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Abstract: Obtaining high-quality embeddings of out-of-vocabularies (OOVs) and low-frequency
words is a challenge in natural language processing (NLP). To efficiently estimate the embeddings of
OOVs and low-frequency words, we propose a new method that uses the dictionary to estimate the
embeddings of OOVs and low-frequency words. More specifically, the explanatory note of an entry
in dictionaries accurately describes the semantics of the corresponding word. Naturally, we adopt
the sentence representation model to extract the semantics of the explanatory note and regard the
semantics as the embedding of the corresponding word. We design a new sentence representation
model to encode sentences to extract the semantics from the explanatory notes of entries more
efficiently. Based on the assumption that the higher quality of word embeddings will lead to better
performance, we design an extrinsic experiment to evaluate the quality of low-frequency words’
embeddings. The experimental results show that the embeddings of low-frequency words estimated
by our proposed method have higher quality. In addition, both intrinsic and extrinsic experiments
show that our proposed sentence representation model can represent the semantics of sentences well.

Keywords: natural language processing; word embedding; BERT; dictionary

1. Introduction

The embedding of a word corresponds to a point in the continuous multidimensional
real number space, and the numerical embedding brings a lot of convenience to calculation.
Word embeddings contain semantics and other information learned from the large-scale
corpora. Recent works have demonstrated substantial gains on many natural language
processing (NLP) tasks and benchmarks by pre-training on a large corpus of text followed
by fine-tuning on a specific task [1,2]. Thus, many machine learning methods use pre-
trained word embeddings as input and achieve better performance in many NLP tasks [3],
such as the well-known text classification [4–6] and neural machine translation [7–9],
among others.

One of the earliest studies on word representations dates back to 1986 and was
conducted by Rumelhart, Hinton, and William [10]. In the following decades, many
word embedding models based on the bag-of-words (BOW) language model (LM) and
neural network LM have been proposed. These word embedding models include the
well-known LDA [11], Word2Vec [12], Glove [13], ELMO [14], and BERT [1]. As soon as
BERT was proposed, it outperformed the state-of-the-art methods on eleven NLP tasks.
Usually, these word embedding models are trained using a huge corpus. However, for
some low-resource languages, it is infeasible to construct a large corpus. When using a
small corpus to estimate word embeddings, sparsity is a major problem. Sparsity leads
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to out-of-vocabulary (OOV) everywhere. For some tasks that require word segmentation,
the OOV phenomenon is more obvious. This is because word segmentation leads to more
significant long-tail characteristics [15,16]. In addition, Zipf’s law applies to most languages.
This makes word embedding models unable to fully learn the semantics of OOVs and
low-frequency words [16,17]. Therefore, accurately estimating the embeddings of OOVs
and low-frequency words becomes the research motivation of this paper. We take Chinese
as an example and use a dictionary to estimate the embeddings of those words. Different
from English texts, there are no explicit delimiters such as whitespace to separate words in
Chinese texts [15,18], just like the explanatory note in Figure 1. Therefore, Chinese word
segmentation is important for some Chinese NLP tasks [15,18]. However, Chinese word
segmentation will cause more serious sparsity problems, which makes the embeddings of
OOVs and low-frequency words more difficult to be estimated [16].

Figure 1. An entry’s construct and the semantics relationship between the word and the explanatory
note. A Chinese word usually contains multiple Chinese characters. Although “train” is not a
low-frequency word in Chinese, we use it as an example for demonstration.

An entry in the dictionary contains a word and the corresponding explanatory note.
They all point to the same point in the semantics space. As shown in Figure 1, the explana-
tory note usually contains rich information which explains the meaning of the correspond-
ing word exactly. Inspired by this, we designed a semantics extractor to extract semantics
from explanatory notes. We use the semantics representation produced by the extractor as
the representation of low-frequency words. For high-frequency words, we still retain their
word representations estimated by other word embedding models, such as Word2Vec. By
combining the two types of word embedding estimation methods, we will obtain higher
quality word representations that will be fine-tuned in downstream tasks. As the extrinsic
experimental results in this paper show, the higher the quality of the word representation,
the better the performance we will obtain. Our main contributions are as follows:

• We use the dictionary to estimate the embeddings of OOVs and low-frequency words.
We also study the effects of low-frequency word embedding replacement rate on the
performance of semantics match tasks.

• We propose a new sentence representation model which is different from the current
mainstream LM, such as BERT [1], XLNet [19], and GPT [2,20].

2. Related Work

Our work mainly involves the estimation of OOVs and low-frequency words’ embed-
dings and designing a sentence representation model. In this section, we introduce the
related works of these two aspects.

Whether it is static word embedding models such as Word2Vec, Glove, and
fasttext [12,13,21], or dynamic word embedding models such as BERT, ELMO, and
GPT [1,2,14], they all extract features from a large number of samples to generate
word representations. For OOVs that have never appeared and low-frequency words,
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these models are unable to estimate their representation well [17]. Researchers have
studied how to improve the estimate of OOVs and low-frequency words’ representa-
tions. These methods mainly use the surface features of OOVs and their context to
predict the meaning. Three types of embeddings (word, context clue, and subword
embeddings) were jointly learned to enrich the OOVs’ representations [22]. In [17],
an OOV embedding prediction model named hierarchical context encoder (HiCE)
was proposed to capture the semantics of context as well as morphological features.
Recently, a mimicking approach has been found to be a promising solution to the OOV
problem. In [23], an iterative mimicking framework that strikes a good balance between
word-level and character-level representations of words was proposed to better capture
the syntactic and semantic similarities. In [24], a method was proposed to estimate OOVs’
embeddings by referring to pre-trained word embeddings for known words with similar
surfaces to target OOVs. In [25], the embeddings of OOVs were determined by the spelling
and the contexts in which they appear. The above-mentioned word embedding models that
use morphology to infer the representations of OOVs are effective for English. However,
they are not necessarily effective for Chinese, because many words with similar forms have
very different meanings.

An explanatory note in an entry is usually a complete sentence. We naturally think of
using the sentence representation model to extract the semantics from the explanatory note
and treat it as the semantics of the corresponding word. In recent years, many sentence
representation models have been proposed and widely used. Facebook AI’s fasttext is
a sentence representation model based continuous skip-gram model [12,21], which can
estimate both word representations and sentence representations (https://github.com/
facebookresearch/fastText, accessed on 5 March 2021). In [26], an unsupervised sentence
embedding method (sent2vec) using compositional n-gram features was proposed to
produce general-purpose sentence embeddings. Both fasttext and sent2vec are all BOW
models, and we think that the BOW mechanism is just the simple combination of word
embeddings. BERT is a landmark dynamic word embedding model. It learns sentence rep-
resentations by performing two tasks: masked word prediction (MWP) and next sentence
prediction (NSP) [1]. The embedding of token [CLS] in the last layer of BERT is considered
as the representation of the input sentence. SBERT-WK is a sentence representation model
based on BERT. It calculates the importance of words in sentences through subspace analy-
sis and then weights word embeddings to generate sentence representations [27]. In [28],
the framework of neural machine translation (LASER) was adopted to jointly learn sentence
representations across different languages. BERT uses a bidirectional self-attention encoder
(the transformer) to encode sentences, and LASER uses a BiLSTM. In addition, there are
more studies on sentence representations [29–31].

There are many publicly available sentence representation models. [1,21,26,27,32].
However, so far, there is no sentence representation model without any flaws. BERT only
uses the embedding of [CLS] in the last layer of BERT to represent the input sequence [1].
The embedding of [CLS] is mainly learned from NSP. However, a recent study shows that
NSP does not contribute much to the sentence representation learning [33]. SBERT-WK
can make use of the existing semantics in BERT as much as possible, but it cannot increase
the semantics in BERT. LASER is a universal multilingual sentence representation model
covering more than 100 languages [32], and it uses BiLSTM to encode sentences. We
believe that there are some limitations to constructing a large and high-quality parallel
corpus, and the encoding ability of BiLSTM is also inferior to Transformer. sent2vec and
fasttext are BOW LMs, and they both use the n-gram features to represent the semantics of
sentences [21,26]. Thus, in this article, we propose a new sentence representation model
from a new perspective.

3. Lessons Learned from an Infeasible Heuristic Model

In this section, we introduce lessons learned from an infeasible heuristic model. The
lessons guide us to construct our new sentence representation model.

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
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As Figure 1 shows, an entry consists of a word and its explanatory note. A word and
its explanatory note all point to the same point in the semantics space. The natural idea is
to construct two different encoders to encode the word and its explanatory note. The two
encoders shown in Figure 2 are trained with the goal of minimizing the difference of the
two outputted semantics vectors. WE and ENE do not share parameters, and they both use
a BiLSTM or BiGRU to encode the token sequence. The detail of the encoder can be seen
in [34].

Figure 2. An infeasible semantics learning model composed of WE and ENE. The model aims to
extract the semantics of words from the explanatory notes but fails.

Suppose we have an entry Ww
1 Ww

2 . . . Ww
L : We

1We
2 . . . We

T . Ww
1 Ww

2 . . . Ww
L and We

1We
2

. . . We
T which represent a word and its explanatory note in an entry. We use

−→
Vw and

−→
Ve to

denote the semantics vectors of the word and the explanatory note. We use the euclidean
distance (or the cosine distance) to measure the semantics difference between the two
vectors. To make the semantics difference as small as possible, we design the objective
function defined by Equation (1) and minimize it to train WE and ENE shown in Figure 2.

Loss = ∑
i∈D

ed(
−→
Vi

w,
−→
Vi

e ). (1)

So far, everything seems to be going according to our expectations. Unfortunately
though, no matter how we jointly train WE and ENE, the parameters being trained always

converge to 0. The output of WE and ENE also tend to
−→
0 , that is, the semantics vector we

finally obtain tends to
−→
0 . Why? Because 0 is one of the feasible solutions of the model, and

0 is the minimum loss of the objective function defined by Equation (1). With the effective
search of optimization algorithm (we use Adam [35] to optimize the model), the loss of
the objective function tends to 0 finally, and the parameters being trained also tend to 0.
Therefore, we can conclude that we cannot approximate an implicit objective that varies
with optimization parameters because such implicit objectives make the loss function of
the model have zero solutions, and when the loss function is equal to 0, all parameters are
zero. This is why pre-trained LMs such as Word2Vec, BERT, XLNet, and GPT [1,2,12,19] all
regard words in the vocabulary as prediction targets (the predicted words are fixed and
will not vary with the trainable parameters). Based on this principle, we design a new
sentence representation model.

4. The Proposed Sentence Representation Model

As Figure 1 shows, an entry consists of a word and the corresponding explanatory
note. Usually, an explanatory note is a complete sentence, so we extract the semantics of
the explanatory note and treat it as the representation of the corresponding word.

We use s1:m = T1 . . . Ti . . . Tm to represent a sentence with length m. The sentence
representation of s(1:m) is denoted by SEMTS(s(1:m)). We assume that the more tokens a



Appl. Sci. 2021, 11, 11018 5 of 23

sentence contains, the more semantics it conveys. Let us consider two token sequences,
s(1:k) and s(1:k+1). s(1:k+1) has one more token Tk+1 than s(1:k). According to the hypothesis,
s(1:k+1) contains more semantics than s(1:k). The added semantics of s(1:k+1) than s(1:k) is
mainly caused by Tk+1, so we can use the added semantics to predict Tk+1, that is,

SEMTS(s(1:k+1))− SEMTS(s(1:k))
predict−→ Tk+1. (2)

In Equation (2), the sentence representation SEMTS(s(1:k+1)) is calculated by the self-
attention mechanism. The self-attention mechanism in our sentence representation model
shown in Figure 3 is slightly different from the traditional self-attention mechanism [1].
Suppose that Z = Z1Z2 · · · Zm is the output of the encoder when the input token sequence
is s(1:m). Zi is the encoding of Ti. The calculation process of the sentence representation of
s(1:m) is shown in Figure 3.

Figure 3. The calculation process of the sentence representation denoted by SEMTS(s(1:m)).

In Figure 3,~q, Ws, and b represent the query vector, the shape transformation matrix,
and the bias, respectively. The e, tan, and � operations are all element-wise.

To make full use of the strong encoding ability of BERT, we use BERT as the backbone
of our sentence representation model. Another benefit of building and fine-tuning the
model based on BERT is that it can save a lot of computation power. Thus, we add our
semantics computing module to BERT as a sub-task, and we call our semantics representa-
tion model SEMTS-BERT. The architecture of SEMTS-BERT is shown in Figure 4. NSP and
MWP are two sub-tasks of the original BERT [1]. Final Word Prediction (FWP) sub-task
corresponds to our semantics computing model, and its structure is shown in Figure 5. The
loss of FWP sub-task is defined as

Lossfwp = − 1
N

N

∑
1

p(Tk+1), (3)

where p(Tk+1) is the probability of Tk+1 defined in Equation (2) when using the added
semantics to predict Tk+1. N is the number of predicted words in a batch. p(Tk+1) is
calculated by FWP, shown in Figure 5. When we minimize the objective, the loss of FWP
defined in this way makes the probability of predicted words as large as possible.
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Figure 4. The architecture of SEMTS-BERT. FWP is added to BERT as a sub-task.

The total loss of SEMTS-BERT is the sum of Loss f wp, Lossnsp, and Lossmwp, that is,

Loss = Loss f wp +Lossnsp +Lossmwp . (4)

The detail of Lossnsp and Lossmwp can be seen in [1].

Figure 5. The architecture of FWP. We follow the practical experience of BERT and add a dense layer
before the softmax layer. A dense layer is a full-connected layer. The function of the softmax layer is
to calculate the probability distribution of the output, and the probability of the output is usually
defined as: pyk =

eyk

∑j eyj .

5. Experiment

In this section, we choose Chinese as a study case and perform two types of ex-
periments: intrinsic evaluation and extrinsic evaluation [17]. The intrinsic evaluation is
designed to evaluate the effectiveness of our proposed SEMTS-BERT. It includes three
tasks: a probing task [36], a text classification task, and a Natural Language Inference (NLI)
task. The extrinsic evaluation is designed to verify the quality of OOVs and low-frequency
words’ embeddings. In the extrinsic experiment, we replace OOVs and low-frequency
words’ embeddings in two downstream tasks: sentence semantic equivalence identification
(SSEI) and question matching (QM) [37,38]. We also evaluate the quality of low-frequency
words’ embeddings by investigating the relative distance between similar words.

5.1. Experimental Settings

As shown in Figure 4, our model is composed of FWP module and BERT. We initialize
our model with the Chinese 12-layer, 768-hidden, 12-head, 110M parameter BERT-Base
model (https://github.com/google-research/bert, accessed on 10 March 2021) and train
it with a dataset derived from texts (250M bytes) downloaded from Wikipedia (https:

https://github.com/google-research/bert
https://dumps.wikimedia.org/zhwiki/
https://dumps.wikimedia.org/zhwiki/
https://dumps.wikimedia.org/zhwiki/
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//dumps.wikimedia.org/zhwiki/, accessed on 1 June 2020). We take a Chinese sentence
“哲学研究的是基础的问题。” (“Philosophy studies basic issues”) as an example to illustrate
the construction of the dataset. We use the Adam optimizer (the initial learning-rate and
the warm-up steps are set to 2× 10−5 and 12,000) to train SEMTS-BERT 2 epochs [35]. The
batch size is 2 and the maximum sequence length is set to 128. As shown in Figure 6, a
sentence can derive many examples. We can obtain nearly 200 examples when the batch
size and the maximum sequence length are set to 2 and 128. When SEMTS-BERT has been
trained, we use the process shown in Figure 3 to calculate sentences’ representation. For an
entry in dictionaries, we input the explanatory note into SEMTS-BERT, and the output is
the representation of the corresponding word.

Figure 6. The construction of the dataset used to train SEMTS-BERT. The symbols s1:k+1, s1:k, and
Tk+1 are defined in Figure 5. [CLS] and [SEP] are two special characters used to enclose sentences.

5.2. Baselines

We choose the following models as baselines to evaluate the performance of SEMTS-
BERT. The performance of sentence representation models directly determines the quality
of low-frequency words’ embeddings.

• BERT: In addition to estimating dynamic word embedding, BERT can also be used
to calculate the embedding of a sentence (the encoding of [CLS] in the last layer is
treated as the sentence representation) [1].

• fasttext https://fasttext.cc/, accessed on 7 March 2021: fasttext is a pre-training BOW
model for 157 different languages. It is a famous library for estimating both words
and sentences [21].

• sent2vec http://github.com/epfml/sent2vec, accessed on 7 March 2021: sent2vec
is an efficient unsupervised BOW model, and it uses word embeddings and n-gram
embeddings to estimate sentence representations [26].

• LASER https://github.com/facebookresearch/LASER, accessed on 8 March 2021:
LASER is a multilingual sentence representation model. It adopts BiLSTM as an
encoder which was trained on a parallel corpus that covers 93 languages [28].

• SBERT-WK: SBERT-WK is a sentence representation model based on BERT. It cal-
culates the importance of words in sentences through subspace analysis and then
weights the word embeddings to obtain sentence representations [27].

5.3. Intrinsic Evaluation 1: Evaluate SEMTS-BERT on Probing Tasks

Probing tasks are designed to evaluate the performance of models on capturing
the simple linguistic properties of sentences [39]. We use the Chinese CoNLL2017
(http://universaldependencies.org/conll17/data.html, accessed on 7 June 2020) for this
evaluation. The dataset is uneven, and its statistics are shown in Table 1. We adopt some
sub-tasks defined in [36,39] in our evaluation. They are:

• Sentence_Len (sentence length): We divide sentences into two classes: class 0 (its
length is shorter than the average length) and class 1 (its length is longer than the

https://dumps.wikimedia.org/zhwiki/
https://dumps.wikimedia.org/zhwiki/
https://fasttext.cc/
http://github.com/epfml/sent2vec
https://github.com/facebookresearch/LASER
http://universaldependencies.org/conll17/data.html
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average length). In this test, the classifier is trained to tell whether a sentence belongs
to class 0 or 1.

• Voice: The goal of this binary classification task is to test how well the model can
distinguish the active or passive voice of a sentence. In the case of complex sentences,
only the voice of the main clause is detected.

• SubjNum: In this binary classification task, sentences are classified by the grammatical
number of nominal subjects of main predicates. There are two classes: sing and plur.

• BShift: In the BShift dataset, we exchange the positions of two adjacent words in
sentence. In this binary classification task, models must distinguish intact sentences
from sentences whose word order is illegal.

Table 1. The detail of the Chinese probing dataset derived from CoNLL2017.

Probing Task Class Train Set Development Set Test Set

Sentence_Len Long Sentence 1571 209 195
Short Sentence 2419 288 305

Voice Passive Voice 311 35 37
Active Voice 3689 461 462

Bshift Shift 3993 498 499
Non-shift 3993 498 499

SubjNum Plur 115 21 20
Sing 3796 466 471

In this test, we fit a Multi-Layer Perception (MLP) with one hidden layer on the top of
the sentence representation model to perform the classification [40]. The architecture of
MLP is illustrated in Figure 7.

Figure 7. The architecture of MLP for probing tasks.

5.3.1. Experimental Results

The experimental results of probing tasks are shown in Table 2. We use accuracy to
express the performance since P = R = F in classification. P, R, and F represent precision,
recall, and F-measure: P = true positives

predicted as positives , R = true positives
actual positives , F = 2PR

P+R . We use the
mean and standard deviation (number in brackets) to express the performance of models.
BERTcls means that the encoding of the token [CLS] is treated as the representation of
the input sentence. BERTmax means that the max-pooling of the encodings in BERT’s last
layer is treated as the representation of the input sentence, and BERTmean means that the
mean-pooling of the encodings in BERT’s last layer is treated as the representation of
the input sentence. f asttextmax and f asttextmean are the same as BERTmax and BERTmean.
f asttextcls represents the native sentence representation model of fasttext. We input the
embeddings of sentences into the classifier described in Figure 7 to evaluate each sentence
representation model.
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Table 2. The experimental results of different models in probing tasks.

Model
Probing Tasks

Avg.
Sentence_Len Bshift Voice SubjNum

BERTcls 0.431(0.129) 0.871(0.188) 0.927(0.017) 0.983(0.007) 0.803(0.085)
BERTmax 0.561(0.136) 0.779(0.110) 0.972(0.021) 0.829(0.125) 0.785(0.098)

BERTmean 0.516(0.159) 0.687(0.200) 0.981(0.008) 0.825(0.253) 0.752(0.155)
f asttextcls 0.825(0.005) 0.505(0.002) 0.951(0.002) 0.957(0.002) 0.810(0.003)

f asttextmax 0.781(0.006) 0.497(0.002) 0.926(0.001) 0.963(0.002) 0.792(0.003)
f asttextmean 0.804(0.006) 0.513(0.002) 0.950(0.001) 0.963(0.003) 0.808(0.003)

sent2vec 0.861(0.005) 0.509(0.001) 0.983(0.003) 0.965(0.003) 0.830(0.003)
LASER 0.938(0.005) 0.563(0.006) 0.950(0.002) 0.967(0.002) 0.855(0.004)

SBERT-WK 0.936(0.006) 0.731(0.004) 0.938(0.005) 0.962(0.001) 0.892(0.004)
SEMTS-BERT 0.959(0.001) 0.740(0.005) 0.956(0.003) 0.972(0.002) 0.907(0.003)

From Table 2, we can see that BERTcls performs best on Bshift and subjNum but worst
on Sentence_Len. SEMTS-BERT and sent2vec perform best on Sentence_Len and Voice.
In the Voice sub-task, all models achieve good performance. In Bshift, all models except
BERTcls do not perform well. Among all the models, the standard deviation of BERT
is the largest, which shows that its training results are unstable and tend to fall into the
local extremum easily during the optimization process. We try to reduce the number of
neurons in the hidden layer to reduce BERT’s standard deviation, but doing so will reduce
its overall performance. Compared with the native sentence representation model, max
and mean pooling operations sometimes achieve better performance.

5.3.2. Analysis and Conclusion

SEMTS-BERT has the best overall performance, followed by SBERT-WK and LASER.
Compared with BERT, f asttext, and sent2vec, the performance of LASER has been proven
to be the best in probing tasks [36]. This shows that SEMTS-BERT has good performance
on probing tasks. Due to the self-attention mechanism, SEMTS-BERT cannot retain the
positional relationship of tokens well, but its performance on Bshift is still better than
f asttext, sent2vec, and LASER. BERTcls performs best on Bshift because it can obtain the
token position information from residual connections between layers and local features
from the masked LM [1]. From Bshift, we can draw a conclusion that the weighted
operation cannot filter all the positional information. f asttext and sent2vec are based on the
BOW LM, so it is easy to understand that they do not perform well on this task. However,
LASER uses BiLSTM to encode token sequences, and it should be sensitive to the word
order, but the experimental results are not the same as our expectation.

5.4. Intrinsic Evaluation 2: Evaluate SEMTS-BERT on Text Classification

Text classification is a popular task used to evaluate the performance of models in
NLP [5]. In this section, we evaluate the performances of different sentence representation
models on three Chinese text classification datasets.

• Thucnews: A high-quality 14-category text classification dataset containing 0.74 M
news articles collected from Sina News: https://news.sina.com.cn/, accessed on
1 May 2021. The dataset is provided by the NLP Laboratory of Tsinghua University:
http://thuctc.thunlp.org/, accessed on 1 May 2021.

• Fudan Dataset (Fudan): Fudan dataset: http://www.nlpir.org/?action-viewnews-
itemid-103, accessed on 1 May 2021, is a 20-category text classification dataset that
contains 9833 test documents and 9804 training documents. It is an uneven dataset
since the number of documents of each category varies greatly.

• TouTiao Dataset (TouTiao): TouTiao dataset is a 15-category short text classification
dataset. Each example contains only a news headline and a subheading. It is noisy
and collected from TouTiao news website: www.toutiao.com, accessed on 1 May 2021.

https://news.sina.com.cn/
http://thuctc.thunlp.org/
http://thuctc.thunlp.org/
http://www.nlpir.org/?action-viewnews-itemid-103
http://www.nlpir.org/?action-viewnews-itemid-103
www.toutiao.com
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We first split paragraphs into sentences and the calculate the representations of sen-
tences. We later use a BiLSTM encoder to encode the sentence representation sequence.
Finally, the outputs of the encoder (document representations) are inputted into the soft-
max layer to perform text classification. The architecture of the text classifier is shown in
Figure 8. We use the Adam optimizer [35] to train each model 50 epochs with early stop
strategy on every dataset.

Figure 8. The network architecture of the text classifier.

5.4.1. Experimental Results

We list the experimental results of this evaluation in Table 3. cls, max, and mean have
the same meaning as those in Table 2. We can easily see that our SEMTS-BERT performs
best. The variance of BERT and fasttext on Toutiao and Thucnews is very large, which
shows that the text classification results of these two models are unstable. Due to the
vagueness and ambiguity of some examples in Toutiao, the classification accuracy of all
models on Toutiao is not high, and the results are not stable.

Table 3. Experimental results of text classification.

Model
Datasets

Thucnews Toutiao Fudan

BERTcls 0.874(0.007) 0.637(0.015) 0.925(0.009)
BERTmax 0.420(0.023) 0.492(0.020) 0.870(0.016)

BERTmean 0.901(0.011) 0.735(0.006) 0.932(0.006)
f asttextcls 0.956(0.005) 0.868(0.012) 0.962(0.009)

f asttextmax 0.934(0.015) 0.835(0.017) 0.935(0.007)
f asttextmean 0.956(0.007) 0.878(0.015) 0.956(0.010)

sent2vec 0.945(0.006) 0.856(0.013) 0.963(0.005)
LASER 0.948(0.005) 0.835(0.008) 0.959(0.005)

SBERT-WK 0.955(0.002) 0.855(0.005) 0.971(0.003)
SEMTS-BERT 0.963(0.003) 0.880(0.013) 0.973(0.002)

5.4.2. Analysis and Conclusions

Our model obtains the best performance on this test. This shows that our sentence en-
coding mechanism can represent the semantics of sentences well. The overall performance
of BERT model is worst, which shows that BERT needs further fine-tuning to obtain better
performance in downstream tasks (sentence embeddings are fixed in this text). f asttextcls
has achieved second only to us, and its performance has surpassed LASER. This shows that
in text classification, a simple BOW model can also perform well. Compared with BERT,
SBERT-WK achieves better performance, which indicates that the sentence representation
obtained by weighting the embeddings in each layer has better performance than using
only the output of the last layer as the sentence representation.

5.5. Intrinsic Evaluation 3: Evaluate SEMTS-BERT on Natural Language Inference (NLI)

In NLI task, a classifier is trained to determine whether one sentence entails, contra-
dicts another sentence, or neither [41]. We use the Chinese XNLI corpus for this test [41].
The Chinese XNLI dataset contains 2312 and 4666 sentence pairs in its development set and
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test set. We randomly re-divide them into train, development, and test sets. The classifier
used in this test is shown in Figure 9. ⊕ represents the concatenation of the two vectors.

Figure 9. The architecture of the NLI classifier.

5.5.1. Experimental Results

The experimental results of the Chinese NLI are shown in Table 4. The meanings of cls,
max, and mean are the same as those in Table 2. LASER performs the best, followed by our
model. The standard deviation of BERT is very large, which shows that the classifier can
easily fall into a local extremum during the training process. The cls models of BERT and
f asttext perform better than max and mean models. This shows that the native sentence
models are more suitable to the NLI task than the pooling models. The mean model
performs better than the max model. The same conclusion is obtained in [36].

Table 4. The experimental results of the Chinese NLI. acc and std. represent classification accuracy
and standard deviation.

Model acc(std.)

BERTcls 0.569(0.166)
BERTmax 0.380(0.179)
BERTmean 0.465(0.188)
f asttextcls 0.552(0.006)

f asttextmax 0.503(0.005)
f asttextmean 0.549(0.007)

sent2vec 0.558(0.007)
LASER 0.645(0.008)

SBERT-WK 0.545(0.101)
SEMTS-BERT 0.604(0.005)

5.5.2. Analysis and Conclusion

BiLSTM can encode sequences well [42]. LASER uses a BiLSTM to encode token
sequences, and it is trained on a large multilingual parallel corpus [32]. Therefore, it
is understandable that it performs best, and the same conclusion has also been drawn
in [36]. BERT uses a Transformer-based bidirectional encoder to encode the sequence [1].
In this test, the performance of BERT is not as good as LASER. This is because the sentence
embeddings are fixed, and BERT can not benefit from the larger, more expressive pre-
training representations [1]. However, our sentence representation model can improve this
situation. sent2vec and f asttext have the worst performance. They both use a BOW LM
to represent the semantics of sentences [21,26]. The sequence encoding ability of BOW is
obviously inferior to BiLSTM and Transformer [36]. Surprisingly, the performance of SBERT-
WK is not as good as f asttextcls and sent2vec. This shows that the complex weighting
operation in SBERT-WK cannot improve the NLI performance of BERT. Because we only
use simple classifier and the sentence representations are fixed, the optimal performance in
this test is not high. However, this is enough for us to compare the semantics representation
abilities of different models.
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5.6. Extrinsic Evaluation 1: Evaluate the Quality of Low-Frequency Words’ Embeddings by the
Relative Distance

In this evaluation, we assume that in a set of words with similar meanings, if their
embeddings are more concentrated, the quality of their embeddings will be better. We
choose nine Chinese low-frequency words with similar meanings for this evaluation. They
are 砂仁 (Fructus Amomi), 腽肭脐 (Testiset Penis Phocae), 枳壳 (Fructus Aurantii), 枳实
(Fructus), 紫河车 (Placenta Hominis), 阿胶 (Donkey-Hide Gelatin), 白药 (Baiyao, a white
medicinal powder for treating hemorrhage, wounds, bruises, etc.), 膏药 (Plaster), 槐豆
(Locust Bean). These words are the names of some traditional Chinese medicines.

We use Word2Vec (trained on the Chinese text corpus downloaded from Wikidata) to
estimate the embeddings of these words. We use SEMTS-BERT, SBERT-WK, and LASER
to calculate the embedding of the explanatory note and regard the embedding as the
embedding of the corresponding word. For example, the explanatory note of 砂仁 in the
dictionary is “阳春砂或缩砂密的种子，入中药，有健胃、化滞、消食等作用” . We input
this explanatory note into a sentence representation model, and the produced embedding
is treated as the embedding of 砂仁 .

The relative distances between the nine Chinese low-frequency words are shown
in Figure 10. The embeddings estimated by our model have a smaller relative distance.
Therefore, we think that our method can produce higher-quality low-frequency word
embeddings.

Figure 10. The relative distance between the Chinese low-frequency words. We use t-SNE (initialized
by PCA) for dimensionality reduction so that the high-dimensional embeddings can be shown on a
two-dimensional plane [43].

5.7. Extrinsic Evaluation 2: Evaluate the Quality of Low-Frequency Words’ Embeddings on
Downstream Tasks

We assume that the higher the quality of word embeddings, the better the performance
we will obtain. Based on this assumption, we indirectly evaluate the quality of word
embeddings through the performance of specific tasks. We adopt SSEI (sentence semantic
equivalence identification) and QM (question matching) to evaluate the performance
improvement caused by replacing the embeddings of low-frequency words [37,38]. By
replacing the embeddings of OOVs and low-frequency words in train, development,
and test sets, we can evaluate whether our proposed low-frequency word embedding
estimation method can improve the performance of SSEI and QM as well as how much the
performance has been improved. From the improvement, we can determine whether the
quality of low-frequency words’ embeddings has been improved.
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5.7.1. Experimental Design

We use the Chinese dictionary named XIANDAI HANYU CIDIAN and choose two
NLP tasks (SSEI and QM) for this evaluation. SSEI is a fundamental task of NLP in question
answering (QA), automatic customer service, and chatbots. In customer service systems,
two questions are defined as semantically equivalent if they convey the same intent or they
could be answered by the same answer. Because of rich expressions in natural languages,
SSEI is a challenging NLP task [37]. QM is also a fundamental task of QA, which is usually
recognized as a semantic matching task, sometimes a paraphrase identification task. The
goal of QM is to search questions that have similar intent as the input question from an
existing database [38].

Without replacing the OOVs and low-frequency words’ embeddings in train, develop-
ment, and test sets, we first evaluate the performance of the baseline sentence matcher on
the two datasets. We later replace low-frequency words’ embeddings in the same dataset,
and we evaluate the performance of the baseline sentence matcher again. By comparing
the two results, we can obtain the performance improvement and determine whether our
proposed method improves the quality of low-frequency words’ embeddings. We use
Word2Vec (https://github.com/RaRe-Technologies/gensim, accessed on 10 June 2021) to
estimate word embeddings on a large Chinese corpus downloaded from Wikidata [12]. We
use SEMTS-BERT, SBERT-WK, and LASER to estimate OOVs and low-frequency words’
embeddings. When we input the explanatory note of an entry (suhc as the one shown in
Figure 1) into a sentence representation model, the outputted sentence representation is con-
sidered as the embedding of the corresponding word. We choose LASER and SBERT-WK
for the comparison because they have been proven high-performance [27,36].

5.7.2. Datasets

We use BQ [37] and LCQMC [38] datasets for this evaluation. Each example in
BQ and LCQMC contains a sentence pair and a label. The label indicates whether the
two sentences in sentence pairs match. The train, development, and test sets of BQ
contain 100k, 10k, and 10k examples, respectively, and the train, development, and
test sets of LCQMC contain 238k, 8.8k, and 12.5k examples, respectively. We use jieba
(https://pypi.python.org/pypi/jieba, accessed on 1 July 2021) to perform Chinese word
segmentation. The distributions of low-frequency words of the two datasets are shown in
Table 5.

Table 5. The distributions of low-frequency words of BQ and LCQMC datasets.

Word Frequency Percentage in BQ (%) Percentage in LCQMC (%)

≤200 1.95 3.25
≤500 2.30 5.85
≤700 2.89 6.86
≤1000 5.33 7.98
≤3000 8.25 11.19
≤8000 11.00 13.36
≤20,000 12.99 14.75
≤50,000 13.79 15.75

5.7.3. Baseline and Parameter Settings

We choose BiLSTM, Text-CNN, DCNN, DIIN, BiMPM, and other machine learning
models as sentence matcher baselines [44–48]. BiMPM is a character+word model [46], and
it obtains the best results on BQ and LCQMC. The embeddings of characters are tuned,
and the embeddings of words can be dynamic (tuned) or static (not to be tuned) in the
evaluation.

https://github.com/RaRe-Technologies/gensim
https://pypi.python.org/pypi/jieba
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5.7.4. Experimental Results

The comparisons between our model and other models on BQ and LCQMC are shown
in Tables 6 and 7, Appendices A and B. “c” and “w” in the Emb column represent the
character-based and the word-based model. “Acc.” represents the classification accuracy.
“+st.” and “+dy.” denote that word embeddings are fixed and to be tuned during the
training. “+LASER”, “+SB-WK”, and “+SEMTS” mean that the embeddings used to replace
the original embeddings of low-frequency words are calculated by LASER, SBERT-WK, and
SEMTS-BERT, respectively. On both BQ and LCQMC, we all use the word-based BiMPM.
On the BQ dataset, we obtain the similar performance to the benchmark obtained by a
character-based model [37]. Generally, the performance of character-based model is better
than the performance of word-based model on small Chinese datasets due to sparsity [16].
On the LCQMC dataset, we achieve better performance than the benchmark.

From Tables 6 and 7, Appendices A and B, we can draw a conclusion that we achieve
better performance when we replace the low-frequency words’ embeddings on the larger
LCQMC dataset. The performance of the word-based model exceeds that of the character-
based model after performing the replacement. This shows that we can obtain higher-
quality word embeddings through the proposed method when the dataset is large. On
the smaller BQ dataset, the replacement also promotes the word-based model. Sometimes,
the performance of word-based models exceeds that of the character-based model after
performing the replacement. In summary, the performance improvement indicates that
our method can provide higher-quality low-frequency words’ embeddings.

Table 6. The comparison between our method and other models on BQ.

Model Emb P R F Acc.

TF-IDF c 64.68 60.94 62.75 63.83

Text-CNN [44] c 67.77 70.64 69.17 68.52
Text-CNN [44] w 69.61 67.00 68.28 67.56

Text-CNN [44]+st.+LASER w 68.96 68.38 68.67 68.30
Text-CNN [44]+dy.+LASER w 68.63 67.09 67.85 68.87
Text-CNN [44]+st.+SB-BK w 67.82 69.42 68.61 68.22
Text-CNN [44]+dy.+SB-BK w 68.38 67.70 68.04 67.58
Text-CNN [44]+st.+SEMTS w 67.91 70.15 69.01 68.49
Text-CNN [44]+dy.+SEMTS w 68.65 69.01 68.83 67.37

BiLSTM [48] c 75.04 70.46 72.68 73.51
BiLSTM [48] w 74.79 68.52 71.52 71.06

BiLSTM [48]+st.+LASER w 72.68 74.28 73.47 73.55
BiLSTM [48]+dy.+LASER w 73.01 73.39 73.20 72.73
BiLSTM [48]+st.+SB-BK w 72.85 72.73 72.79 73.28
BiLSTM [48]+dy.+SB-BK w 72.63 73.09 72.86 72.66
BiLSTM [48]+st.+SEMTS w 73.94 72.83 73.38 73.45
BiLSTM [48]+dy.+SEMTS w 72.86 73.10 72.98 72.89

DIIN [45] c 81.58 81.14 81.36 81.41
DIIN [45] w 81.71 79.23 80.45 80.78

DIIN [45]+st.+LASER w 81.50 81.16 81.33 81.27
DIIN [45]+dy.+LASER w 80.97 81.33 81.15 80.85
DIIN [45]+st.+SB-BK w 81.02 81.50 81.26 81.29
DIIN [45]+dy.+SB-BK w 81.91 79.86 80.87 80.75
DIIN [45]+st.+SEMTS w 81.07 81.63 81.35 81.39
DIIN [45]+dy.+SEMTS w 81.56 80.11 80.83 80.91
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Table 6. Cont.

Model Emb P R F Acc.

BiMPM [46] c 82.28 81.18 81.73 81.85
BiMPM [46] w 81.35 81.11 81.22 81.28

BiMPM [46]+st.+LASER w 81.10 82.31 81.70 81.15
BiMPM [46]+dy.+LASER w 80.85 82.20 81.52 80.86
BiMPM [46]+st.+SB-BK w 80.93 82.44 81.68 81.18
BiMPM [46]+dy.+SB-BK w 81.09 81.73 81.41 80.92
BiMPM [46]+st.+SEMTS w 82.16 81.30 81.73 81.77
BiMPM [46]+dy.+SEMTS w 80.59 81.45 81.02 81.13

Table 7. The comparison between our method and other models on LCQMC.

Model Emb P R F Acc.

CBOW [49] c 66.5 82.8 73.8 70.6
CBOW [49] w 67.9 89.9 77.4 73.7

CBOW [49]+st.+LASER w 67.75 70.64 77.65 75.05
CBOW [49]+dy.+LASER w 68.21 70.64 77.51 74.93
CBOW [49]+st.+SB-BK w 68.28 70.64 78.07 75.11
CBOW [49]+dy.+SB-BK w 68.53 70.64 77.64 74.98
CBOW [49]+st.+SEMTS w 68.24 70.64 78.13 75.37
CBOW [49]+dy.+SEMTS w 67.65 70.64 77.92 75.16

Text-CNN [44] c 67.1 85.6 75.2 71.8
Text-CNN [44] w 68.4 84.6 75.7 72.8

Text-CNN [44]+st.+LASER w 69.45 84.04 76.05 73.85
Text-CNN [44]+dy.+LASER w 67.76 86.31 75.92 73.56
Text-CNN [44]+st.+SB-BK w 70.84 82.62 76.28 73.90
Text-CNN [44]+dy.+SB-BK w 68.37 85.93 76.15 73.51
Text-CNN [44]+st.+SEMTS w 69.93 85.68 77.01 73.98
Text-CNN [44]+dy.+SEMTS w 69.61 85.87 76.89 73.54

BiLSTM [50] c 67.4 91.0 77.5 73.50
BiLSTM [50] w 70.6 89.3 78.9 76.10

BiLSTM [48]+st.+LASER w 70.97 89.49 79.16 77.14
BiLSTM [48]+dy.+LASER w 71.16 88.83 79.02 77.02
BiLSTM [48]+st.+SB-BK w 70.93 89.37 79.09 76.95
BiLSTM [48]+dy.+SB-BK w 71.25 88.26 78.85 76.87
BiLSTM [48]+st.+SEMTS w 71.07 89.84 79.36 77.31
BiLSTM [48]+dy.+SEMTS w 71.51 88.59 79.14 77.18

BiMPM [46] c 77.60 93.90 85.00 83.40
BiMPM [46] w 77.70 93.50 84.90 83.30

BiMPM [46]+st.+LASER w 78.07 96.17 86.18 84.89
BiMPM [46]+dy.+LASER w 77.98 96.76 86.36 85.11
BiMPM [46]+st.+SB-BK w 78.02 96.62 86.33 85.05
BiMPM [46]+dy.+SB-BK w 78.87 94.18 85.85 84.88
BiMPM [46]+st.+SEMTS w 79.20 95.53 86.60 85.17
BiMPM [46]+dy.+SEMTS w 78.95 94.12 85.87 84.85

Figures 11 and 12 show the experimental results on BQ and LCQMC at different low-
frequency word embedding replacement rates. The bars “SEMTS-BERT *” represent the
accuracy of BiMPM at different low-frequency word embedding replacement rates when
SEMTS-BERT is used to estimate the embeddings. The bars “LASER *” and “SBERT-WK
*” also have similar meanings. “Static” and “dynamic” indicate that word embeddings
are fixed and to be tuned during the training. When the low-frequency word embedding
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replacement rate is 0, we did not use the word embeddings calculated by the sentence
representation model to replace the original word embeddings estimated by Word2Vec.

Figure 11. The influence of different low-frequency word embedding replacement rates on the
performance of BiMPM evaluated on BQ.

It can be seen from Figure 11 that when using LASER and SBERT-WK to estimate OOVs
and low-frequency words’ embeddings, the replacement cannot improve the accuracy
of BiMPM on BQ, no matter if the embeddings of words are static or dynamic. When
using SEMTS-BERT to estimate OOVs and low-frequency words’ embeddings and the
embeddings of words are fixed during the evaluation, the replacement of low-frequency
words’ embeddings can improve the accuracy of the word-based BiMPM at the replacement
rate of 1.95% (from 81.28% to 81.77%). When word embeddings are dynamic, SEMTS-BERT
can not improve the performance of the word-based BiMPM on BQ either.

Figure 12. The influence of different low-frequency word embedding replacement rates on the
performance of BiMPM evaluated on LCQMC.
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The situation in Figure 12 is slightly different. On LCQMC, whether the word em-
beddings are dynamic or static, replacing low-frequency words’ embeddings can improve
the performance of the word-based BiMPM. However, as the replacement rate increases,
the performance of word-based BiMPM decreases significantly. When using LASER to
estimate low-frequency words’ embeddings, the replacement can improve the accuracy of
BiMPM at the rates of 3.25% (word embeddings are fixed) and 6.86% (word embedding are
dynamic). We can draw the similar conclusion from the bars of SBERT-WK. When using
SEMTS-BERT to estimate low-frequency words’ embeddings and the word embeddings
are static, the replacement can effectively improve the accuracy of BiMPM from 84.34% to
85.08% and from 84.34% to 85.17% at the replacement rate of 5.85% and 7.98%. The best
accuracy of BiMPM on LCQMC in [38] is 83.34%, obtained by the character-based model.
Our result is much better than the benchmark. When the word embeddings are dynamic,
we can also draw a similar conclusion.

In addition, we obtain an interesting conclusion, which is shown in Figure 13. When
low-frequency words’ embeddings are not replaced, if the model has achieved good
performance through the careful fine-tuning of hyper-parameters (the solid broken lines),
then replacing low-frequency words’ embeddings can no longer improve the performance.
On the contrary, if the performance of the model is relatively poor when no low-frequency
words’ embeddings are replaced (the dashed broken lines), the replacement can improve
the performance at some replacement rates. This conclusion can not only guide us to adjust
hyper-parameters, but also enable us to obtain better performance by replacing the low-
frequency words’ embeddings. This is because either we have obtained good performance
or we will obtain better performance by replacing the embeddings of low-frequency words.

Figure 13. The influence of initial performances (low-frequency word embedding replacement rate
is 0) on BiMPM performance at different replacement rates. We take evaluation on LCQMC as an
example.

5.7.5. Analysis and Conclusion

Except for the condition that the word embeddings are static, replacing low-frequency
words’ embeddings can hardly improve the performance on the smaller BQ dataset (take
the benchmark as a reference). This may be caused by sparsity. On the larger LCQMC,
the sparsity has been greatly alleviated. Regardless of whether the word embeddings are
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dynamic or static in the evaluation, replacing low-frequency words’ embeddings estimated
by all sentence representation models can improve the performances of word-based BiMPM,
and we achieve new benchmark on LCQMC.

However, only a suitable low-frequency word embedding replacement rate can im-
prove the performance. The performance will be reduced when the replacement rate is too
high. From our experimental results, the smaller the dataset, the more limited the perfor-
mance improvement obtained by the replacement of low-frequency words’ embeddings.
We think this is not only caused by sparsity, but also by the lack of coupling between the
two different semantics spaces (the way that sentence representation models calculate word
embeddings is different from the way that Word2Vec calculates word embeddings). In
addition, if the model has achieved good performance when no low-frequency words’ em-
beddings are replaced, the replacement cannot improve the performance. On the contrary,
if the performance is not good when no low-frequency words’ embeddings are replaced,
the replacement will improve the performance.

In summary, we can draw two conclusions from the extrinsic evaluation. The first is
that we can obtain higher-quality low-frequency word embeddings through our proposed
method. When the dataset is large, replacing the original embeddings of low-frequency
words in an appropriate proportion can improve the performance. The second is that
SEMTS-BERT can represent the semantics of sentences well. This is because, on the BQ
dataset, only SEMTS-BERT improves the performance of the word-based BiMPM, and on
LCQMC, we achieve a new benchmark by using the embeddings estimated by SEMTS-
BERT to replace the original embeddings of low-frequency words.

6. Discussion

The sparsity makes the semantics of words and phrases not fully learned, which in turn
harms the performance of NLP tasks [16,17,22,25]. To reduce the sparsity, researchers have
designed effective algorithms to split long words into short fragments. These algorithms
include BPE and WordPiece [1,2,20]. There is also a study pointing out that using character-
level models in Chinese NLP tasks can achieve better performance [16]. In this article,
we use the dictionary to estimate the embeddings of low-frequency words. In extrinsic
tasks, we obtain better performance by using word embeddings estimated by our proposed
method to replace the original low-frequency words’ embeddings (estimated by Word2Vec).
This shows that our method can provide higher-quality low-frequency word embedding.
However, from the experimental results, we can see that too-high a replacement rate will
harm the performance of tasks. In addition, performing such a replacement on a larger
dataset will lead to higher performance improvement.

In this article, we design a new sentence representation model and expect to extract
the semantics of explanatory notes more efficiently. Our sentence representation model
achieves the best performance in many tasks in both the intrinsic and extrinsic experiments.

In summary, dealing with OOVs and low-frequency words is one of the challenges in
NLP tasks. OOVs and low-frequency words are universal. Therefore, we think that it is
very difficult to eliminate the OOV problem. Although the method proposed in this paper
reduces the impact of the OOV problem on performance to a certain extent, there are still
many problems worthy of further study. In the future, we will conduct in-depth research
in the following aspects:

• Use relationships between the rich nodes in knowledge bases to estimate the embed-
ding of low-frequency words.

• Construct more high-performance sentence representation models to extract semantics
from sentences.

• Since there are two different word embedding estimation methods, we will study
measures to make two semantics spaces better coupled.

• Use the correspondence between words in multilingual dictionaries to estimate the
embeddings of low-resource language words.
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Appendix A. Evaluation Results of Other Methods on BQ

Table A1. The evaluation results of other methods on BQ. 1L-MLP stands for a one-layer MLP, LR
stands for logistic regression [51], and DCNN stands for a dynamic convolutional neural network with
k-max pooling [47]. When SVM, MLP, and LR are used for evaluation, the sentence representation is
obtained by implementing average pooling transformation on the variable-length word (character)
embedding sequences.

Model Emb P R F Acc.

RNN c 66.23 64.14 65.17 64.53
RNN w 65.78 61.86 63.76 63.09

RNN+st.+LASER w 65.53 64.38 64.95 64.49
RNN+dy.+LASER w 63.81 65.45 64.62 63.86
RNN+st.+SB-BK w 65.22 64.33 64.77 64.25
RNN+dy.+SB-BK w 66.36 63.73 65.02 64.01
RNN+st.+SEMTS w 65.69 64.58 65.13 64.61
RNN+dy.+SEMTS w 64.75 64.89 64.82 64.17

LSTM [42] c 68.62 70.57 69.58 70.56
LSTM [42] w 67.15 67.61 67.38 68.02

LSTM [42]+st.+LASER w 70.61 71.52 71.06 70.10
LSTM [42]+dy.+LASER w 68.76 70.93 69.83 69.28
LSTM [42]+st.+SB-BK w 70.23 70.33 70.28 70.27
LSTM [42]+dy.+SB-BK w 69.54 71.73 70.62 69.34
LSTM [42]+st.+SEMTS w 68.56 73.38 70.89 71.33
LSTM [42]+dy.+SEMTS w 68.27 71.27 69.74 70.16

SVM [52] c 62.87 63.43 63.15 63.39
SVM [52] w 63.98 63.90 63.94 63.71

SVM [52]+st.+LASER w 64.52 63.08 63.79 64.56
SVM [52]+dy.+LASER w 65.85 62.44 64.10 64.17
SVM [52]+st.+SB-BK w 64.76 63.77 64.26 63.73
SVM [52]+dy.+SB-BK w 63.94 63.78 63.86 63.45
SVM [52]+st.+SEMTS w 64.92 62.31 63.59 64.11
SVM [52]+dy.+SEMTS w 65.27 63.42 64.33 63.78

1L-MLP c 65.83 62.71 64.23 63.89
1L-MLP w 64.96 62.64 63.78 63.26

1L-MLP+st.+LASER w 65.34 63.60 64.46 63.73
1L-MLP+dy.+LASER w 64.91 63.86 64.38 63.69
1L-MLP+st.+SB-BK w 64.37 63.61 63.99 63.88
1L-MLP+dy.+SB-BK w 63.95 64.47 64.21 63.57
1L-MLP+st.+SEMTS w 64.54 65.04 64.79 63.95
1L-MLP+dy.+SEMTS w 64.89 62.59 63.72 63.82
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Table A1. Cont.

Model Emb P R F Acc.

LR [51] c 63.81 62.00 62.89 63.65
LR [51] w 63.79 61.40 62.57 62.81

LR [51]+st.+LASER w 63.55 62.20 62.87 63.52
LR [51]+dy.+LASER w 64.27 62.17 63.20 63.76
LR [51]+st.+SB-BK w 65.16 62.15 63.62 63.85
LR [51]+dy.+SB-BK w 64.56 61.30 62.89 63.49
LR [51]+st.+SEMTS w 63.93 63.59 63.76 63.83
LR [51]+dy.+SEMTS w 64.25 61.66 62.93 63.58

DCNN [47] c 72.68 70.09 71.36 70.12
DCNN [47] w 70.52 68.55 69.52 68.47

DCNN [47]+st.+LASER w 71.24 70.01 70.62 70.01
DCNN [47]+dy.+LASER w 70.95 70.63 70.79 69.37
DCNN [47]+st.+SB-BK w 70.29 69.44 69.86 69.79
DCNN [47]+dy.+SB-BK w 71.57 69.52 70.53 69.25
DCNN [47]+st.+SEMTS w 72.63 69.59 71.08 70.26
DCNN [47]+dy.+SEMTS w 71.28 69.25 70.25 69.88

Appendix B. Evaluation Results of Other Methods on LCQMC

Table A2. The evaluation results of other methods on BQ. 1L-MLP stands for a one-layer MLP, LR
stands for logistic regression [51], and DCNN stands for a dynamic convolutional neural network with
k-max pooling [47]. When SVM, MLP, and LR are used for evaluation, the sentence representation is
obtained by implementing average pooling transformation on the variable-length word (character)
embedding sequences.

Model Emb P R F Acc.

RNN c 67.68 66.04 66.85 65.36
RNN w 71.53 67.36 69.38 67.27

RNN+st.+LASER w 72.86 69.58 71.18 69.23
RNN+dy.+LASER w 71.95 69.72 70.82 69.09
RNN+st.+SB-BK w 71.52 69.63 70.56 68.77
RNN+dy.+SB-BK w 73.17 69.05 71.05 68.85
RNN+st.+SEMTS w 72.76 69.53 71.11 69.36
RNN+dy.+SEMTS w 71.25 70.22 70.73 69.24

LSTM [42] c 74.81 71.79 73.27 70.25
LSTM [42] w 75.96 73.44 74.68 73.51

LSTM [42]+st.+LASER w 77.08 74.37 75.70 74.53
LSTM [42]+dy.+LASER w 77.35 75.18 76.25 74.11
LSTM [42]+st.+SB-BK w 78.12 74.33 76.18 74.69
LSTM [42]+dy.+SB-BK w 77.73 73.56 75.59 73.87
LSTM [42]+st.+SEMTS w 78.17 75.34 76.73 74.82
LSTM [42]+dy.+SEMTS w 78.09 74.70 76.36 74.66

SVM [52] c 66.39 65.20 65.79 64.35
SVM [52] w 68.95 67.11 68.02 66.77

SVM [52]+st.+LASER w 69.86 68.57 69.21 67.64
SVM [52]+dy.+LASER w 71.57 69.50 70.52 67.92
SVM [52]+st.+SB-BK w 72.63 69.86 71.22 68.16
SVM [52]+dy.+SB-BK w 71.61 69.77 70.68 67.83
SVM [52]+st.+SEMTS w 72.72 69.61 71.13 68.07
SVM [52]+dy.+SEMTS w 71.68 69.15 70.39 67.95
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Table A2. Cont.

Model Emb P R F Acc.

1L-MLP c 66.27 63.55 66.10 64.88
1L-MLP w 67.53 64.35 68.06 65.90

1L-MLP+st.+LASER w 67.86 66.47 68.85 67.16
1L-MLP+dy.+LASER w 68.49 65.73 69.27 67.08
1L-MLP+st.+SB-BK w 68.65 65.14 68.26 66.85
1L-MLP+dy.+SB-BK w 67.82 66.06 68.52 66.93
1L-MLP+st.+SEMTS w 69.38 65.28 70.20 67.27
1L-MLP+dy.+SEMTS w 68.94 65.53 69.53 67.19

LR [51] c 65.97 65.43 65.70 64.23
LR [51] w 68.92 65.62 67.23 65.78

LR [51]+st.+LASER w 69.37 67.38 68.36 66.98
LR [51]+dy.+LASER w 71.16 67.52 69.29 67.03
LR [51]+st.+SB-BK w 70.95 66.44 68.62 66.85
LR [51]+dy.+SB-BK w 71.29 69.22 70.24 66.96
LR [51]+st.+SEMTS w 72.31 69.89 71.08 67.16
LR [51]+dy.+SEMTS w 71.15 70.61 70.88 67.21

DCNN [47] c 75.61 72.88 74.22 72.50
DCNN [47] w 76.73 73.63 75.15 73.49

DCNN [47]+st.+LASER w 78.69 75.90 77.27 75.31
DCNN [47]+dy.+LASER w 79.35 76.66 78.15 75.23
DCNN [47]+st.+SB-BK w 78.13 75.57 76.83 75.56
DCNN [47]+dy.+SB-BK w 79.57 74.95 77.19 75.38
DCNN [47]+st.+SEMTS w 79.38 77.28 78.31 75.45
DCNN [47]+dy.+SEMTS w 78.64 77.10 77.86 75.29
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