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Abstract: Solving the vehicle routing problem (VRP) is one of the best-known optimization issues in
the TLS (transport, logistic, spedition) branch market. Various variants of the VRP problem have
been presented and discussed in the literature for many years. In most cases, batch versions of the
problem are considered, wherein the complete data, including customers’ geographical distribution,
is well known. In real-life situations, the data change dynamically, which influences the decisions
made by optimization systems. The article focuses on the aspect of geopositioning updates and
their impact on the effectiveness of optimization algorithms. Such updates affect the distance matrix,
one of the critical datasets used to optimize the VRP problem. A demonstration version of the
optimization system was developed, wherein updates are carried out in integration with both open
source routing machine and GPS tracking services. In the case of a dynamically changing list of
destinations, continuous and effective updates are required. Firstly, temporary values of the distance
matrix based on the correction of the quasi-Euclidean distance were generated. Next, the impact of
update progress on the proposed optimization algorithms was investigated. The simulation results
were compared with the results obtained “manually” by experienced planners. It was found that the
upload level of the distance matrix influences the optimization effectiveness in a non-deterministic
way. It was concluded that updating data should start from the smallest values in the distance matrix.

Keywords: optimization system; vehicle routing problem; distance matrix; geopositioning

1. Introduction

One of the basic requirements signaled by the TLS (transport, logistic, spedition)
market is developing an IT solution enabling effective, quasi-optimal, and quick planning of
deliveries to given recipients (destination points). Distribution of goods among customers
can be classified as the vehicle routing problem (VRP), one of the best-known combinatorial,
NP-hard problems [1,2]. It is worth noting, in the case of fleet management, the issue can
also be classified as a part of WorkForce Management (WFM) [3,4]. The VRP issues
need to find an optimal set of routes for a fleet of vehicles to deliver goods to a given
group of customers. However, optimization tasks are often performed manually, and their
effectiveness is related to the competencies and experience of logisticians and planners.
The proposed routes are usually beneficial in the case of static scenarios, where the list
of destinations is constant, but they may differ from optimal solutions in case of the
particularly frequent changes in the distribution of destination points. Therefore, improving
management efficiency by implementing automated WFM problem optimization systems
is still a key market challenge.

There are many different variants of the VRP problem and methods for solving them (a
basic overview can be found in [5–7]). In [8], related papers from 2009–2015 were analyzed,
in which 327 computational models were presented. Most often (in approx. 90% of cases),
the researchers analyzed the Capacited VRP variant (with limited load capacity) and then
(approx. 38% of models) Time Windowed VRP (with time restrictions). As the VRP is an
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NP-hard problem, heuristics and metaheuristics as Genetic Algorithm (GA) [9], Simulated
Annealing (SA) [10,11], Tabu Search (TS) [12,13], Ant Colony Optimization (ACO) [14],
and Particle Swarm Optimization (PSO) [15] are often used in practical solutions due to
the large size of real-life problem. Furthermore, many authors often propose multi-step or
hybrid methods of obtaining satisfactory results [16,17].

Current transport management systems are also supported by geographical informa-
tion System (GIS) solutions. It is defined as a computer-based system for collecting, editing,
integrating, visualizing, and analyzing spatially-referenced data [18–20]. Its potential has
been expanded with the popularization of Global Navigation Satellite Systems (GNSS),
including Europe’s Galileo, the USA’s NAVSTAR Global Positioning System (GPS), Russia’s
Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), and China’s BeiDou
Navigation Satellite System. Primarily, the GPS has been utilized in travel surveys since
the late 1990s. Monitoring of transport fleets is one of the most popular applications that
have been used for over 20 years [21]. This solution can significantly minimize transport
costs by reducing unnecessary and redundant routes. In [22,23] the importance of GPS in
the logistics industry was discussed. More advanced fleet management systems using GPS
were presented in [24–26]. In work [24], GNSS systems were enriched with communication
modules based on LoRaWAN. Aspects of operation in sending and receiving messages
from and to prototypes developed for the vehicles were discussed, complying with the
established location, tracking, exchange data, and security requirements. These systems
are a valuable source of information used in WFM/VRP issues.

Along with the development of GIS/GNSS systems, numerous additional services
support the vehicle routing process. Many open-source geographic information systems
(GIS) routing tools such as Qgis Road Graph plugin (QRG), Open Street Routing Machine
(OSRM), Google Maps Engine (GME), GraphHopper (GH), and OsmAn can also be con-
sidered as potential candidates to help solve optimization problems. Integration with
mentioned systems is possible thanks to the so-called Mapping API [27,28].

These solutions allow one to develop of new concepts of transport fleet manage-
ment. A new multifunctional support system for managing transport fleets called TARGET
(Tracking Adaptation in Routing Guide Optimization System for Effective Transport) was
proposed. It was motivated by the dynamic development of location and sensing technolo-
gies, information systems, and metaheuristic optimization algorithms. In its concept, the
TARGET system assumes the implementation of many new or improved functionalities,
such as dynamic route recalculation and optimization, supply chain planning, resource
monitoring, load and order forecasting, and dynamic destination lists (so-called agile
WFM). During the conducted research, it was found that the dynamically changing loca-
tion of delivery points may significantly affect the decisions made by the optimization
algorithm. It requires looking for solutions that guarantee quick updating of actual data,
using solutions in location and routing optimization services.

This article focuses on the issues of dynamic and quick recalculation of the value of the
so-called distance matrix [29,30], one of the most key data structures used in planning and
optimization algorithms (further denoted as DistMx). Regardless of the applied problem,
this matrix must present the current distances between the objects, generating from their
current position. The proposed solution is also dedicated to the dynamic VRP variant, in
which the set of current delivery points (destinations) may change frequently. The Authors
pointed out that a proper updating of the distance matrix may be a key factor affecting the
effectiveness of the optimization algorithms. Moreover, in evaluating the effectiveness of
the optimization algorithm, the influence of the current values of the distance matrix is
rarely examined. This aspect needs to be discussed in more detail.

2. Problem Description and Related Works

As mentioned before, in the case of transport companies, the issue of WFM is related
to the proper assignment of resource space elements (vehicles, drivers) to the request space
elements (orders, requests) in such a way as to minimize the defined cost function. Figure 1
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shows the general concept of the optimization module. It consists of the generation of
sequences service records (denoted as SRs), representing the assignment of each of the
cumulated requests (orders) to one of the resources (vehicles). Each set of SRs represents
one of the possible constraints solutions. Every set can be assigned to a specific cost,
typically represented by total mileage (distance). The aim is to find the solution closest to
the unknown optimum (lowest cost) in the shortest possible time. The proposed model was
developed in consultation with transport companies. As a result, it is adapted to real-life
forwarding and logistics problems and is primarily based on real data. The collective list of
orders (indicated as Requests) is provided by the customer (i.e., a shipping company). The
list of potential vehicles (indicated as TrucksList) is also known from the same data source.
In turn, information on recipient locations (indicated as DestPos) comes from GIS (GPS
Tracking) systems.
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An acceptable, quasi-optimized solution should be found within several minutes.
It must also be remembered that after planning, the goods are loaded in a given order,
consequently, subsequent corrections may be limited. On the other hand, one vehicle can
do two to three routes per day in real life. Therefore, frequent updating of data may affect
the proposed planning of subsequent routes.

The challenge encountered belongs to the capacitated, split delivery, and hetero-
geneous fleet variants of the VRP problem, discussed in [31–34]. Generally, the set of
destinations is represented by a directed graph, G = (V, A), where V = {1 . . . D, D + 1
. . . N + D} is a set of D + N nodes, where D is the number of the so-called depots, and
N—the number of destinations, the A denotes the set of weighted edges of the graph. In
the case of Single Depot VRP, the graph should be connected, and in this case, it is always
possible to create a complete graph, in which the missing branch values can be calculated
by finding the shortest path, using the well-known Dijkstra algorithm [35]. Therefore, the
completeness of the graph is assumed, with the edge weights d (i, j) usually representing
the conventional distances between particular pairs of destinations, known further as
DistMx. Detailed descriptions of the model under consideration can be found in [36–38].

However, this article is not only focused on the mentioned above VRP problem. Al-
though the considered scenario belongs to the rarely discussed variant of the heterogeneous
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(mixed) fleet, its approximate solution in a reasonable time is possible, for example, with
the use of heuristic algorithms (greedy, clustering, etc.) [39–41]. A separate issue is the in-
fluence of outdated or approximated edge weights d (i, j) on the correctness of the solution
returned by this type of algorithms. This remains an open problem. The significance of
the distance matrix in transport issues have been discussed (e.g., in [42] where the authors
emphasized the advantages of a distance matrix for a country to facilitate the survey for
Austrian road freight transport statistics). The distance matrix turned out to be a helpful
instrument to decrease the burden of the respondents. In [43], several different models that
allow you to estimate the value of the distance based on the knowledge of the location of
the destinations were presented. The authors considered the use of basic Euclidean and
Manhattan metrics in the process of actual distance estimation. The trend of moving away
from the universal, static matrix of distances towards individual and dynamic personalized
variants was, in turn, shown in [44]. Nevertheless, the impact of the distance estimation
error on the returned results by the optimization algorithm has not been discussed in detail
so far.

On the other hand, the distance matrix should contain current data (e.g., by using
the dynamic shortest-path algorithms, as discussed in the papers) [45,46]. Thanks to this,
the data held is as close as possible to the actual values. As mentioned before, many
geopositioning services are known, capable of generating a distance matrix based on
a given list of destinations [47–51]. One of the most popular is the Google API [50],
associated with the popular Google Maps service. An alternative solution is a free service
offered by the Open Source Routing Machine (OSRM) [51]—C++ implementation of a
high-performance routing engine for shortest paths in road networks. Solutions of this
type were used in works [52,53], but they concerned general cartographic applications
rather than optimization systems.

3. Materials and Methods

The prototype system, referring to the structure presented in Figure 1, was imple-
mented using Python version 3.7 and the MySQL database. In the proposed considered
scenario, the geolocalization data were obtained in integration with the GPS-based vehi-
cle location system, the ABC-track system. The information was obtained thanks to the
courtesy of the owners (ABC-Track Ltd. Company). Dedicated requests were sent to the
address indicated in the Company documentation, using the HTTP—GET method. The get-
Points service was used for receiving the information about individual points on the route
map. The data was collected and processed using scripts written in Python programming
language. The obtained data structures were imported to the newly created DataFrame
object of the Pandas library in JSON format for further analysis in the optimization module.
As a result of a query to the site, a list of objects was returned. Each of the objects is a
representation of a particular point on the map and has the following information:

• pointId—unique identifier of the point.
• pointName—point name.
• pointLatitude—the latitude of the point.
• pointLongitude—the longitude of the point.

The distances between pairs of coordinates are obtained by the Table Service, offered
in OSRM API. It calculates the length and duration of the fastest route between all pairs of
given coordinates. All returned data were in JSON (JavaScript Object Notation) format,
preprocessed using Python’s script, saved in a local database, and converted to tabular
form (csv).

For the needs of the study, a two-stage optimization algorithm was developed and
implemented in MathCad 13 software. It ensures a favorable balance between the degree
of optimization and time consumption and is characterized by good scalability. The first
and base stage is a version of the greedy algorithm, which guides the selection of orders
for vehicles by the local best hop approach. It means a request is selected whose handling
will have the most negligible possible impact on the growth of the cost function. In this



Appl. Sci. 2021, 11, 10933 5 of 15

case, total distance was the main optimization criterion. In the case of several equivalent
candidates, the next criterion was the choice according to the largest truck-order heuristic
principle. This stage is deterministic (i.e., it always returns the same result with the same
input data set). In the second stage, the “greedy” solution is randomly adjusted based on
the random swapping of orders assignments. It was a proprietary implementation of a
variant of the 2-opt algorithm, often used to solve the traveling salesman problem [54].
Total fuel cost was the main optimization criterion in this stage. Three variants of the
algorithm were used in the analyzes:

• Greedy only
• Greedy + Simple RandSwap and,
• Greedy + Wise RandSwap

Simple RandSwap relies on a random exchange of orders between two vehicles. If the
swap generates a lower or equal cost—it is accepted, otherwise, it is rejected. In the Wise
RandSwap algorithm, interchanges between vehicles with nearby routes are preferable.

The algorithm uses the following main inputs as shown in Figure 1: Requests, Truck-
sList, DestPos, and DistMx datasets. The DestPos and DistMx input data were imported
from the mentioned csv file, returned by GIS/OSRM services, located in Kielce, Poland.
Representative and actual input data of requests list and list of the vehicle was obtained
from a local shipping company—Alma-Alpinex Join-Stock Company, which redistributes
food products and manages a fleet of approx. 100 vehicles. The sample output problem
solution (Service Records), including route sequences proposed by experienced planners,
was obtained from the same source. Total 1103 pallets divided into 416 individual orders
were redistributed to 202 destinations from one central depot. The six types of trucks with
different capacities of 27, 21, 20, 18, 10, and 8 pallets were considered as candidates. The set
of trucks was {20, 30, 20, 20, 20, 50}, this mean total 160 vehicles were taken into account.

4. Results
4.1. Getting the DestPos and DistMx

The basis for creating the DistMx matrix is a list of destinations (DestPos), containing
at least the destination identifier (DestId) and geographical coordinates (latitude, longi-
tude). Location coordinates are the basis for obtaining the distance value. A matrix with
dimensions N × N will be created for N destinations, where N × (N-1) independent values
exist. In the first step, an up-to-date list of destinations with their coordinates was obtained.
Using the APIs the list includes all necessary 203 points (1 depot and 202 destinations) was
downloaded. The presented destinations were located in an area estimated 160 (E-W) ×
145 km (N-S). The spatial distribution of destinations is shown in Figure 2.

Next, to create a distance matrix, all destinations’ identifiers and geographical coordi-
nates should be provided as starting and ending points. This service takes the following
arguments: coords_src (list of geographical coordinates of the starting points), coords_dest
(list of geographic coordinates of endpoints), ds_origin (list of identifiers of starting points)
and ids_dest (list of endpoint identifiers). If a new destination appears, there is no need
to recalculate the entire matrix. An additional script has been created, which works in
such a way that it calculates the distances between a particular destination and the rest
of the destinations. Thus, iterating over N destinations creates an N × N matrix. This
way is to work around the limit on the engine side of the simultaneous number of data
sent in the query. To add a new destination, it will only need to calculate one new column
for a given destination, and transpose that column into a row, which then also add to the
distance matrix. Such a solution is beneficial in the situation of a dynamically changing list
of destinations. It has been experimentally found that updating the distance table in the
event of an additional destination takes an average of a few seconds.
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4.2. Temporary DistMx Calculation

The Authors observed that acquiring distance values from the OSRM website is
possible, however, it may take a long time. In the case of sending individual inquiries,
the time to complete the distance matrix was a few hours for N = 203 points. In the case
of sending aggregated questions, it was possible to shorten this time to about tens of
minutes. In unfavorable connectivity or problems with the service overflow, this time may
be extended to unacceptable values (hours or more). Therefore, an alternative method of
generating temporary values has been proposed. In the absence of current values obtained
from the OSMR website, the distance can firstly be estimated based on the quasi-Euclidean
metric. The following formula can be used to find the shortest distance (DistEucl) between
two points located on a sphere with radius R.

DistEucl = 2·R·arcsin

(√
sin2

(
ϕ1− ϕ2

2

)
+ cos(ϕ1)·cos(ϕ2)·sin2

(
λ1− λ2

2

))
(1)

where
ϕ1, ϕ2 are the latitude of point 1 and 2, respectively; λ1, λ2 are the longitude of point

1 and 2, respectively; and R is the Earth’s radius (6371 km)
The distance determined from relation (1) is usually underestimated as the routes

connecting two points are generally not a straight line. The relative underestimation error
is derived from the simple Formula:

Err =
DistOSRM− DistEucl

DistEucl
(2)

where
dOSRM is the actual distance obtained from the OSRM service, and dhav is the theoretical

distance calculated from the dependence (1).
As both DistEucl and DistOSMR matrices are known, the dependence of the error

value on the actual distance value was investigated. The analysis shows that for short
distances (<3 km), the error value (underestimation level) may be significantly higher than
for the entire sample. Therefore, the data set was segmented concerning the distance value,
and for each segment, the average error value was determined with the 95% confidence
interval (Figure 3). The preliminary analyzes show that for ultra-short distances (below
3 km), the theoretical value of the distance should be corrected (increased) by a factor as
high as ~0.7. For longer distances (3–6 km), the correction factor can be estimated at the
level of ~0.35, and for the remaining distances at the level of ~0.28.
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Obtaining more correct values of the distance matrix can be achieved by designating
an appropriate scaling function. This function can be an approximation of a DistOSRM =
f(DistEucl) relation. On the other hand, it may be more advantageous to find a function
that approximates the error value (2) dependence on the distance (1). In such a case, the
general form of the function may be as follows:

Err(DistEucl) = a·eb·DistEucl + c (3)

In these considerations, the authors decided to approximate the error value using
the Formula (3). The a, b, and c coefficients were determined by minimizing the mean
square error (MSE). Optimization calculations were made using the non-linear generalized
reduced gradient method [55], implemented in the Solver tool of Microsoft Excel software.
For the data set the following coefficients were obtained: a = 0.766346, b = 1.25415 and
c = 0.287121. Based on the dependence (3), the distribution of the correction coefficient as a
function of the original value of the distance calculated from the dependence (1) was also
determined.

As a result of applying the dependencies (1) and (3), a distance matrix named DistEu-
clCorr was calculated as follows.

DistEuclCorr[i, j] =
{

0 i f DistEucl[i, j] = 0
(Correction(DistEucl[i, j])·DistEucl[i, j]) otherwise

(4)

It was found that the arithmetic mean of the relative error between corresponding
values of the DistOSRM and DistEuclCorr matrices was negligibly small (<0.00001). The
standard deviation (SD) value has also been reduced to 0.1226 from the previous value of
0.1887. It was due to the introduction of the exponential component in the approximation
function, as a result, the small values of the distance matrix were more effectively corrected.
In contrast, the average value of non-zero elements of the DistEuclCorr matrix were about
0.5% higher than the corresponding value for DistOSRM.
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4.3. Infuence of Distance Matrix Upload on Optimizer Cost Reduction

One of the best methods of estimating the effectiveness of an optimizer is to compare
the returned solutions with the solutions proposed by experienced planners. As mentioned
in Section 3, both the order parameters (the size of requests, types and load capacity of
vehicles, the location of destinations) and the proposed “manual” solution, including route
sequences, were known. Thanks to this, it was possible to calculate the actual distance
(RealDist) as the resulting cost function. This value was a reference to the values obtained
in the optimizer (OutCost). Both the RealDist and OutCost values depend on the form of the
assumed distance matrix. The open question is how the optimizer cost reduction (Gain)
depends on the state of the matrix used. This parameter can be defined by Formula (5).

Gain [%] =
RealDist−OutCost

RealDist
× 100 (5)

Using the optimization algorithms described in Section 3, OutCost values were ob-
tained for all free algorithm variants: Greedy, Simple RandSwap, and Wise RandSwap. In
the RandSwap stage, the five attempts with 100,000 iterations were calculated due to its
stochastic feature, and arithmetic mean value was reported. The best variant, as expected,
was the Wise Rand Swap algorithm.

Figure 4 compares the cost values (route distance) obtained for the two proposed
forms of the used distance matrix. Although the average distance values in DistEuclCorr
were slightly higher than DistOSMR (~0.5%), the actual distance (cost) calculated based on
the result sequences was higher (by ~2.2%) for the case of using the temporary matrix. This
result may be due to the fact that the proposed routes do not contain the hops corresponding
to the most significant values in the distance matrix.
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For the temporary distance matrix (DistEuclCorr), greedy optimization results in nega-
tive efficiency. It is then improved in the RandSwap stage. However, in the case of using
actual distances obtained from the OSRM (DistOSRM) service, the “greedy” stage is char-
acterized by positive cost reduction. The observation shows how important the actuality of
the distance matrix is from the point of view of the optimizer’s effectiveness. Assuming
the theoretical values based on haversine metrics, one can erroneously hypothesize that
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the greedy algorithm is not sufficiently effective (Gain = −1.37%) in the process of planning
deliveries. Meanwhile, substituting actual values contradicts previous observations.

The order of updating individual elements of the distance matrix is another aspect
worth analyzing. As mentioned, it may take several hours to get all the actual distance
values. Communication interruptions and service loads must be taken into account. For
this reason, it is advisable to update the DistEuclCorr matrix values successively. The
analysis of the resulting sequence of the optimization algorithm allowed us to make the
following observations. First, the maximum value of a single distance (hop) is comparable
to half of the maximum value in the distance matrix. It means that larger values do not
need to be updated urgently. It was estimated that such values constitute ~10% of all matrix
elements. Moreover, approx. 60% of the appeals used in the case of distances shorter than
20 km. For this reason, it makes sense to update the short distances first. They are, firstly,
more often used in the optimizer, and secondly, the relative error value is more significant
for smaller distance values.

According to the assumptions, more in-depth analyses were carried out by examining
the impact of the update level (in %) on cost reduction. A total of 20 different partially-
updated “mixed-matrices” were generated, divided into two series. In the first series,
matrices data was uploaded starting from the lowest distance values and the second
starting from the highest ones, respectively. It started from 0% (DistEuclCorr) and increased
by 10% up to 100% (DistOSRM). The values of the Gain coefficient were calculated for
any cases. Table 1, presents the calculated values of the cost reduction (Gain) for selected
distance matrices

Table 1. Cost reduction for different distance matrix types.

Algorithms: DistEuclCorr Mixed-Matrix
(50% from Lowest)

Mixed-Matrix
(50% from Highest) DistOSRM

Greedy Only −1.38% 1.31% −2.90% 0.29%
Simple RS 2.62% 5.43% 2.64% 6.00%
Wise RS 7.96% 11.03% 7.54% 11.10%

Particularly in the case of the Wise RS algorithm, it is noted that the mixed-matrix
containing the 50% update of the smallest coefficients exhibits similar properties to the
DistOSRM target matrix. In contrast, the mixed-matrix containing 50% of the highest index
updates has the characteristics of the DistEuclCorr temporary matrix. More detailed results
are represented in Figure 5, where an evolution of the calculated Gain value is presented.

For all cases, the cross-section (represented by the trend lines—fit of 6-order polyno-
mial) takes the form of a characteristic hysteresis. The trend-line for the series “from lowest”
seems to be clearly more favorable from the point of view of stabilizing the expected value
of the Gain coefficient. In fact, with about 40–50% of updates, the Mixed Matrix exhibits the
characteristics of the target matrix. On the other hand, updating the matrix in the “from
highest” variant seems to be the wrong approach. It turns out that even with an 80–90%
update level, the expected results are significantly different from the final one.
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5. Discussion

The correct form of the distance matrix is a crucial parameter influencing the effective-
ness of the optimization algorithm used in the optimizer. Many previous papers discussed
the possibility of obtaining distance matrices from the corrected Euclidean distance. To
approximate the actual distance, Cooper [56] proposed using a factor of the curvature
of the road, which can be calculated as the ratio between the actual distance and the
Euclidean distance [57]. For UK roads, a value of 1.2 was proposed by Barthélemy [58]
for the correction factor, which has subsequently been widely accepted and used in the
scientific community. According to [59], correction factors of 1.25 for the long haul and
1.30 for an urban drayage area are used. The listed values are slightly lower than those
proposed in this article. Based on the approximations made, the correction coefficient can
be assumed at the level of 1.287 for distances above 10 km, which is a value comparable to
the proposals appearing in the cited papers. Note that in the case of the space represented
by the Manhattan metric, the value of the correction factor should not exceed

√
2 ≈ 1.414.

In reality, however, a more significant correction should be made, especially for very short
distances below 3 km. As shown in Figure 3 the correction factor can be as high as 1.7 for
ultra-short distances.
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The discrepancies between values proposed in this work and values proposed in
mentioned above papers suggest that receiving more real data obtained from Mapping
API services is highly recommended. Moreover, the presented results indicate that the
evaluation of the algorithm’s effectiveness may be determined by the smallest distance
values (the lowest weights of the graph representing the transport problem). As shown in
Figure 5 (trend “from highest”), the last 10% of the lowest coefficients significantly affect the
calculated Gain value. It makes sense as a more significant relative error characterizes these
values. On the other hand, the absolute error may be more significant for longer distances.
It shows the advantage of the reverse approach, where the update should start with the
highest values and was confirmed by analyzing the correlations between mixed-matrix
and DistOSRM.

The observed trend of the Gain coefficient should be linked by a change in the rank of
individual elements of the distance matrix. The behavior of two correlation coefficients
(Pearson’s linear and Spearman’s rank) was analyzed. The appropriate values were cal-
culated between the final DistOSRM matrix and successively updated mix-matrices for
both the “from lowest” and “from highest” variants. Figure 6 shows all four corresponding
graphs. In the case of Pearson’s correlation, significant differences in the formation of
the correlation are observed during the update of the distance matrix between the “from
lowest” and “from highest” approach. Moreover, the chart suggests that during the update
of the values from the highest, the correlation sooner tends to 1, which negates the earlier
thesis. However, a more reliable parameter is the rank correlation coefficient. In this case,
the changes in the trend are similar. In fact, the correlation analysis does not provide
backgrounds for selecting the “from lowest” variant.
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However, the choice of the “from lowest” approach can be defended by looking at
the histogram representing the distribution of the cost values of single jumps proposed
by the optimization algorithm. A histogram represents a distribution of single-hop OSRM
distances reported in optimizer solution was calculated (Figure 7A).

As shown in the proposed solutions, shorter distances, below 30 km, are reused more
often. It indicates that it is the shorter distances that should be updated first. On the other
hand, the share of short distances in the total cost is lower. After scaling the count value by
the distance value, a different distribution is obtained (Figure 7B). For example, hops with
a cost value of 85–95 km, corresponding to the return routes, have the highest contribution
to the total cost. It may indicate consideration of a mixed approach in the future, such as
from peripheral to center. However, in its present state, it suggests the superiority of the
“from lowest” approach.
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According to the obtained results, the following scheme was proposed (Figure 8).
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Figure 8. “Smart” geopositioning updating of the distance matrix.

First, from the GIS outside system, the actual DestPos list is downloaded. Next,
the distance matrix based on the quasi-euclidean distance (1) is calculated and corrected
according to Formula (4). The resulting data are the initial (temporary) set used by the
optimization algorithm. Simultaneously, an additional list containing distances is sorted in
increasing order and segmented into data packages, preferably no more than 200 values
per one package. Next, the special agent is responsible for sending inquiries updating the
distance values to the OSRM service, starting from the smallest matters. After receiving a
positive answer, the process of successive DistMx update takes place.
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6. Conclusions

In the article, some aspects of the optimization issues in WFM and VRP problem
were discussed. The prototype system that supports the routing optimization process of
VRP issues in real-time was proposed. This system is designed to quickly and efficiently
allocate individual requests to transport resources. It also considers frequent changes in
the location of the destination and transport costs. In the case of dynamically changing
destination lists, constant updating of the matrix form is required. The update process is
possible thanks to services such as Mapping APIs such as OSRM service, but it can take
a long time. The article proposes a method of initial initialization of the matrix form and
then a reasonable approach to successive updating of individual values. It also means that
integrating GIS systems, GPS systems, and optimization algorithms is a beneficial solution.
It was also shown that the proper and fast upgrading of the distance matrix may affect the
assessment of the optimization effectiveness. Obsolete or approximate d [i, j] values may
significantly affect the evaluation of the effectiveness of a certain class of algorithms, in
particular the greedy algorithm. Differences of more than 7% were found here. It has been
noticed that it is more advantageous to start the refreshing process from the smallest values
in arduous requesting updated data. The proposed approach is not due to the fact that the
relative error is more significant for small distances, but that the optimization algorithm
often refers to the lowest values.

As mentioned, the experiments and analyses performed are part of a more compre-
hensive project. They aim to develop a practical, fast, and effective quasi-optimal resource
allocation algorithm in the dynamically changing conditions of the request space. Such
issues were named ‘Agile Workforce Management’ and constitute an advantage over the
classic static solutions.
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