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Abstract: Gastrointestinal (GI) diseases constitute a leading problem in the human digestive system.
Consequently, several studies have explored automatic classification of GI diseases as a means
of minimizing the burden on clinicians and improving patient outcomes, for both diagnostic and
treatment purposes. The challenge in using deep learning-based (DL) approaches, specifically a
convolutional neural network (CNN), is that spatial information is not fully utilized due to the
inherent mechanism of CNNs. This paper proposes the application of spatial factors in improving
classification performance. Specifically, we propose a deep CNN-based spatial attention mechanism
for the classification of GI diseases, implemented with encoder–decoder layers. To overcome the
data imbalance problem, we adapt data-augmentation techniques. A total of 12,147 multi-sited,
multi-diseased GI images, drawn from publicly available and private sources, were used to val-
idate the proposed approach. Furthermore, a five-fold cross-validation approach was adopted
to minimize inconsistencies in intra- and inter-class variability and to ensure that results were
robustly assessed. Our results, compared with other state-of-the-art models in terms of mean accu-
racy (ResNet50 = 90.28, GoogLeNet = 91.38, DenseNets = 91.60, and baseline = 92.84), demonstrated
better outcomes (Precision = 92.8, Recall = 92.7, F1-score = 92.8, and Accuracy = 93.19). We also im-
plemented t-distributed stochastic neighbor embedding (t–SNE) and confusion matrix analysis
techniques for better visualization and performance validation. Overall, the results showed that the
attention mechanism improved the automatic classification of multi-sited GI disease images. We
validated clinical tests based on the proposed method by overcoming previous limitations, with the
goal of improving automatic classification accuracy in future work.

Keywords: gastrointestinal disease; endoscopic image; lesion classification; computer-aided diagno-
sis; spatial attention; deep learning

1. Introduction

Gastrointestinal (GI) diseases are common in the human digestive system. Stomach
cancer, esophageal cancer, and colorectal cancer are most common in terms of incidence
and fatality [1,2]. Endoscopic examinations are thus vital to detect diseases and form the
critical initial step for diagnosing GI tract diseases generally [3]. Such examinations also
enhance the assessment of the clinical features of lesions to determine their severity and
type and to arrive at proper diagnoses. Variations in the expertise of different clinicians
could introduce errors in some cases, especially with respect to controversial aspects of
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diagnostic images and videos from endoscopic examinations. Such inconsistency may lead
to misdiagnoses and negative impact on patient care.

Automatic disease classification potentially addresses this problem by providing clini-
cians with objective and reliable identification of several GI endoscopic images, thereby
minimizing the misdiagnosis rate, improving prognosis, and economizing clinicians’ valu-
able time. Automatic GI disease classification thus remains an open area of research for
attaining better lesion detection and classification accuracy [4].

Recently, artificial intelligence based on deep learning (DL) has demonstrated remark-
able progress in classification, detection, fault diagnosis, and segmentation tasks [5–9].
However, a drawback to the potential of DL is that large amounts of data are required
for optimum performance. In addition, difficulty in obtaining GI images is increased by
patient privacy concerns and annotation costs [2,10,11]. In short, optimal use of the DL
approach to automatic GI disease classification is constrained by data scarcity. Unlike
classic machine learning-based classifiers such as support vector machines (SVMs) that are
used for feature extraction [12], convolutional neural networks (CNNs) have shown better
performance in feature extraction, making them state-of-the-art for DL applications [8].
Effective use of CNNs has improved image recognition- and classification-related tasks [8].

The foundation of CNN is the convolution operation that fuses spatial and channel-
wise information within local receptive fields to extract information features, a process
known as spatial encoding [13]. However, the vanilla CNN mechanism would allow the
CNN operation to pay more attention to the pixel regions that play a decisive role in classi-
fying input images while ignoring irrelevant information [14]. To improve the suggestive
power of a CNN network, several recent studies have shown the benefit of enhancing the
spatial encoding ability of CNN via spatial attention modules. Other studies have indi-
cated promising CNN-based approaches for disease classifications [9,12,15–20]. In addition,
spatial attention mechanisms have been studied and applied to related tasks [16,17,21–23].

To the best of our knowledge, GI-tract disease classification of multi-sited, multi-class
diseases and artifacts, from GI endoscopic images using attention-guided CNNs, has not
previously been applied. Multi-class disease and artifact classification and generalization
are essential not only for diagnosis but also to avoid training biases. Our goal in this study,
therefore, is to design, test, and validate an efficient spatial attention-guided CNN-based
disease classification model that can be used in a computer-aided diagnosis (CAD) system
for automatic GI disease classification. We examine a total of 10 classes: esophagitis,
polyps, ulcerative colitis, early esophagus cancer, normal cecum, normal Z-line, normal
pylorus, dyed-lifted polyps, dyed-resection-margins, and artifacts. Moreover, we adapt a
t-distributed stochastic neighborhood embedding (t–SNE) visualization technique to better
understand the data. [14].

Automatic classification of GI diseases using CAD can assist in the diagnosis of GI
disease and in the efficient, effective, and safe removal of lesions [24–26]. Dimensionality
reduction (DR) is a key step in feature extraction in images that often contain irrelevant
information or labeling. When applied in this work, t–SNE was effective in enhancing
data pattern visualization and feature extraction by preserving high intrinsic dimension-
ality [27,28]. Accordingly, this study proposes an efficient DL-based CAD system for the
classification of multi-class diseases and artifacts in GI endoscopic images.

The main contributions of this paper can be summarized as follows:

(1) We propose an efficient method that incorporates spatial attention CNN for classifying
multi-class diseases and artifacts in GI endoscopic images.

(2) We performed extensive experiments to validate the effectiveness of the proposed
model. Moreover, we compared our results with recent related models and demon-
strated better outcomes.

(3) The proposed method demonstrated significant performance accuracy in GI disease
classification by using spatial attention mechanisms and t–SNE.

(4) The proposed GI disease classification method was validated for clinical applications
and has great potential for medical communities.
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In the next section, we describe the materials and method of our proposed approach.
In Section 3, we address the experiments and results. In Section 4, we provide a detailed
discussion of the results before concluding the paper in Section 5.

2. Materials and Methods
2.1. Materials

A total of 12,147 GI endoscopic images were obtained from hospital and public data
sources and used to validate our proposed approach. The details of each dataset are
described below:

2.1.1. Kvasir Multi-Class Dataset

Eight thousand multi-class GI endoscopy images (8 classes with 1000 images in each
class) were collected from the Kvasir dataset v2 [2] and verified by experienced medical
specialists. The datasets were collected using endoscopic equipment at Vestre Viken
Health Trust in Norway. The pathological results included esophagitis (ESO), polyps (POL),
ulcerative colitis (ULC), etc., while the anatomical landmarks included Z-line (ZLI), pylorus
(PYL), cecum (CEC), etc. In addition to images related to removing lesions, such as a dyed
and lifted polyp (DLP), the dyed resection margins (DRM) were used for the experiments.
The dataset consisted of images with resolutions ranging from 720 × 576 up to 1920 × 1072
pixels. Some of the included GI images have artifacts indicating the configuration of the
position of the endoscope inside the bowel, using an electromagnetic imaging system [2].

2.1.2. Endoscopy Artifact Detection Challenge Dataset

The endoscopy artifact detection (EAD2019) challenge dataset [4] provided 2147
images collected from six different centers. The images varied in resolution from 295 × 299
to 1920 × 1080 pixels in JPG format. Most of the images were used for endoscopic artifact
detection (EAD) classification.

2.1.3. Gastrointestinal Endoscopy Dataset

We used 2000 early esophagus cancer (EEC) GI endoscopy images collected from
389 patients and verified by physicians from the Digestive Endoscopy Center (Lab) of the
West China Hospital in Sichuan, China. The images were saved in the RGB channel in
JPG format, with resolutions ranging from 512 × 512 to 764 × 572 pixels. Permission was
obtained from the medical ethical review committee of the Electronic University of Science
and Technology of China (UESTC) and West China Hospital, and the informed consent of
patients was received. Samples of raw GI endoscopic images are depicted in Figure 1.

2.2. Methods

This subsection describes the DL-based method for using the attention mechanism in
the GI disease classification of multi-class and multi-sited endoscopic images. In step 1,
unnecessary background features, text, and other artifacts were removed from each sample
dataset during pre-processing. Images were resized to 224 × 224 pixels for the experiments.
As shown in Figure 1, the raw images that contained unnecessary background and text
were removed during pre-processing, and the class balancing technique was applied
with ECA-DDCNN [15]. Eighty percent of the data were used for training and 20% for
testing. To avoid overfitting and imbalance, data augmentation techniques were used,
such as transposing, flipping, rotating, random brightness, blurring, distortion, contrasting,
and limited adaptive histogram equalization. After data augmentation, the total training
data were comprised of forty thousand images. In step 2, the pre-processed data were
utilized for the whole model’s experiments. In step 3, disease detection and classification
were implemented with attention mechanisms. In step 4, disease classification or lesion
categorization of the proposed method was validated using 20% of the test data. Finally,
in step 5, the output was evaluated quantitatively and qualitatively using appropriate
evaluation metrics and visualization techniques as shown in Figure 2.
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Figure 1. Raw input multi-class gastrointestinal endoscopy images. Respectively, (a–d) refers to pathological findings; (e) 
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Esophagitis, which refers to an inflammation of the esophagus, visible as a break in the esophageal mucosa with the Z-
line; (b) polyps are lesions within the bowel detectable as mucosal outgrows; (c) ulcerative colitis refers to a chronic 
inflammatory disease affecting the large bowel; (d) early esophagus cancer; (e) images with artefacts and diagnostic 
equipment; (f) the cecum (the most proximal part of the large bowel); (g) The Z-line that marks the transition site between 
the esophagus and the stomach; (h) the pylorus (the area around the opening from the stomach into the first part of the 
small bowel, called the duodenum); (i) dyed-lifted-polyps; (j) dyed-resection-margins. 
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In this work, we propose an attention network, a CNN, that adopts a mixed attention
mechanism, as shown in Figure 3 (main network) and Figure 4 (sub-network). It comprises
multiple attention layers/modules, which generate attention features by stacking layers
to optimize the network [18]. The proposed model explores the performance of a robust
classifier on CNN architecture. The spatial attention module compresses the channel and
performs average and maximum pooling in the channel dimensions. The fully connected
(FC) layers are then used to capture the non-linear cross-channel interaction, during which
the complexity of the model is minimized by reducing dimensionality. The performance of
the proposed approach was tested on the data used in training and validation. Attention
features generated at stage 2 are shown in Figure 5.
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Figure 5. Sample heat map at stage 2 feature extraction of the proposed method. (a,c) demonstrate
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3. Experimental Setup

The proposed method explores the effect of a robust classifier on deep CNN archi-
tecture. Most common CNN architectures, such as GoogLeNet and ResNet, are used as a
backbone [29]. The important features of each architecture were initially learned, followed
by training with the three sets of GI endoscopic datasets. In the feature extraction proce-
dure, the original architectures were not changed. The primary attention-based model was
used for baseline network training. Stochastic gradient descent (SGD) was implemented
to optimize the network with a 0.001 initial training rate. Total training epochs and batch
size were 120 and 32, respectively. Input was resized to 128 × 128 pixels to crop the ROI.
The programming language implemented in python 3.6.12 and Pytorch 1.7.1 DL library
(https://github.com/pytorch/pytorch (accessed on 11 February 2021)) was used for the
experiments. Experiments were implemented on a server-based Ubuntu 16.04.6 LTS. The
system was equipped with four graphic processing units (GPUs) of NVIDIA GeForce RTX
2080Ti with 11 GB memory each.

We used several evaluation metrics to validate the classification performance of
the proposed method, including accuracy (Acc), precision (Pre), recall (Rec), sensitivity
(Sen), specificity (Spe), and F1-score (F1). F1 measures a test accuracy by calculating
the harmonic mean of Pre and Rec [2]. Acc specifies the ratio of GI-disease patients to
non-diseased patients.

Acc =
TP + TN

TP + TN + FP + FN
(1)

Pre =
TP

TP + FP
(2)

Rec =
TP

TP + FP
(3)

F1 = 2 × Pre × Rec
Pre + Rec

(4)

4. Results and Discussion

This section presents results and a discussion of the experimental results based on
the DL approach. The DL approach has been shown to enhance the performance of GI
disease classification tasks significantly. Table 1 depicts the model’s performance and its
parameters. The most common architectures [30–32] and baseline (ResNet50 = 90.28%,
GoogLeNet = 91.38%, DenseNets = 91.60%, and baseline = 92.84%) demonstrated classifi-
cation accuracy.

Table 1. Model performance complexity comparisons.

Models
Evaluation Metrics

Mean Accuracy (%) Parameters (Million)

ResNet50 [30] 90.28 21.71
GoogLeNet [31] 91.38 5.61
DenseNets [32] 91.60 25.6
Baseline (Ours) 92.84 19.92

Table 2 reveals cross-validation results in different five-folds, with reference to the size
of the test dataset and other parameters. In Table 3, we compared the proposed method
with other related methods [10,23,29]. The mean accuracy for ECA–Net equaled 92.81; for
DL–OCT, it was 90.60; for LSTM-CNN, it was 93.10; for Liu et al. it was 93; for our method,
it was 93.19.

https://github.com/pytorch/pytorch
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Table 2. Cross-validation statistical comparisons (mean values) on test datasets.

Folds
Evaluation Metrics

Precision Recall F1-Score Accuracy

Fold1 91.8 91.8 91.7 92.16
Fold2 92.5 92.4 92.4 92.88
Fold3 92.4 92.5 92.6 92.91
Fold4 92.8 92.7 92.8 93.19
Fold5 92.8 92.6 92.7 93.12

Table 3. Statistical comparisons of related works (mean values).

Methods
Evaluation Metrics

Precision Recall F1-Score Accuracy

ECA–Net [23] 92.4 92.4 92.2 92.81
DL–OCT [10] 90.1 90.05 90.1 90.60

LSMT–CNN [29] 92.8 92.8 92.6 93.10
Liu et al. [5] 92.7 92.6 92.7 93

Ours 92.8 92.7 92.8 93.19

Table 3 demonstrates a statistical comparison with other related methods. The com-
parison between the proposed method and other state-of-the-art methods was evaluated
based on the same data and on standard evaluation metrics.

Figure 6 demonstrates statistical comparisons of the DL method’s performance in
the confusion matrix. The confusion matrix calculates the actual and predicted rates for
each disease category. The results of all four methods presented on the confusion matrix
indicate disease classification performance. The test data ranges from 300 to 400 in each
class. Overall performance accuracies of the respective methods were ECA–Net = 92.81; DL–
OCT = 90.60; LSTM + CNN = 93.10; and Ours = 93.19. The ECA–Net method [23] revealed
the GI disease or artifacts classification performance, with the pylorus classification of
100% and the lowest classification in esophagitis (82%). The DL–OCT [10] method also
demonstrated competitive classification accuracy, classifying pylorus at 98% and polyps
at 81%. The LSMT–CNN [29] method exhibited competitive classification performance in
pylorus (100%) and showed the lowest performance in the esophagitis class (82%). The
proposed method classified pylorus at 100% and showed the lowest performance in the
esophagitis disease classification (84%). Nearly all the methods classified pylorus best and
misclassified the Z-line. Only a few data items were misclassified. Overall classification
accuracy of all related methods was promising. The proposed method outperformed other
methods significantly on GI disease or lesion classification by achieving a mean accuracy of
94.33%. Overall, the proposed method validated actual and predicted classifications better
than other methods.

It is essential to determine the location (anatomical and physiological) of the digestive
system. Figure 7 confirms disease classification results using t-distributed stochastic
neighbor embedding (t–SNE) visualization techniques, which show the transformation of
high-dimensional features into low dimensions by preserving key features of endoscopic
images. This technique provides better identification of each class in terms of depth and
color. The proposed method, including other related works [10,23,29] demonstrated t–SNE-
based classification performance. Our method achieved better qualitative results when
compared with other works.
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Figure 6. Confusion matrix of the GI disease classification on test datasets. The confusion matrix indicates the actual and
predicted results of all ten classes: (a) The GI disease or artifacts classification performance of the ECA–Net [23], which
classified pylorus better (100%), with the lowest classification (82%) achieved in esophagitis. (b) Classification accuracy
of the DL–OCT [10] method’s performance. The method classified pylorus better (98%) and challenged the classification
of polyps (81%). (c) Confirmed the competitive classification performance of the LSMT–CNN [29] method. The method
better identified pylorus (100%) and showed the lowest classification results (82%) in the esophagitis class. (d) Liu et al. [5]
demonstrated better classification in pylorus. (e) The proposed method, like other methods [23,29], classified pylorus better
(100%), and the approach showed the lowest performance (84%) in the esophagitis disease classification.
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Figure 7. Validation of GI disease classification using the t-distributed stochastic neighbor embedding (t–SNE) visualization
technique, which shows the transformation of high-dimensional features into low dimensions by preserving key features.
The t–SNE technique provides better identification of each class in terms of depth-wise and color-wise approaches: (a) The
ECA–Net [23] t–SNE method of classification performance and differentiates each class using multiple colors. (b) The
DL–OCT [10] method’s t–SNE-based classification of each GI lesion category. (c) The LSMT–CNN [29] method’s t–SNE
based classification results. (d) Liu et al. [5] t–SNE projection results. (e) The proposed method’s t–SNE-based classification
performance, which outperforms other related works significantly.
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In this study, t–SNE was applied to preserve the local structure of the data by a non-
linear dimension reduction (DR) approach. A performance analysis was implemented
to demonstrate the performance difference in the methods [33]. The t–SNE visualization
showed significant improvement in terms of feature extraction and DR for GI disease
classification. It preserved complex non-linear data structures by maintaining the local
similarity structure of the data [27]. The t–SNE technique could efficiently project complex
2D endoscopic datasets. High-dimensional space was preserved as much as possible. Our
t–SNE-based disease classification exhibited better feature extraction performance than
other methods.

The proposed method achieved better results in classifying GI diseases when com-
pared with other recent related methods. However, the results of the proposed method
come with some limitations. A fully supervised learning method needs a massive GI
endoscopic image dataset, which is the method’s main drawback. Another limitation of
the proposed approach may be its lack of focus on pixel-wise classification and detection.

5. Conclusions

This work presents a deep CNN-based GI disease classification method by employing
an efficient spatial attention mechanism. Three GI endoscopic image datasets with multi-
classes were used to validate the proposed method. We validated model performance
complexity and conducted five-fold cross-validation to confirm the proposed method. The
experimental results show that our approach is more efficient when compared with other
related methods. Accordingly, our proposed method has the potential to aid in the clinical
diagnosis of various GI diseases.

In future works, we propose that special attention should be given to improving
classification accuracy by combining DL techniques with clinical features and by exploring
the stability of the proposed method. In addition, we intend to perform clinical testing of
the proposed model in determining its value in assisting the diagnoses of GI diseases.
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