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Abstract: The development of a facile method for the synthesis of GaN:ZnO solid solution, an
attractive material with a wurtzite-type structure, is vital to enhance its photocatalytic activity toward
H2 evolution. Herein, GaN:ZnO solid solution nanorods with diameters of around 180 nm were
fabricated by combining the electro-spun method with a sequentially calcinating process. Photo-
catalytic water-splitting activities of the as-obtained samples loaded with Rh2−yCryO3 co-catalyst
were estimated by H2 evolution under visible-light irradiation. The as-prepared GaN:ZnO nanorods
at a nitridation temperature of 850 ◦C showed the optimal performance. Careful characterization
of the GaN:ZnO solid solution nanorods indicated that the nitridation temperature is an important
parameter affecting the photocatalytic performance, which is related to the specific surface area and
the absorbable visible-light wavelength range. Finally, the mechanism of the GaN:ZnO solid solution
nanorods was also investigated. The proposed synthesis strategy paves a new way to realize excellent
activity and recyclability of GaN:ZnO solid solution nanorod photocatalysts for hydrogen generation.

Keywords: GaN:ZnO solid solution nanorods; electrospinning technology; hydrogen evolution;
visible-light photocatalysis

1. Introduction

In recent years, the modern energy crisis has been one of the major problems that has
concerned human beings in the 21st century. Therefore, a recent flourish of studies have
been inspired to develop environmental-friendly and renewable fuels [1]. Particularly, the
use of photocatalytic water splitting for hydrogen production is an attractive strategy in the
field of energy conversion with abundant solar energy, since the pioneering report of photo-
electrochemical water splitting was published in 1972 [2]. Currently, a lot of photocatalysts,
such as TiO2 [3–5], WO3 [6,7], g-C3N4 [8–10], ZnO [11–13], and metal complexes [14–16],
have been employed for the photocatalytic water splitting reaction. However, it has been
demonstrated that most of these photocatalysts with wide band gaps are only active under
UV irradiation. Thus, it is vital to develop a highly active photocatalyst with a sufficiently
narrower bandgap for efficient visible-light-driven hydrogen production.

So far, nitride [17,18] or metal oxynitrides [19,20], absorbing visible light with a larger
wavelength range, have been found to be capable of splitting water into hydrogen and
oxygen under visible-light illumination. Among them, GaN:ZnO solid solution possesses a
wurtzite-type structure with a d10 typical electronic configuration, which has been actively
investigated [21,22]. It shows a narrower band gap, ranging from 2.4~2.8 eV [23,24],
which can be ascribed to the p-d repulsion in the valence band between Ga3d/Zn3d and
N2p/O2p [25]. However, as for GaN:ZnO solid solution, due to the lack of H2 evolution
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sites, it is necessary to employ a cocatalyst that plays a vital role in providing active sites and
improving the charge separation for photocatalytic redox reactions [26–28]. Rh2−yCryO3,
as a traditional cocatalyst, has been found to be capable of promoting the realization of the
photocatalytic water splitting [29,30]. Therefore, high-efficiency GaN:ZnO solid solutions
decorated with cocatalyst of Rh2−yCryO3 were designed and prepared.

Typically, GaN:ZnO is synthesized by nitriding the mixture of Ga2O3 and ZnO un-
der anhydrous NH3 gas flow, and calcinating it for a relatively long reaction period to
guarantee a successful formation of solid solution [21,31,32]. However, the as-prepared
GaN:ZnO possesses a non-uniform elemental distribution of Zn and Ga after long-term
nitriding [24,33]. Herein, it is significant to develop a facile and versatile approach to
prepare the GaN:ZnO solid solution with higher homogeneous particles. In recent years,
electrospinning has been proven as a simple and widely used technology for the prepara-
tion of nanofiber materials with a larger specific surface area and better light harvesting
ability [34–36]. The electro-spun nanofibers also show good recoverable character in com-
parison to nano-powders [37]. Furthermore, the problem of the elemental aggregation of
GaN:ZnO solid solution can be efficiently eliminated by immobilizing the elements of Ga
and Zn on polyacrylonitrile (PAN) during the electro-spun process [38].

In this study, we present for the first time nanorod GaN:ZnO solid solutions prepared
using an electrospinning method for photocatalytic H2 production under visible-light
irradiation. The phase microstructure and morphology of the nanorods prepared at differ-
ent nitriding temperatures were determined. The optical properties were evaluated via
UV-vis diffuse reflectance spectra (DRS), photoluminescence (PL), and an electrochemistry
workstation. The photocatalytic efficiency of the samples was estimated by water-splitting
H2 production under visible-light irradiation. In addition, the photocatalytic mechanism
of GaN:ZnO solid solution under visible-light irradiation was proposed.

2. Materials and Methods
2.1. Materials

Gallium nitrate (Ga(NO3)3·xH2O) and Trisodium Hexachlororhodate (Na3RhCl6·xH2O)
were purchased from Aladdin and Alfa Aesar Companies, respectively. Zinc nitrate
(Zn(NO3)2·6H2O), N,N-dimethylformamide (DMF), and chromic nitrate (Cr(NO3)3·9H2O)
were provided by the company of Sinopharm; and polyacrylonitrile (PAN,
Mw = 150,000 g·moL−1) and methyl alcohol (CH3OH) were obtained from Macklin. All
the chemicals were of analytical grade and were used without any purification. Deionized
(DI) water was used throughout.

2.2. Synthesis of Ga(NO3)3-Zn(NO3)3/PAN Nanofibers and GaN:ZnO Solid Solutions

The 10 wt % solution of PAN (Mw = 150,000 g·moL−1) was prepared by dissolving
it in N,N-dimethylformamide (DMF). An appropriate amount of Ga(NO3)3·xH2O and
Zn(NO3)2·6H2O with a mole ratio of Ga to Zn = 1:1 was mixed into the as-prepared
PAN solution with a weight ratio of PAN to salt of 4:1. Then, it was vigorously stirred
at an ambient temperature for 5 h with the purpose of forming a homogeneous and
translucent precursor solution. After, the solution was delivered by syringe with a flow
rate of 0.6 mL·h−1 and using a high voltage of 28.5 kV, and the distance between the needle
tip and the collector was 15 cm. Herein, the obtained Ga(NO3)3-Zn(NO3)3/PAN nanofiber
was preserved in a desiccator at room temperature.

The as-spun composite nanofibers were nitrided at temperatures of 750, 850, and
950 ◦C for 3 h with a heating rate of 5 ◦C·min−1 in a flow of 150 sccm NH3, respectively,
and then the as-nitrided samples were calcined at 400 ◦C for 2 h with a cooling rate of
5 ◦C·min−1 and continuously at 500 ◦C for 3 h in the air atmosphere. Three samples of
GaN:ZnO solid solutions synthesized at different nitriding temperatures were denoted as
S750, S850, and S950, respectively.
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2.3. Preparation of Rh2−yCryO3-GaN:ZnO Photocatalyst

Briefly, 4 mL of distilled water containing an appropriate amount of Na3RhCl6·nH2O
(Rh 17.8 wt %) and Cr(NO3)3·9H2O were added into 0.1 g of GaN:ZnO solid solution
and the obtained sample was dried at 60 ◦C after the suspension was stirred to complete
evaporation. The resulting powder was heated at 350 ◦C for 1 h in air atmosphere, and the
sample of Rh2−yCryO3-GaN:ZnO was obtained, where Rh and Cr were loaded at a ratio of
1 wt % and 1.5 wt % (metallic content).

2.4. Characterization

X-ray diffraction (XRD) was recorded on a Bruker D8 Advance X-ray diffractometer us-
ing Cu-Kα radiation operating at an accelerating voltage and applied current of 40 kV and
40 mA, respectively. UV-visible diffuse reflectance spectra (DRS) were measured using a
Varian Cary 500 apparatus equipped with an integrating sphere, using BaSO4 as a reference.
Field emission scanning electron microscopy (SEM, JEOL JSM-7500F) was used to character-
ize the morphology of the as-prepared samples. The (high-resolution) transmission electron
microscopy ((HR)TEM, JEOL JEM-2100) images were obtained with accelerating voltages
of 200 kV. Photoluminescence (PL) measurements were detected on an FLSP920 (EI) fluo-
rescence spectrophotometer. Photocurrent measurements and Mott–Schottky curves were
recorded using an electrochemical workstation (Versa STAT3, Princeton Instruments, Amer-
ica). The specific preparation method of the working electrode was as follows: 5 mg of
sample were ultrasonically dispersed in 1 mL of N,N-dimethylformamide solution, and
then 10 µL of the above turbid solution were coated (the coating area was 0.5 cm × 0.5 cm)
on the FTO conductive glass.

2.5. Photocatalytic Measurements

Hydrogen evolution experiments were performed in a glass closed photocatalytic
activity evaluation system (LabSolar-IIIAG, Perfectlight). The light source was provided
by a 300 W Xe lamp (PLS-SXE300, Perfectlight) equipped with a filter to block certain
light (λ < 400 nm). Then, 100 mg of the as-prepared photocatalyst were dispersed in
100 mL of distilled water containing 10 vol% methyl alcohol as the sacrificial agent in
a Pyrex top-irradiation reaction vessel. Prior to irradiation, the evaluation system was
pumped to remove air. Then, the sealed vessel was illuminated by visible light for 6 h
under constant magnetic stirring. The amount of H2 generated from water splitting was
monitored by the gas chromatograph (GC-8A, Shimadzu) equipped with a MS-5Å column
and a TCD-detector. High-purity argon was employed as a carrier gas.

3. Results and Discussion
3.1. Physicochemical Properties of the Obtained Samples

Figure 1 shows the crystalline structure of the as-prepared samples obtained at dif-
ferent calcination temperatures. Apparently, the samples of S750, S850, and S950 exhibited
diffraction peaks that were basically attributed to GaN:ZnO solid solution with a wurtzite
structure [21]. However, in the comparison of S850 and S950, S750 showed three peaks at 2θ
values of 30.30, 35.70, and 43.39◦, which corresponded to (220), (311), and (400) diffraction
planes for ZnGa2O4 (JCPDS card 860415), indicating its incomplete nitridation. Further-
more, the intensity of the peaks corresponding to the GaN:ZnO solid solution in S750 were
weaker than that of S850 and S950, which means the higher nitridation temperature induced
a higher crystallinity. The peaks around 37◦ of the samples exhibited a higher intensity
than that of GaN:ZnO solid solution with the general wurtzite structure, which can be
attributed to the stacking disorder of the zinc-blende domain [39,40]. To determine the
energy range of photoexcitation, diffuse reflectance spectra are illustrated in Figure 1b. It
shows the UV-visible absorption spectra of GaN:ZnO solid solution subjected to different
calcination temperatures. The samples showed obvious absorption in the visible light
region while the calcination temperature had a certain influence on the band gap of the
samples. S850 displayed an absorption edge at around 450 nm, corresponding to a band
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gap of about 2.76 eV. After increasing the calcination temperature, the absorption edge
shifted slightly to longer wavelengths because of the increase of the particle size. For S750,
the blue shift in the absorption edge was mainly attributed to the presence of ZnGa2O4.
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Figure 1. (a) XRD patterns; (b) UV-visible absorption spectra of the S750, S850, and S950 samples; (c) adsorption-desorption
isotherms; and (d) pore size distribution of GaN:ZnO solid solution.

The N2 adsorption-desorption isotherms (Figure 1c) show that all three samples (S750,
S850, and S950) displayed type-IV isotherms, which correspond to the mesoporous materials.
The BET surface areas of S750, S850, and S950 were estimated as 18.3, 44.8, and 11.7 m2/g,
respectively. Additionally, the average pore sizes were about 4.0, 4.3, and 5.2 nm for the
S750, S850, and S950 nanorods (Figure 1d). The main reason for S850 having a larger surface
area than S750 is that the higher temperature is well situated to the pore-forming effect of
the release of gases from the thermal polycondensation of PAN. As for S950, the increase of
the nitridation temperature led to an enlargement of the nanoparticles that make up the
nanorods, resulting in a small surface area. Further, the increased average pore size with
the nitridation temperatures can be ascribed to the enlarged particles with an enhanced
temperature. In most cases, the higher surface area could provide more active sites in
the process of photocatalytic H2 evolution. These results indicate that the change in the
specific surface area caused by different nitriding temperatures plays a significant role in
the improved photocatalytic performance.

Figure 2a–d show the SEM images of Ga(NO3)3-Zn(NO3)3/PAN, S750, S850, and S950.
Ga(NO3)3-Zn(NO3)3/PAN nanofibers with diameters of around 180 nm, which possess
continuous uniform and unblemished smooth structures. Figure 2b shows a broken fiber
morphology of S750, which can be attributed to the rapid escape of the gas-phase product
during the calcination process. In addition, some agglomerates annexed to the fibers’
surfaces, which can be assigned to the ZnGa2O4 residues, and this is in good accordance
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with the XRD analysis. S850 exhibited a square rod-like structure consisting of nanoparticles
and no agglomerates residues were found on the surfaces of the nanorods (Figure 2c). As
for S950, the nanoparticles that make up the nanorods grew larger due to to the excessive
nitridation temperature as can be clearly seen in Figure 2d. The EDS result (Figure 2e) of S850
evidently confirms the successful synthesis of GaN:ZnO solid solution. The corresponding
TEM images of S850 further revealed that the nanorods consisted of nanoparticles, as shown
in Figure 3a,b. Clear distinct crystal fringes of d = 0.280 nm and d = 0.246 nm were observed
in the HRTEM images of S850, as illustrated in Figure 3c,d, which correspond to the (100)
and (101) planes of GaN and ZnO, respectively.
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3.2. Photocatalytic H2 Evolution Performance

The photocatalytic performance of GaN:ZnO solid solution was evaluated by water
splitting for H2 production under visible light. Figure 4a shows the production of H2 of
the water splitting reaction on Rh2-yCryO3-loaded GaN:ZnO solid solution under xenon
lamp irradiation (λ > 400 nm). The H2 evolution performance rate in 6 h is presented
in Figure 4b, and the average evolution rates of H2 for S750, S850, and S950 were about
47.44, 53.44, and 42.15 µmoL·g−1·h−1, respectively. The decreased activity for S950 may be
attributed to its nanocrystallite having a larger size, lower BET surface areas, and higher
degree of crystallization. As for S750, the lower photocatalytic efficiency can be attributed
to the incomplete transformation to GaN:ZnO solid solution, associated with the results
of XRD and SEM. In addition, the photocatalytic stability of S850 was evaluated by the
recycling test, which is important for the long-term application of photocatalytic materials.
As shown in Figure 4c, over five consecutive cycles, the catalyst exhibited negligible loss of
hydrogen evolution activity.

Photoluminescence spectroscopy was employed for the investigation of the charge
separation efficiency of the samples in the process of the photocatalytic reaction. Figure 4d
shows that the emission intensity follows the order of S850 < S750 < S950. The sequence is the
opposite of the photocatalytic activity order. Owing to this, the fluorescence was produced
by recombination of the holes in the valence band (VB) and the electrons in the conduction
band (CB), and the most diminished PL intensity of S850 indicates that the recombination
of photogenerated charge carriers was maximally retarded [41]. Moreover, the photoelec-
trochemical measurement further supports the transfer and separation behavior of the
photo-induced charge carriers of the samples. As shown in the photocurrent response
curves and EIS Nyquist plots in Figure 4e,f, S850 displayed the strongest photocurrent
density and the smallest semicircle in comparison with S750 and S950, suggesting the lowest
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interfacial electron-transfer resistance and the highest photo-induced charge transfer and
separation efficiency, which leads to the highest photocatalytic performance.
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3.3. The Mechanism of the Photocatalytic Reaction

The electronic band structure of the photocatalyst is inevitably linked with the pho-
tocatalytic performance. The electronic band structure of S850 was investigated by the
Mott–Schottky relationship, which can be applied to approximately estimate the potential
of the CB edge of semiconductors. Figure 5 shows the Mott–Schottky plots measured under
various AC frequencies for S850. The Ag/AgCl electrode was used as a reference and the
measured potentials are thus relative to the Ag/AgCl electrode. Apparently, the positive
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slopes of the tangent lines of the Mott–Schottky plots reveal the n-type semiconductor
characteristic of GaN:ZnO solid solution [42]. The flat band potential obtained from the
Mott–Schottky plots shows a frequency dependency. Theoretically, different frequencies
have no effect on the flat band potential of the samples. However, it may be inconsistent
because of differences in the properties of the samples, such as the degree of dispersion or
the thickness of the drop cast films [43]. Using the popular method [43], it can be deter-
mined that the flat band potential of S850 is −1.16 V vs. an Ag/AgCl electrode. For most
n-type semiconductors, the bottom of CB is about 0.10~0.30 eV higher than the Fermi level
and 0.20 eV was selected for S850. Moreover, an Ag/AgCl electrode vs. an NHE electrode
is 0.22 V. In short, the calculated CB edge potential is −1.14 V vs. an NHE electrode.
Combined with the band gap value obtained from the UV-visible absorption spectra, the
VB position of S850 can be calculated as 1.62 V vs. an NHE electrode. The electronic band
structure of S850 is illustrated in Figure 6.
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In the process of water splitting for H2 production, in order to ensure the progress of
the reaction, three conditions must be satisfied: (1) the band gap of the photocatalyst should
be greater than the theoretical decomposition voltage of water (1.23 V); and (2) the potentials
of photogenerated electrons and holes must satisfy the requirements for reducing water to
H2 and oxidizing to O2, respectively. Specifically, the bottom of CB of the photocatalyst
is more negative than the redox potential of H+/H2 (0 V vs. NHE) and the top of VB of
the photocatalyst is more positive than the redox potential of O2/H2O (1.23 V vs. NHE).
(3) The energy provided by light needs to be greater than the band gap of the photocatalyst.
As shown in Figure 6, the top of VB of S850 is positive compared to the redox potential
of O2/H2O, and the bottom of CB is negative compared to that of H+/H2. Therefore, the
GaN:ZnO solid solution shows efficient performance on photocatalyst water-splitting for
H2 production.

4. Conclusions

In summary, a new and simple method for the synthesis of GaN:ZnO solid solution
was proposed using the electrospinning technique. The fabricated GaN:ZnO nanorods
nitrided at different temperatures exhibited a mesoporous morphology with disparate
specific surface areas. By optimizing the nitridation temperatures, a pure wurtzite phase of
GaN:ZnO solid solution nanorods was successfully prepared. In comparison with S750 and
S950, the S850 photocatalyst showed outstanding performance regarding the water splitting
of H2 evolution under visible-light exposure due to the enhanced specific surface area and
photo-induced charge carriers’ separation efficiency. The underlying reaction mechanism
for the water splitting over GaN:ZnO solid solution nanorod photocatalyst was proposed.
It is expected to pave a facile and new pathway for the application of electrospinning-based
GaN:ZnO solid solution in the field of energy conversion.
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