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Abstract: In the present study, a systematic investigation is performed to assess the relationship
between electroplating parameters, pore morphology and internal surface area of copper deposits
which are promising to serve as electrodes for electrochemical reduction reactions of carbon dioxide
(CO2). A set of porous copper deposits are fabricated with the dynamic hydrogen bubble template
method. The microstructural and Brunauer–Emmett–Teller (BET) analysis demonstrate that current
density, deposition time, and bath composition control pore size, strut size, and hence surface area
which could be as high as 20 m2/g. Selected sets of porous copper electrodes are then employed in
the electrochemical reduction reaction test to determine their conversion performance in comparison
to a monolithic copper surface. From the gas chromatography (GC) and nuclear magnetic resonance
(NMR) analysis, porous copper is shown to provide higher rates of production of some important
chemicals, as compared to copper foil electrodes. Porous copper with fern-like morphology serves
as a promising electrode that yields relatively high amounts of acetaldehyde, acetate and ethanol.
The study thus presents the opportunities to enhance the electrochemical reduction reaction of CO2

through microstructural engineering of the copper surface, which benefits both CO2 reduction and
generation of chemical products of high value.

Keywords: porous copper; electrochemical CO2 reduction; catalyst; surface microstructure

1. Introduction

High attention has been paid to the development of porous metals in the past decade,
because the materials exhibit many unique characteristics including high surface area, low
density, and permeability that allow fluid flow. Recently, porous copper (Cu) and Cu alloys
are among the porous metals that receive increasing focus, as Cu itself provides many
important features required in the engineering and functional applications [1–5]. These
include, for example, high thermal conductivity for heat exchangers and catalytic activity
for environmental and energy applications [6–8]. Introduction of porosity to Cu has been
shown to enhance various properties, such as wettability, fluid permeability and catalytic
efficiency [9–12]. Correspondingly, Cu with porous structures, coupled with its metallic
copper quality, can find wider uses for thermal transfer systems, water purification, fuel
cell components and electro-catalytic applications [13–17].
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One of the possible techniques to generate porosity and thus fabricate porous Cu is
the promotion of hydrogen bubbles in the Cu electrodeposition process in the acid-based
electrolyte. This so-called “dynamic hydrogen bubble template (DHBT) method” was
introduced by Shin et al. in the year 2003 and was demonstrated to provide honeycomb-
like porous structure with hierarchical porosity, comprising pores in micro- (30–90 µm)
and nano-scales [4,18]. Specifically, porosity can be generated in a relatively simple way by
increasing the rates of hydrogen formation at the cathode surface upon which Cu ions are
electrochemically reduced and copper is electrodeposited. This could be done by increasing
applied current for electrodeposition or increasing the concentration ratio of sulfuric acid
to copper sulphate in the plating bath [4,18–21]. The accumulated hydrogen bubbles are
then incorporated into the deposit, resulting in pore formation.

With high volume of interconnected porosity and large surface area, DHBT porous
Cu can find possible uses in the application of electrochemical CO2 reduction reactions
(CO2RR), as an electro-catalyst that supports and accelerates the conversion of CO2 gas to
some useful chemical products [2,10,22,23]. This particular application has gained large
amounts of attention in recent years owing to the increasing concern on greenhouse gas
emissions and associated global warming. Compared to the existing thermochemical,
photochemical, and hydrogenation methods, the electrochemical route for CO2 conversion
is advantageous due to its low energy consumption, dispatchability and room temperature
operation [24]. In this regard, the 3D open-pore catalytic electrode of high surface could
allow CO2 to concentrate at the electrode and provide more active sites for the electrochem-
ical reaction [1,2]. Compared to other common electrodes for CO2RR (e.g., Au, Ag and Zn
that provide CO primarily; and Sn, In, Pb that dominantly yield formate) [25,26], Cu is
known to be a unique catalyst that promote generations of a variety of valuable chemical
products, including CO, formate, hydrocarbons (i.e., methane, ethylene, and ethane), and
oxygenates (i.e., acetate, acetone, ethanol, formate, and methanol) [6,25–29]. A state-of-the-
art study by Kuhl et al. using a flat cell reactor and Cu foil electrodes demonstrated the
generation of as many as 16 CO2RR products [26], owing to Cu’s intermediate CO binding
energy. Oxidation states of Cu electrodes’ surfaces (i.e., Cu+, Cu2+) have shown to play a
role in CO2RR. Depending on the oxidation states as controllable by various methods [30]
such as thermal annealing, Cu electrodes are promoted to generate different chemical prod-
ucts and current efficiencies [31–34]. Of the primary uses of Cu electro-catalysts for CO2
conversion applications are those that produce hydrocarbon or oxygenate products [10,25],
as exemplified by the cathodic electrochemical reactions in Equations (1) and (2). The
anodic reactions, on the other hand, involve the oxygen evolution reaction (OER), whereby
oxygen molecules and electrons are generated at the anodes.

CO2 + 8H+ + 8e− → CH4(g) + 2H2O (1)

CO2 + 6H+ + 6e− → CH3OH(aq) + H2O (2)

Compared to monolithic Cu electrodes, porous Cu electrodes could potentially con-
tribute to improvements of product selectivity, catalytic activity, and energy consumption
of CO2RR. Nevertheless, a study of porous Cu or porous metals in general for the CO2RR
application is still limited. Daiyan et al., for example, demonstrated that introduction of
porosity with a certain pore size to Ag deposits results in the increase of faradaic efficiency
for CO2 conversion to CO [35]. Palmore et al. introduced DHBT Cu for CO2RR and
showed that the porous Cu that was deposited with a certain duration (i.e., 60 s) preferably
enhances faradic efficiency of hydrocarbons (methane, ethylene, and propene) [10]. Nam
et al. recently studied the influence of pore morphology of Cu electrodes, particularly the
width and depth of pores, on CO2RR. The group showed that it largely affects product dis-
tributions of hydrogen (H2), ethylene (CH4), and ethane (CH6) [22]. Likewise, Dutta et al.
demonstrated that surface modification of porous Cu electrodes could further influence
CO2RR product distribution [2].
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2. Materials and Methods
2.1. Sample Fabrication

Three groups of porous Cu samples, to be named A, B, and C, were fabricated by
the process of Cu electrodeposition onto high-purity copper foils (0.1 mm thick, 99.9999%
purity (Alfa Aesar)) with a dimension of 2.5 cm × 2.5 cm. The three groups differ from one
another by the compositions of H2SO4, CuSO4 and HCl in the plating solutions (300 cc),
as shown in Table 1. A standard setup of electrodeposition of Cu was employed at room
temperature (28 ◦C), using platinum mesh as an anode. Prior to running the reaction, a Cu
foil was dipped in 5% H2SO4 for 10 s. For each of the sample groups, the deposition was
performed by varying applied current density (2, 3, and 3.5 A/cm2), and deposition time
(20, 40 and 60 s), resulting in nine sub-sets of samples for each group.

Table 1. Electrodeposition parameters employed for fabrication of the porous Cu electrodes.

Sample Group Bath Composition Current Density
(A/cm2) Deposition Time (s)

A 1.5M H2SO4 + 0.2M
CuSO4

2, 3, 3.5 20, 40, 60

B 1.5M H2SO4 + 0.4M
CuSO4

2, 3, 3.5 20, 40, 60

C 1.5M H2SO4 + 0.4M
CuSO4 + 0.05M HCl 2, 3, 3.5 20, 40, 60

2.2. Sample Characterization

The Cu deposit samples were subsequently analyzed for their physical and chemical
characteristics. Surface morphology was investigated by optical and scanning electron
microscopy (OM and SEM (15 kV)). Apparent pore size and apparent porosity, representing
2D-pore characteristics, were analyzed from micrographs using Image J software. True
surface area, representing the surface area of 3D structures, was determined by BET
technique (degassing at 200 ◦C by nitrogen gas flow for 5 h). Moreover, true porosity,
representing an actual percentage of pore in a given volume, can be calculated with
Equation (3). Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS)
analysis was used to confirm the chemical composition on the surface.

True porosity =

(
1− apparent density of sample

density of metal

)
× 100 (3)

2.3. CO2RR Experiment

Three sets of porous Cu samples from A, B and C sample groups, electrodeposited with
3 A/cm2 for 40 s, were chosen as working electrodes for CO2RR tests. The electrochemical
CO2RR process was conducted using a 3-electrode H-cell setup, consisting of a working
electrode (WE: Cu deposit samples), a counter electrode (CE: platinum foil), and a reference
electrode (RE: Ag/AgCl). The cathodic and anodic compartments were separated by
Nafion 117 membrane. Potassium bicarbonate (KHCO3) with concentration and volume of
0.1 M and 40 cc was used as the electrolyte. A schematic picture of the setup is illustrated
in Figure 1. Before each test session, high purity (99.9%) CO2 was purged into the cell for
60 min. Once the pH level of the electrolyte changed from 8.2 to 6.8, the test session was
initiated. CO2 was purged continuously during the test, and the cell was applied with a
voltage of −1.3 V vs. Ag/AgCl.
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Figure 1. Schematic of a 3-electrode H-cell setup for the CO2 reduction reaction (CO2RR) test.

In addition to the porous Cu samples, Cu foils were also tested in the CO2RR process
for a comparison purpose. The surface of the Cu foil samples was polished by 400 grit
silicon carbide paper prior to the tests.

2.4. Product Analysis

After running CO2RR, gas products were detected and analyzed online concurrently
by GC. The accumulated amount of gas was calculated based on the average concentrations
of gas products collected at 30 and 70 min of each run. To examine liquid products, if any,
the electrolyte was collected for NMR analysis after tests were run for 70 min. Dimethyl
sulfoxide (DMSO) was used as an internal standard, whereas deuterium oxide (D2O) was
used as a solvent.

3. Results and Discussions
3.1. Electrodeposition of Porous Copper

All 27 sets of the porous Cu samples were successfully deposited with uniform surface
appearance. The morphology of the samples and correlations of process parameters and
pore characteristics are presented in Figures 2 and 3, respectively. Figure 2a shows the
morphology of the samples in group A, prepared by various applied current densities
and deposition times. It is evidenced that the distribution of pore sizes as observed from
the surface is rather uniform, and that both of the two parameters significantly affect the
apparent porosity and apparent pore size observed at the surface. Particularly, the decrease
of applied current and the increase of deposition time led to enlargement of apparent
pore size. This may be attributed to slow rates of hydrogen evolution in conjunction with
bubble coalescence in such conditions [5,35,36]. The effects of the two parameters on
apparent porosity are however inconclusive, and the values of apparent porosity vary less
significantly as compared to pore size.
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Figure 3. Apparent pore size and apparent porosity of the Cu electrodeposits in groups (a) A, (b) B, and (c) C.

Figure 2b shows the morphology of the samples in group B. Similar to those in group
A, applied current density and deposition time appear to influence apparent pore size
more than porosity. Overall, considering the same sets of plating parameters, the group
B samples exhibit either similar or higher apparent pore size and apparent porosity as
compared to group A samples. At first glance, this appears counter-intuitive, since the ratio
of H2SO4 (which contribute H+) and Cu2SO4 is higher for group A. This may however
imply that the group A samples comprise of a higher number of smaller-sized pores, in a
nano regime, which were not clearly captured by image J software. Indeed, upon a closer
examination using BET, it is found that the true surface area of the sample from group A is
much higher than that from group B (Table 2), indicating a large number of nano-pores
distributed along the struts of the porous Cu structure. The magnified microstructure
of the group A sample (Figure 4), composing of clusters of sub-micron particulates and
nano-pore in between each particulate, underlines this observation.

Table 2. Characteristics and properties of the porous Cu electrodes from groups A, B, and C,
electrodeposited with 3 A/cm2 for 40 s.

Characteristics A B C

Apparent pore size (µm) 58 52 340
Apparent porosity (%) 31 37 51

BET surface area (m2/g) 19.56 4.00 3.75
Apparent density (g/cm3) 0.34 0.47 0.26

True porosity (%) 96.26 94.77 97.07
EDX Cu content (at.%) 89.0 87.2 71.3
EDX O content (at.%) 10.5 12.8 27.8

As shown in the micrographs of the samples in group C (Figure 2c), it is evident
that their apparent pore size and apparent porosity are somewhat larger than those of
the other two groups. This is clearly owed to the effect of HCl addition in the plating
bath that promotes hydrogen generation and bubble coalescence. Although the effects
of applied current and deposition time on the apparent pore size and apparent porosity
are inconclusive, the increase of applied current and deposition time generally lead to
reductions of apparent pore size and apparent porosity, especially for the relatively high
applied current conditions.
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Figure 4. Microstructure of Cu foil (a–d), and porous Cu deposits from groups A (e–h), B (i–l), and
C (m–p), electrodeposited with 3 A/cm2 for 40 s, presented at different magnifications.

The representative samples from the three groups, namely A, B, and C, that were
electrodeposited with 3 A/cm2 for 40 s, were characterized in more details, and their
respective characteristics and properties are summarized in Figure 4 and Table 2. It is clear
that bath compositions (A, B, and C) largely influence the developed porous structure
of the Cu deposits. Not only are the samples from the three groups distinct in terms of
apparent pore size and apparent porosity, but their detailed features of deposit nodules
along the struts of the porous structure also appear to vary largely. Table 2 presents BET
surface area, apparent pore size, apparent porosity, apparent density (determined from the
coating mass and layer thickness), and true porosity. Overall, the true porosity obtained
in this work falls in the range of the copper deposits’ porosity obtained by the research of
Shin et al. (93.30–97.77%) [4].

The group A sample is characterized by a structure with relatively high surface area,
whereas the group B sample contains denser struts. The group C sample is unique with
its relatively large pore size and strut size. It is also interesting to note that, based on a
preliminary analysis of the coating surfaces using EDX, the oxygen content in the coatings
are varied from one another, and significantly higher than that measured from the surface
of the Cu foil counterpart (96.7 at.% Cu and 3.3 at.% O). While the presenting data of
oxygen cannot be taken as absolute values, as oxygen is considered a light element for EDX
analysis, and more advanced chemical analysis techniques would be required to determine
the exact oxygen contents, it can be observed and qualitatively analyzed that the measured
oxygen contents of the porous Cu samples deviate (increase) rather significantly compared
to the Cu foil (Table 2). This suggests the role of porosity in promoting the absorption
of chemical species and transformation of surface chemistry of the Cu deposits. Figure 5
shows XPS profiles of the porous Cu electrodes obtained after the CO2RR test sessions. The
results indicate that the ratio of Cu and O contents of the group A, B, and C samples are
0.35, 0.31, and 0.45, respectively. The ratio of Cu+/Cu2+ of these three sets of samples are
0.88, 0.24, and 0.84, respectively.
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Figure 5. Representative XPS spectra of the porous Cu electrodes from groups (a) A, (b) B, and (c) C,
electrodeposited with 3 A/cm2 for 40 s, following the CO2RR experiments.

3.2. CO2RR Analysis

Table 3 show the results of CO2RR tests of the porous Cu samples from groups A, B,
and C, and the Cu foil, reported in terms of the chemical products’ contents as detected
by GC and NMR. Representative NMR spectra obtained from the study are shown in
Figure 6. A single peak of DMSO, the internal standard, is present at 2.6 ppm. Acetate,
acetone, and formate peaks are at 1.792, 2.103, and 8.363 ppm, respectively. Triple spikes
at 1 ppm and quadruple spikes at 3.5 ppm represent ethanol. Acetaldehyde is detected
with double spikes at 1.2 ppm. Figures 7 and 8 respectively present the rates of production
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of the chemical products, and % selectivity is calculated by comparing a partial current
density of a particular species to the sum of partial current densities of all detectable
chemical products.
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Table 3. Amounts of chemical products and reduction current density of CO2RR obtained from different groups of
copper electrodes.

Sample
Reduction

Current Density
(mA/cm2)

Product (µmol)

Gas Product Aqueous Product

H2 CO CH3CHO CH3COO− CH3COCH3 CH5OH HCOO−

Cu foil −0.62 3.58 - - - 1.03 1.61 0.95
A −4.11 5.42 0.09 - 0.68 0.94 1.90 0.26
B −4.74 3.40 0.08 1.08 0.49 0.70 2.56 0.19
C −4.40 9.98 0.36 - 0.95 1.02 1.38 1.79
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Generally, the mechanism pathway of the electrochemical conversion of CO2 involves
adsorption of CO2 on an electrocatalytic surface and a transformation of CO2 to a radical
(CO2

•) and subsequently to an intermediate (*CO) through electron and proton transfers.
It is this intermediate that can be further transformed to different chemical products. The
electrocatalysts, Cu in this case, would influence the reaction pathway, and hence the
resulting intermediate species and final products, owing to their binding affinity to CO and
different intermediates in the conversion processes. Considering the results in Figure 3, the
chemical products and possible related cathodic reactions generated at the Cu electrodes
under investigation include:

CO2 + 2H+ + 2e− → CO(g) + H2O (4)

2CO2 + 10H+ + 10e− → CH3CHO(aq) + 3H2O (5)

2CO2 + 8H+ + 8e− → CH3COOH(aq) + 2H2O (6)

3CO2 + 16H+ + 16e− → CH3COCH3(aq) + 5H2O (7)

2CO2 + 12H+ + 12e− → CH5OH(aq) + 3H2O (8)

CO2 + 2H+ + 2e− → HCOOH(aq) (9)

2H+ + 2e− → H2(g) (10)

It can be observed that all porous Cu specimens provided relatively high current
density, signifying a faster rate of reduction reaction, as compared to the Cu foil. For
all types of Cu electrodes under consideration, the products comprised those in gas and
liquid forms. H2 was the major gas product found in all testing groups, whereas CO was
detected only in the systems with porous Cu electrodes. The group C electrode in particular
provided relatively high amounts of H2 and CO, approximately 3–4 times higher than
that of other porous Cu groups. Furthermore, whereas the Cu foil electrode provided
acetone, ethanol and formate, the use of electrocatalytic porous Cu resulted in additional
chemical products not found from the Cu foil system, including acetaldehyde and acetate.
The group B sample, specifically, provided the highest reduction current density, and gave
both acetaldehyde and acetate, and relatively high selectivity of ethanol compared to other
testing electrodes. The group A electrode also yielded comparatively high selectivity of
ethanol, but acetaldehyde was not detected from this system. The group C electrode, on
the other hand, is unique in its relatively high production rate of formate, compared to the
other sample groups.

From the results presented above, it is evidenced that the deposition of DHBT porous
Cu influences both the electrochemical reduction rate of CO2 and selectivity of species of
chemical products developed from the CO2RR process. These improvements may stem
from various factors related to the intricate structures of the porous Cu electrodes, as fol-
lows: (i) porous structures appear to promote the absorption of chemical species, including
oxygen as noted previously. As demonstrated by Dutta et al. [2], Lv et al. [12], and Nguyen-
Phan et al. [37], the surface of copper oxide thus formed can play a role in promoting the
catalytic activity, owing to the development of a large number of active sites and rough-
ening of the surface, following reduction of the oxide phase over the course of CO2RR.
Furthermore, the XPS analysis (Figure 5) signifies that porous Cu electrodes of different
morphologies exhibit a variation of oxidation states of Cu on the surface (i.e., Cu+/Cu2+).
The oxidation states of Cu are known to influence preferential formations of intermedi-
ates and hence affect the CO2 reduction pathways and promote selectivity [30,34,38]. In
addition, (ii) the intricate structure of the porous Cu electrodes may enhance dynamic
diffusion of the dissolved gas to provide increasing CO2 concentration at the catalytic
electrode–electrolyte interface [12]. Temporal trapping of gaseous intermediates, e.g., CO,
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could also be induced inside the pores [2]. Furthermore, the high porosity of the porous Cu
provides high surface areas and hence large active sites for the electrodes. Correspondingly,
the retention time for CO2RR could be effectively enlarged. Unlike H2, CO and formate,
which require minimal amounts of electron transfers (1–2 electrons) to generate, larger hy-
drocarbon molecules such as acetate, acetaldehyde and ethanol require many more electron
transfers (8, 10, and 12 electrons, respectively), making them challenging to produce from
the CO2RR process generally. Yet, these three chemical products were detected from the
systems with the porous Cu electrodes investigated herein with relatively high selectivity.

Examining more closely, electrode B appears to exhibit the best performance in terms
of the reduction rate and a variety of the chemical products, albeit the true surface area
of electrode B is somewhat lower than that of electrode A. This result thus underlines
that surface area is not the only primary factor underlining the good performance of the
electrode, but rather other influences such as surface morphology (i.e., cluster of a berry-
like structure of A vs. fern-like morphology of B) and surface chemistry (e.g., alternation
of surface chemistry by adsorbed oxygen and oxidation states) also play important roles.
Further examination and analysis will thus be required to gain insights on the contribution
of important factors that lead to the enhancement of electrode performance observed
herein, along with understanding of the suitable applied overpotentials and other control
parameters to optimally induce CO2RR for respective porous Cu electrodes.

4. Conclusions

Porous Cu samples were fabricated by the dynamic hydrogen bubble template (DHBT)
method and investigated for their uses in the electrochemical CO2 reduction reaction
(CO2RR). The composition of Cu plating baths largely influenced pore size and microstruc-
ture of the porous Cu samples; the bath with low concentrations of copper salt gave
deposits with relatively large surface area, whereas the addition of hydrochloric acid
granted larger pore sizes. Applied current density and deposition time were shown to
affect the porous Cu’s characteristics in different ways depending on the bath compositions.
Compared to the Cu foil, porous Cu as CO2RR electrodes generally provided relatively
high reduction current density. The porous Cu electrode from group B with fern-like mor-
phology, in particular, provided the highest reduction current density among others, and
gave acetaldehyde and acetate, and relatively high amounts of ethanol as liquid products,
along with hydrogen and carbon monoxide as gas products. That porous structures of
the Cu electrodes promoted the electrochemical reduction rate of CO2, and generation
of various chemical products could be due to increased absorption of chemical species,
particularly oxygen, enhancements of CO2 concentration at the catalytic electrode surface,
and the retention time for the reduction reactions.
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