt, M.; Dietzek, B.; Guthmuller, J.; González, L.; Schmitt, M.; Rau, S.; Popp, J. Photochemical fate: The first step determines efficiency of H2 formation with a supramolecular photocatalyst. Angew. Chem. Int. Ed. 2010, 49, 3981–3984. [Google Scholar] [CrossRef]
- Xu, Q.L.; Zhang, L.Y.; Yu, J.G.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Fu, J.W.; Yu, J.G.; Jiang, C.J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Li, B.L.; Wang, J.P.; Gao, Z.F.; Shi, H.; Zou, H.L.; Ariga, K.; Leong, D.T. Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. Mater. Horiz. 2019, 6, 563–570. [Google Scholar] [CrossRef]
- Abeysinghe, D.; Skrabalak, S.E. Toward shape-controlled metal oxynitride and nitride particles for solar energy applications. ACS Energy Lett. 2018, 3, 1331–1344. [Google Scholar] [CrossRef]
- Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, W.K.; Wu, A.M.; Zhang, X.L.; Xu, T.T.; Liu, B.D. Band-gap tunable 2D hexagonal (GaN)1–x(ZnO)x solid-solution nanosheets for photocatalytic water splitting. ACS Appl. Mater. Interfaces 2020, 12, 8583–8591. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Huang, B.B.; Wang, Z.Y.; Wang, P.; Cheng, H.F.; Zheng, Z.K.; Qin, X.Y.; Zhang, X.Y.; Dai, Y.; Whangbo, M.-H. Facile synthesis of Zn-rich (GaN)1−x(ZnO)x solid solutions using layered double hydroxides as precursors. J. Mater. Chem. 2011, 21, 4562. [Google Scholar] [CrossRef]
- Maeda, K.; Domen, K. Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem. Mater. 2010, 22, 612–623. [Google Scholar] [CrossRef]
- Asakura, Y.; Nishimura, Y.; Masubuchi, Y.; Yin, S. Utility of ZnGa2O4 nanoparticles obtained hydrothermally for preparation of GaN:ZnO solid solution nanoparticles and transparent films. Eur. J. Inorg. Chem. 2019, 2019, 1999–2005. [Google Scholar] [CrossRef]
- Li, Z.; Qi, Y.; Wang, W.Y.; Li, D.; Li, Z.; Xiao, Y.N.; Han, G.Y.; Shen, J.-R.; Li, C. Blocking backward reaction on hydrogen evolution cocatalyst in a photosystem II hybrid Z-scheme water splitting system. Chin. J. Catal. 2019, 40, 486–494. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Huang, J.X.; Tang, H.; Yu, X.H.; Shen, J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J. Mater. Sci. Technol. 2020, 56, 196–205. [Google Scholar] [CrossRef]
- Mu, L.C.; Zhang, Q.; Tao, X.P.; Zhao, Y.; Wang, S.Y.; Cui, J.Y.; Fan, F.T.; Li, C. Photo-induced self-formation of dual-cocatalysts on semiconductor surface. Chin. J. Catal. 2018, 39, 1730–1735. [Google Scholar] [CrossRef]
- Phivilay, S.P.; Roberts, C.A.; Gamalski, A.D.; Stach, E.A.; Zhang, S.; Nguyen, L.; Tang, Y.; Xiong, A.; Puretzky, A.A.; Tao, F.F.; et al. Anatomy of a visible light activated photocatalyst for water splitting. ACS Catal. 2018, 8, 6650–6658. [Google Scholar] [CrossRef]
- Chen, L.H.; Chen, R.; Hu, H.F.; Li, G.H. Enhancement of photocatalytic hydrogen production of semiconductor by plasmonic silver nanocubes under visible light. Mater. Lett. 2019, 242, 47–50. [Google Scholar] [CrossRef]
- Kosem, N.; Honda, Y.; Watanabe, M.; Takagaki, A.; Tehrani, Z.P.; Haydous, F.; Lippert, T.; Ishihara, T. Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant escherichia coli. Catal. Sci. Technol. 2020, 10, 4042–4052. [Google Scholar] [CrossRef]
- Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295. [Google Scholar] [CrossRef]
- Hagiwara, H.; Kakigi, R.; Takechi, S.; Watanabe, M.; Hinokuma, S.; Ida, S.; Ishihara, T. Effects of preparation condition on the photocatalytic activity of porphyrin-modified GaN:ZnO for water splitting. Surf. Coat. Tech. 2017, 324, 601–606. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.-J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Kang, S.-X.; Yang, Y.-Y.; Yu, D.-G. Electrospun functional nanofiber membrane for antibiotic removal in water: Review. Polymers 2021, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.X.; Yang, Y.L.; Chen, H.J.; Shi, X.L.; Suo, G.Q.; Ye, X.H.; Zhang, L.; Hou, X.J.; Feng, L.; Chen, Z.-G. Tuning wall thickness of TiO2 microtubes for an enhanced photocatalytic activity with thickness-dependent charge separation efficiency. J. Colloid Interface Sci. 2020, 579, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wang, Y.T.; Xing, Y.; Shahid, M.; Pan, W. Surface defects decorated zinc doped gallium oxynitride nanowires with high photocatalytic activity. Appl. Catal. B-Environ. 2017, 209, 53–61. [Google Scholar] [CrossRef]
- Li, X.H.; Shao, C.L.; Wang, D.; Zhang, X.; Zhang, P.; Liu, Y.C. Low temperature preparation and characterization of (Ga1−xZnx)(N1−yOy) alloy nanostructures using electrospun nanofibers as source materials. Ceram. Int. 2014, 40, 3425–3431. [Google Scholar] [CrossRef]
- Masubuchi, Y.; Yamaoka, R.; Tohei, T.; Mizoguchi, T.; Ikuhara, Y.; Kikkawa, S. Nanowire of hexagonal gallium oxynitride: Direct observation of its stacking disorder and its long nanowire growth. J. Eur. Ceram. Soc. 2012, 32, 1989–1993. [Google Scholar] [CrossRef] [Green Version]
- Miyaake, A.; Masubuchi, Y.; Takeda, T.; Motohashi, T.; Kikkawa, S. Preparation of gallium oxynitride powder and its nanofibers by the nitridation of a gallium oxide precursor doped with nickel or cobalt obtained via the citrate route. Dalton Trans. 2010, 39, 6106. [Google Scholar] [CrossRef]
- Luo, Y.J.; Wang, K.C.; Qian, Q.R.; Zheng, W.W.; Xue, H.; Huang, B.Q.; Xiao, L.R.; Chen, Q.H. Fabrication and photocatalytic properties of Gd-doped ZnO nanoparticle-assembled nanorods. Mater. Lett. 2015, 149, 70–73. [Google Scholar] [CrossRef]
- Gelderman, K.; Lee, L.; Donne, S.W. Flat-band potential of a semiconductor: Using the mott–schottky equation. J. Chem. Educ. 2007, 84, 685. [Google Scholar] [CrossRef]
- Park, H.S.; Kweon, K.E.; Ye, H.; Paek, E.; Hwang, G.S.; Bard, A.J. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J. Phys. Chem. C 2011, 115, 17870–17879. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Zhong, H.; Liu, X.; Qian, Q.; Luo, Y.; Xiao, L.; Xue, H. Electrospinning Preparation of GaN:ZnO Solid Solution Nanorods with Visible-Light-Driven Photocatalytic Activity toward H2 Production. Appl. Sci. 2021, 11, 10854. https://doi.org/10.3390/app112210854
Mao J, Zhong H, Liu X, Qian Q, Luo Y, Xiao L, Xue H. Electrospinning Preparation of GaN:ZnO Solid Solution Nanorods with Visible-Light-Driven Photocatalytic Activity toward H2 Production. Applied Sciences. 2021; 11(22):10854. https://doi.org/10.3390/app112210854
Chicago/Turabian StyleMao, Jingyun, Huiling Zhong, Xinpin Liu, Qingrong Qian, Yongjin Luo, Liren Xiao, and Hun Xue. 2021. "Electrospinning Preparation of GaN:ZnO Solid Solution Nanorods with Visible-Light-Driven Photocatalytic Activity toward H2 Production" Applied Sciences 11, no. 22: 10854. https://doi.org/10.3390/app112210854
APA StyleMao, J., Zhong, H., Liu, X., Qian, Q., Luo, Y., Xiao, L., & Xue, H. (2021). Electrospinning Preparation of GaN:ZnO Solid Solution Nanorods with Visible-Light-Driven Photocatalytic Activity toward H2 Production. Applied Sciences, 11(22), 10854. https://doi.org/10.3390/app112210854