Impact Response of Composite Sandwich Cylindrical Shells
Abstract
:1. Introduction
2. Material and Experimental Procedure
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.D.; Cawley, P.D.R.D. A review of defects types and non-destructive testing techniques for composites and bonded joints. NDT E Int. 1998, 21, 208–222. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F.; Santos, J.B. Damage detection on laminated composite materials using several NDT techniques. Insight 2012, 54, 14–20. [Google Scholar] [CrossRef]
- De Moura, M.F.S.F.; Marques, A.T. Prediction of low velocity impact damage in carbon-epoxy laminates. Compos. Part A Appl. Sci. 2002, 33, 361–368. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Antunes, F.V.; Richardson, M.O.W. Effect of interlayer delamination on mechanical behavior of carbon/epoxy laminates. J. Compos. Mater. 2009, 43, 2609–2621. [Google Scholar] [CrossRef]
- Amaro, A.M.; de Moura, M.F.S.F.; Reis, P.N.B. Residual strength after low velocity impact in carbon-epoxy laminates. Mater. Sci. Forum 2006, 514–516, 624–628. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F. Delamination effect on bending behaviour in carbon-epoxy composites. Strain 2011, 47, 203–208. [Google Scholar] [CrossRef]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. 1996, 27, 1123–1131. [Google Scholar] [CrossRef]
- Río, T.G.; Zaera, R.; Barbero, E.; Navarro, C. Damage in CFRPs due to low velocity impact at low temperature. Compos. Part B Eng. 2005, 36, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Aktas, M.; Atas, C.; Icten, B.M.; Karakuzu, R. An experimental investigation of the impact response of composite laminates. Compos. Struct. 2009, 87, 307–313. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Bennett, N.; Reis, P.N.B. Low-velocity impact response of nonwoven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity. Compos. Struct. 2012, 94, 2756–2763. [Google Scholar] [CrossRef]
- Kulkarni, M.D.; Goel, R.; Naik, N.K. Effect of back pressure on impact and compression after-impact characteristics of composites. Compos. Struct. 2011, 93, 944–951. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F.; Neto, M.A. Influence of multi-impacts on GFRP composites laminates. Compos. Part B Eng. 2013, 52, 93–99. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A.; Louro, C. Effects of alkaline and acid solutions on glass/epoxy composites. Polym. Degrad. Stabil. 2013, 98, 853–862. [Google Scholar] [CrossRef]
- Mortas, N.; Er, O.; Reis, P.N.B.; Ferreira, J.A.M. Effect of corrosive solutions on composites laminates subjected to low velocity impact loading. Compos. Struct. 2014, 108, 205–211. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A. Experimental study of temperature effects on composite laminates subjected to multi-impacts. Compos. Part B Eng. 2016, 98, 23–29. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adbullah, M.; Jeelani, S. Studies on the low-velocity impact response of woven hybrid composites. Compos. Struct. 2005, 67, 253–262. [Google Scholar] [CrossRef]
- Halvorsen, A.; Salehi-Khojn, A.; Mahinfalah, M.; Nakhaei-Jazar, R. Temperature effects on the impact behavior of fiberglass and fiberglass/Kevlar sandwich composites. Appl. Compos. Mater. 2006, 13, 369–383. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Mahinfalaha, M.; Bashirzadeh, R.; Freeman, B. Temperature effects on Kevlar/hybrid and carbon fiber composite sandwiches under impact loading. Compos. Struct. 2007, 78, 197–206. [Google Scholar] [CrossRef]
- Ávila, A.F.; Soares, M.I.; Neto, A.S. A study on nanostructured laminated plates behavior under low-velocity impact loadings. Int. J. Impact Eng. 2007, 34, 28–41. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, S.-U.; Munir, A.; Kim, J.-K. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Compos. Sci. Technol. 2009, 69, 1949–1957. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Santos, P.; Richardson, M.O.W.; Santos, J.B. Impact response of Kevlar composites with filled epoxy matrix. Compos. Struct. 2012, 94, 3520–3528. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Zhang, Z.Y.; Benameur, T.; Richardson, M.O.W. Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Compos. Part B Eng. 2013, 46, 7–14. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Zhang, Z.Y.; Benameur, T.; Richardson, M.O.W. Impact strength of composites with nano-enhanced resin after fire exposure. Compos. Part B Eng. 2014, 56, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Mano, J.F. The viscoelastic properties of cork. J. Mater. Sci. 2002, 37, 257–263. [Google Scholar] [CrossRef]
- Rosa, M.E.; Fortes, M.A. Deformation and fracture of cork in tension. J. Mater. Sci. 1991, 26, 341–348. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Silva, P.A.A. Mechanical behaviour of composites filled by agro-waste materials. Fibers Polym. 2011, 12, 240–246. [Google Scholar] [CrossRef]
- Petit, S.; Bouvet, C.; Bergerot, A.; Barrau, J.J. Impact and compression after impact experimental study of a composite laminate with a cork thermal shield. Compos. Sci. Technol. 2007, 67, 3286–3299. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.G.A.; de Moura, M.F.S.F.; Magalhães, A.G. Low velocity impact behaviour of a hybrid carbon-epoxy/cork laminate. Strain 2017, 53, 1–9. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Ivañez, I.; Sánchez-Saez, S.; Garcia-Castillo, S.K.; Barbero, E. The High-velocity impact behaviour of Kevlar composite laminates filled with cork powder. Appl. Sci. 2020, 10, 6108. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Costa, J.D.M.; Santos, M.J. Fatigue performance of Kevlar/epoxy composites with filled matrix by cork powder. Fibers Polym. 2012, 13, 1292–1299. [Google Scholar] [CrossRef]
- Ivañez, I.; Sánchez-Saez, S.; Garcia-Castillo, S.K.; Barbero, E.; Amaro, A.; Reis, P.N.B. High-velocity impact behaviour of damaged sandwich plates with agglomerated cork core. Compos. Struct. 2020, 248, 112520. [Google Scholar] [CrossRef]
- Gong, S.; Toh, S.; Shim, V. The elastic response of orthotropic laminated cylindrical shells to low-velocity impact. Compos. Eng. 1994, 4, 247–266. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Mahajan, P.; Mittal, R. Impact response and damage in laminated composite cylindrical shells. Compos. Structur. 2003, 59, 15–36. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Mahajan, P.; Mittal, R. A parametric study of the impact response and damage of laminated cylindrical composite shells. Compos. Sci. Technol. 2001, 61, 1655–1669. [Google Scholar] [CrossRef]
- Kistler, L. Experimental investigation of the impact response of cylindrically curved laminated composite panels. In Proceedings of the 35th Structures, Structural Dynamics, and Materials Conference, Hilton Head, SC, USA, 18–20 April 1994; pp. 2292–2297, AIAA paper, 94-1604-CP. [Google Scholar] [CrossRef] [Green Version]
- Kistler, L.S.; Waas, A.M. Experiment and analysis on the response of curved laminated composite panels subjected to low velocity impact. Int. J. Impact Eng. 1998, 21, 711–736. [Google Scholar] [CrossRef]
- Zhao, G.; Cho, C. Damage initiation and propagation in composite shells subjected to impact. Compos. Struct. 2007, 78, 91–100. [Google Scholar] [CrossRef]
- Kumar, S. Analysis of impact response and damage in laminated composite shell involving large deformation and material degradation. J. Mech. Mater. Struct. 2008, 3, 1741–1756. [Google Scholar] [CrossRef] [Green Version]
- Arachchige, B.; Ghasemnejad, H.; Augousti, A.T. Theoretical approach to predict transverse impact response of variable-stiffness curved composite plates. Compos. Part B Eng. 2016, 89, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Arachchige, B.; Ghasemnejad, H. Post impact analysis of damaged variable-stiffness curved composite plates. Compos. Struct. 2017, 166, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.A.C.P.; Navalho, F.V.P.; Reis, P.N.B. Impact response of laminate cylindrical shells. Frat. Integrita Strutt. 2019, 48, 411–418. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Magalhães, A.; De Moura, M.F.S.F. The Influence of the Boundary Conditions on Low-Velocity Impact Composite Damage. Strain 2011, 47, e220–e226. [Google Scholar] [CrossRef]
- Chaudhuri, R.A.; Hsia, R.L. Effect of thickness on the large elastic deformation behavior of laminated shells. Compos. Struct. 1998, 43, 117–128. [Google Scholar] [CrossRef]
- Kimn, D.; Chaudhuri, R.A. Effect of Thickness on Buckling of Perfect Cross-Ply Rings under External Pressure. Compos. Struct. 2007, 81, 525–532. [Google Scholar] [CrossRef]
- Chaudhuri, R.A. Effects of thickness and fibre misalignment on compression fracture in cross-ply (very) long cylindrical shells under external pressure. Proc. R. Soc. A 2015, 471, 20150147. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Antunes, F.V.; Costa, J.D.M. Flexural behaviour of hybrid laminated composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1612–1620. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.P.; Santos, P.; Sousa, N.N.; Reis, P.N.B. Strain rate effect on composites with epoxy matrix filled by cork powder. Mater. Des. Process Comm. 2019, 1, e47. [Google Scholar] [CrossRef] [Green Version]
- Reis, P.N.B.; Silva, M.P.; Santos, P.; Parente, J.M.; Bezazi, A. Viscoelastic behaviour of composites with epoxy matrix filled by cork powder. Compos. Struct. 2020, 234, 111669. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Silva, M.P.; Santos, P.; Parente, J.M.; Valvez, S.; Bezazi, A. Mechanical performance of an optimized cork agglomerate core-glass fibre sandwich panel. Compos. Struct. 2020, 245, 112375. [Google Scholar] [CrossRef]
- Oliveira, V.; Rosa, M.E.; Pereira, E. Variability of the compression properties of cork. Wood Sci. Technol. 2014, 48, 937–948. [Google Scholar] [CrossRef]
- Silva, M.P.; Santos, P.; Parente, J.; Valvez, S.; Reis, P.N.B. Effect of harsh environmental conditions on the impact response of carbon composites with filled matrix by cork powder. Appl. Sci. 2021, 11, 7436. [Google Scholar] [CrossRef]
- Giancaspro, J.W.; Papakonstantinou, C.G.; Balaguru, P.N. Flexural Response of Inorganic Hybrid Composites with E-Glass and Carbon Fibers. J. Eng. Mater. Technol. 2010, 132, 021005. [Google Scholar] [CrossRef]
- Dong, C.S.; Duong, J.; Davies, I.J. Flexural properties of S-2 glass and TR30S carbon fiber reinforced epoxy hybrid composites. Polym. Compos. 2012, 33, 773–781. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites. Mater. Des. 2012, 37, 450–457. [Google Scholar] [CrossRef]
- Schoeppner, G.A.; Abrate, S. Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A Appl. Sci. 2000, 31, 903–915. [Google Scholar] [CrossRef]
- Belingardi, G.; Vadori, R. Low velocity impact of laminate Glass-Fiber-Epoxy matrix composite materials plates. Int. J. Impact. Eng. 2002, 27, 213–229. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.; Santos, J.B. Influence of the specimen thickness on low velocity impact behavior of composites. J. Polym. Eng. 2012, 32, 53–58. [Google Scholar] [CrossRef]
- Babu, M.G.; Velmurugan, R.; Gupta, N.K. Energy absorption and ballistic limit of targets struck by heavy projectile. Lat. Am. J. Solids Struct. 2006, 3, 21–39. [Google Scholar]
- Garcıía-Castillo, S.K.; Sánchez-Sáez, S.; Barbero, E. Influence of areal density on the energy absorbed by thin composite plates subjected to high-velocity impacts. J. Strain Anal. 2012, 47, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.M. Penetration and perforation of thick FRP laminates. Compos. Sci. Technol. 2001, 61, 1163–1172. [Google Scholar] [CrossRef]
- Naik, N.K.; Shrirao, P.; Reddy, B.C.K. Ballistic impact behavior of woven fabric composites: Parametric Studies. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process 2005, 412, 104–116. [Google Scholar] [CrossRef]
- Gama, B.A.; Gillespie, J.W. Punch shear based penetration model of ballistic impact of thick-section composites. Compos. Struct. 2008, 86, 356–369. [Google Scholar] [CrossRef]
- Grujicic, M.; Glomski, P.S.; He, T.; Arakere, G.; Bell, W.C. Material modelling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. J. Mater. Eng. Perform. 2009, 18, 1169–1182. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Goldsmith, W.; Dharan, C.K.H. Penetration of laminated Kevlar by projectiles-II. Analytical model. Int. J. Solids Struct. 1992, 29, 421–436. [Google Scholar] [CrossRef]
- He, T.; Wen, H.M.; Qin, Y. Penetration and perforation of FRP laminates struck transversely by conical-nosed projectiles. Compos. Struct. 2007, 81, 243–252. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; Pascoal, R.J.S.; Alves de Sousa, R.J. Modelling impact response of agglomerated cork. Mater. Des. 2014, 58, 499–507. [Google Scholar] [CrossRef]
Stacking Sequence | Schematic Lay-Up | Thickness (mm) Average Value (Standard Deviation) |
---|---|---|
8C | 2.53 (0.15) | |
6C | 1.58 (0.03) | |
4C | 0.92 (0.02) | |
4C + Cork + 4C | 4.23 (0.09) | |
4K + Cork + 4C | 4.11 (0.03) |
Laminates | Maximum Load (N) | Displacement at Max. Load (mm) | Stiffness (N/mm) | |||
---|---|---|---|---|---|---|
Average | Std. | Average | Std. | Average | Std. | |
8C | 1801 | 212 | 3.9 | 0.7 | 812 | 29 |
6C | 873 | 121 | 4.4 | 1.0 | 354 | 41 |
4C | 533 | 101 | 13.2 | 2.1 | 71,7 | 8 |
Laminates | Maximum Load (N) | Displacement at Max. Load (mm) | Stiffness (N/mm) | |||
---|---|---|---|---|---|---|
Average | Std. | Average | Std. | Average | Std. | |
8C | 1801 | 212 | 4.7 | 1.1 | 812 | 29 |
4C + Cork + 4C | 1476 | 121 | 5.9 | 1.9 | 484 | 37 |
4K + Cork + 4C | 1623 | 101 | 9.1 | 2.3 | 256 | 32 |
Laminates | Peak Load (N) | Max Displacement (mm) | Elastic Recuperation (J) | |||
---|---|---|---|---|---|---|
Average | Std. | Average | Std. | Average | Std. | |
8C | 1959 | 50 | 4.2 | 0.02 | 1.16 | 0.38 |
6C | 924 | 12 | 7.8 | 0.19 | 1.71 | 0.19 |
4C | 589 | 4 | - | - | - | - |
Laminates | Peak Load [N] | Max Displacement [mm] | Elastic Recuperation [J] | |||
---|---|---|---|---|---|---|
Average | Std. | Average | Std. | Average | Std. | |
8C | 1959 | 50 | 4.2 | 0.02 | 1.16 | 0.38 |
4C + Cork + 4C | 1755 | 92 | 4.7 | 0.05 | 1.68 | 0.01 |
4K + Cork + 4C | 1653 | 21 | 4.9 | 0.13 | 2.03 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, P.N.B.; Coelho, C.A.C.P.; Navalho, F.V.P. Impact Response of Composite Sandwich Cylindrical Shells. Appl. Sci. 2021, 11, 10958. https://doi.org/10.3390/app112210958
Reis PNB, Coelho CACP, Navalho FVP. Impact Response of Composite Sandwich Cylindrical Shells. Applied Sciences. 2021; 11(22):10958. https://doi.org/10.3390/app112210958
Chicago/Turabian StyleReis, Paulo N. B., Carlos A. C. P. Coelho, and Fábio V. P. Navalho. 2021. "Impact Response of Composite Sandwich Cylindrical Shells" Applied Sciences 11, no. 22: 10958. https://doi.org/10.3390/app112210958
APA StyleReis, P. N. B., Coelho, C. A. C. P., & Navalho, F. V. P. (2021). Impact Response of Composite Sandwich Cylindrical Shells. Applied Sciences, 11(22), 10958. https://doi.org/10.3390/app112210958