Gastrointestinal Disease Classification in Endoscopic Images Using Attention-Guided Convolutional Neural Networks
Abstract
:1. Introduction
- (1)
- We propose an efficient method that incorporates spatial attention CNN for classifying multi-class diseases and artifacts in GI endoscopic images.
- (2)
- We performed extensive experiments to validate the effectiveness of the proposed model. Moreover, we compared our results with recent related models and demonstrated better outcomes.
- (3)
- The proposed method demonstrated significant performance accuracy in GI disease classification by using spatial attention mechanisms and t–SNE.
- (4)
- The proposed GI disease classification method was validated for clinical applications and has great potential for medical communities.
2. Materials and Methods
2.1. Materials
2.1.1. Kvasir Multi-Class Dataset
2.1.2. Endoscopy Artifact Detection Challenge Dataset
2.1.3. Gastrointestinal Endoscopy Dataset
2.2. Methods
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Pogorelov, K.; Randel, K.R.; Griwodz, C.; Eskeland, S.L.; De Lange, T.; Johansen, D.; Spampinato, C.; Dang-Nguyen, D.T.; Lux, M.; Schmidt, P.T.; et al. Kvasir: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In Proceedings of the 8th ACM Multimedia Systems Conference, MMSys 2017, Taipei, Taiwan, 20–23 June 2017; pp. 164–169. [Google Scholar]
- Muto, M.; Yao, K.; Kaise, M.; Kato, M.; Uedo, N.; Yagi, K.; Tajiri, H. Magnifying Endoscopy Simple Diagnostic Algorithm for Early Gastric Cancer (MESDA-G). Dig. Endosc. 2016, 28, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Zhou, F.; Daul, C.; Braden, B.; Bailey, A.; Realdon, S.; East, J.; Wagnières, G.; Loschenov, V.; Grisan, E.; et al. Endoscopy Artifact Detection (EAD 2019) Challenge Dataset. arXiv 2019, arXiv:1905.03209. [Google Scholar]
- Liu, X.; Wang, C.; Bai, J.; Liao, G. Fine-Tuning Pre-Trained Convolutional Neural Networks for Gastric Precancerous Disease Classification on Magnification Narrow-Band Imaging Images. Neurocomputing 2020, 392, 253–267. [Google Scholar] [CrossRef]
- Magalhaes, C.; Mendes, J.; Vardasca, R. Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography. Appl. Sci. 2021, 11, 842. [Google Scholar] [CrossRef]
- Glowacz, A. Fault Diagnosis of Electric Impact Drills Using Thermal Imaging. Measurement 2021, 171, 108815. [Google Scholar] [CrossRef]
- Takiyama, H.; Ozawa, T.; Ishihara, S.; Fujishiro, M.; Shichijo, S.; Nomura, S.; Miura, M.; Tada, T. Automatic Anatomical Classification of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks. Sci. Rep. 2018, 8, 7497. [Google Scholar] [CrossRef] [PubMed]
- Abawatew, G.Y.; Belay, S.; Gedamu, K.; Assefa, M.; Ayalew, M.; Oluwasanmi, A.; Qin, Z. Attention Augmented Residual Network for Tomato Disease Detection and Classification. Turk. J. Electr. Eng. Comput. Sci. 2021, 29 (Suppl. 1), 2869–2885. [Google Scholar]
- Abdolmanafi, A.; Duong, L.; Dahdah, N.; Cheriet, F. Deep Feature Learning for Automatic Tissue Classification of Coronary Artery Using Optical Coherence Tomography. Biomed. Opt. Express 2017, 8, 1203–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonseko, Z.M.; Adjei, P.E.; Du, W.; Luo, C.; Wang, Y.; Hu, D.; Gan, T.; Rao, N. Semi-Supervised Gastrointestinal Lesion Segmentation Using Adversarial Learning. In Proceedings of the 2021 IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS), Tainan, Taiwan, 28–30 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 63–66. [Google Scholar]
- Liu, D.Y.; Gan, T.; Rao, N.N.; Xing, Y.W.; Zheng, J.; Li, S.; Luo, C.S.; Zhou, Z.J.; Wan, Y.L. Identification of Lesion Images from Gastrointestinal Endoscope Based on Feature Extraction of Combinational Methods with and without Learning Process. Med. Image Anal. 2016, 32, 281–294. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Chen, Z.; Cao, M.; Ji, P.; Ma, F. Research on Crop Disease Classification Algorithm Based on Mixed Attention Mechanism. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1961, p. 12048. [Google Scholar]
- Du, W.; Rao, N.; Dong, C.; Wang, Y.; Hu, D.; Zhu, L.; Zeng, B.; Gan, T. Automatic Classification of Esophageal Disease in Gastroscopic Images Using an Efficient Channel Attention Deep Dense Convolutional Neural Network. Biomed. Opt. Express 2021, 12, 3066. [Google Scholar] [CrossRef]
- Ikenoyama, Y.; Hirasawa, T.; Ishioka, M.; Namikawa, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.; Takeuchi, Y. Detecting Early Gastric Cancer: Comparison between the Diagnostic Ability of Convolutional Neural Networks and Endoscopists. Dig. Endosc. 2021, 33, 141–150. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Q.C.; Xu, M.D.; Zhang, Z.; Cheng, J.; Zhong, Y.S.; Zhang, Y.Q.; Chen, W.F.; Yao, L.Q.; Zhou, P.H.; et al. Application of Convolutional Neural Network in the Diagnosis of the Invasion Depth of Gastric Cancer Based on Conventional Endoscopy. Gastrointest. Endosc. 2019, 89, 806–815.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual Attention Network for Image Classification. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; Volume 2017, pp. 6450–6458. [Google Scholar]
- Guan, Q.; Huang, Y.; Zhong, Z.; Zheng, Z.; Zheng, L.; Yang, Y. Thorax Disease Classification with Attention Guided Convolutional Neural Network. Pattern Recognit. Lett. 2020, 131, 38–45. [Google Scholar] [CrossRef]
- Gessert, N.; Sentker, T.; Madesta, F.; Schmitz, R.; Kniep, H.; Baltruschat, I.; Werner, R.; Schlaefer, A. Skin Lesion Classification Using Cnns with Patch-Based Attention and Diagnosis-Guided Loss Weighting. IEEE Trans. Biomed. Eng. 2019, 67, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Li, J.; Lu, G.; Zhang, D. Lesion Location Attention Guided Network for Multi-Label Thoracic Disease Classification in Chest X-Rays. IEEE J. Biomed. Health Inform. 2019, 24, 2016–2027. [Google Scholar] [CrossRef]
- Tao, S.; Jiang, Y.; Cao, S.; Wu, C.; Ma, Z. Attention-Guided Network with Densely Connected Convolution for Skin Lesion Segmentation. Sensors 2021, 21, 3462. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Hwang, J.H.; Jamidar, P.; Baig, K.R.K.K.; Leung, F.W.; Lightdale, J.R.; Maranki, J.L.; Okolo III, P.I.; Swanstrom, L.L.; Chak, A. GIE Editorial Board Top 10 Topics: Advances in GI Endoscopy in 2019. Gastrointest. Endosc. 2020, 92, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Kudo, S.; Mohmed, H.E.N.; Misawa, M.; Ogata, N.; Itoh, H.; Oda, M.; Mori, K. Artificial Intelligence and Upper Gastrointestinal Endoscopy: Current Status and Future Perspective. Dig. Endosc. 2019, 31, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Horie, Y.; Yoshio, T.; Aoyama, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Ozawa, T.; Ishihara, S.; et al. Diagnostic Outcomes of Esophageal Cancer by Artificial Intelligence Using Convolutional Neural Networks. Gastrointest. Endosc. 2019, 89, 25–32. [Google Scholar] [CrossRef]
- Hajderanj, L.; Weheliye, I.; Chen, D. A New Supervised T-SNE with Dissimilarity Measure for Effective Data Visualization and Classification. In ACM International Conference Proceeding Series; ACM: New York, NY, USA, 2019; pp. 232–236. [Google Scholar]
- Ghannam, R.B.; Techtmann, S.M. Machine Learning Applications in Microbial Ecology, Human Microbiome Studies, and Environmental Monitoring. Comput. Struct. Biotechnol. J. 2021, 19, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, Ş.; Özkaya, U. Gastrointestinal Tract Classification Using Improved LSTM Based CNN. Multimed. Tools Appl. 2020, 79, 28825–28840. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; Volume 2016, pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015; Volume 1, pp. 448–456. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 2261–2269. [Google Scholar]
- Owais, M.; Arsalan, M.; Choi, J.; Mahmood, T.; Park, K.R. Artificial Intelligence-Based Classification of Multiple Gastrointestinal Diseases Using Endoscopy Videos for Clinical Diagnosis. J. Clin. Med. 2019, 8, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Models | Evaluation Metrics | |
---|---|---|
Mean Accuracy (%) | Parameters (Million) | |
ResNet50 [30] | 90.28 | 21.71 |
GoogLeNet [31] | 91.38 | 5.61 |
DenseNets [32] | 91.60 | 25.6 |
Baseline (Ours) | 92.84 | 19.92 |
Folds | Evaluation Metrics | |||
---|---|---|---|---|
Precision | Recall | F1-Score | Accuracy | |
Fold1 | 91.8 | 91.8 | 91.7 | 92.16 |
Fold2 | 92.5 | 92.4 | 92.4 | 92.88 |
Fold3 | 92.4 | 92.5 | 92.6 | 92.91 |
Fold4 | 92.8 | 92.7 | 92.8 | 93.19 |
Fold5 | 92.8 | 92.6 | 92.7 | 93.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lonseko, Z.M.; Adjei, P.E.; Du, W.; Luo, C.; Hu, D.; Zhu, L.; Gan, T.; Rao, N. Gastrointestinal Disease Classification in Endoscopic Images Using Attention-Guided Convolutional Neural Networks. Appl. Sci. 2021, 11, 11136. https://doi.org/10.3390/app112311136
Lonseko ZM, Adjei PE, Du W, Luo C, Hu D, Zhu L, Gan T, Rao N. Gastrointestinal Disease Classification in Endoscopic Images Using Attention-Guided Convolutional Neural Networks. Applied Sciences. 2021; 11(23):11136. https://doi.org/10.3390/app112311136
Chicago/Turabian StyleLonseko, Zenebe Markos, Prince Ebenezer Adjei, Wenju Du, Chengsi Luo, Dingcan Hu, Linlin Zhu, Tao Gan, and Nini Rao. 2021. "Gastrointestinal Disease Classification in Endoscopic Images Using Attention-Guided Convolutional Neural Networks" Applied Sciences 11, no. 23: 11136. https://doi.org/10.3390/app112311136
APA StyleLonseko, Z. M., Adjei, P. E., Du, W., Luo, C., Hu, D., Zhu, L., Gan, T., & Rao, N. (2021). Gastrointestinal Disease Classification in Endoscopic Images Using Attention-Guided Convolutional Neural Networks. Applied Sciences, 11(23), 11136. https://doi.org/10.3390/app112311136