Review of Chloride Ion Detection Technology in Water
Abstract
:Featured Application
Abstract
1. Sources and Hazards of Chloride Ion
2. Traditional Methods and Advantages and Disadvantages
3. The Development of Detection Technology
3.1. Advances in Volumetric Method
3.2. Advances in Electrochemical Method
3.3. Advances in Spectral Method
3.4. Advances in Ion Chromatography Method
3.5. Advances in Paper-Based Microfluidic Method
3.6. Advances in Fluorescent Molecular Probe Method
3.7. Advances in Flow Injection Analysis Combined Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cl− | Chloride ion |
CIELab | Lab color space defined by International Commission on Illumination |
PCN | Graphitized carbon nitride |
ZnPc (Tos)8 | Zinc (II) 2,3,9,10,16,17,23,24-Octatosylaminophthalocyanine |
References
- Sebastian, S.; Aleksandra, G.; Wojtal-Frankiewicz, A. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution—A review. Sci. Total Environ. 2021, 805, 150289. [Google Scholar] [CrossRef]
- Prosser, R.S.; Rochfort, Q.; McInnis, R.; Exall, K.; Gillis, P.L. Assessing the toxicity and risk of salt-impacted winter road runoff to the early life stages of freshwater mussels in the Canadian province of Ontario. Environ. Pollut. 2017, 230, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Barbier, L.; Suaire, R.; Durickovic, I.; Laurent, J.; Simonnot, M.O. Is a road stormwater retention pond able to intercept deicing salt? Water Air Soil Pollut. 2018, 229, 251. [Google Scholar] [CrossRef]
- Szklarek, S.; Stolarska, M.; Wagner, I.; Mankiewicz-Boczek, J. The microbiotest battery as an important component in the assessment of snowmelt toxicity in urban atercourses—Preliminary studies. Environ. Monit. Assess. 2015, 187, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.M.; Zhang, Y.Q.; Huang, X.W.; Long, Z.Q. Development Status of Wastewater Treatment Technology in Rare Earth Hydrometallurgy. Energy Sav. Nonfer. Metall. 2012, 28, 11–15. [Google Scholar]
- Fan, Y.; Bo, Y.; Quan, S.; Ning, L.; Le, Z. Recycling of oxalic acid precipitation wastewater from hydrometallurgy process of rare earth. Chin. J. Environ. Eng. 2016, 10, 1789–1793. [Google Scholar]
- Kamel, R.M.; Shahat, A.; Hegazy, W.H.; Khodier, E.M.; Awual, M.R. Efficient toxic nitrite monitoring and removal from aqueous media with ligand based conjugate materials. J. Mol. Liq. 2019, 285, 20–26. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Zhao, H.; Li, T.; Fang, Z. A novel type of chloride ion battery that can change the structure of electric vehicle. J. Power Source 2021, 512, 230507. [Google Scholar] [CrossRef]
- Ministry of Health of the People’s Republic of China. China National Standard for Drinking Water Quality (GB5749); China National Standard: Beijing, China, 2006.
- Robinson, H.K.; Hasenmueller, E.A.; Chambers, L.G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 2017, 83, 72–85. [Google Scholar] [CrossRef]
- Garakani, A.A.; HAeri, S.M.; Cherati, D.Y.; Givi, F.A.; Tadi, M.K.; Hashemi, A.H.; Chiti, N.; Qahremani, F. Effect of road salts on the hydro-mechanical behavior of unsaturated collapsible soils. Transp. Geotech. 2018, 17, 77–90. [Google Scholar] [CrossRef]
- Baker, M.E.; Schley, M.L.; Sexton, J.O. Impacts of expanding impervious surface on specifific conductance in urbanizing streams. Water Res. Res. 2019, 55, 6482–6498. [Google Scholar] [CrossRef]
- Kolesar, K.R.; Mattson, C.N.; Peterson, P.K.; May, N.W.; Prendergast, R.K.; Pratt, K.A. Increases in wintertime PM 2.5 sodium and chloride linked to snowfall and road salt application. Atm. Environ. 2018, 177, 195–202. [Google Scholar] [CrossRef]
- Guo, Q. The Response Mechanism of Soil Salt Ions Transfer and Diversity Rule to Environment Factor; Northwest A&F University Press: Yangling, China, 2010. [Google Scholar]
- Zitkova, J.; Hegrova, J.; Andel, P. Bioindication of road salting impact on Norway spruce (Picea abies). Transp. Res. Part D Trans. Environ. 2018, 59, 58–67. [Google Scholar] [CrossRef]
- Saavedra-Garica, L.; Bernabe-Oritiz, A.; Gilman, R.H.; Diez-Canseco, F.; Cárdenas, M.K.; Sacksteder, K.A.; Miranda, J.J. Applying the triangle taste test to assess differences between low sodium salts and common salt: Evidence from Peru. PLoS ONE 2015, 10, e0134700. [Google Scholar]
- Platikanov, S.; Garcia, V.; Fonseca, I.; Rullán, E.; Tauler, R. Influence of minerals on the taste of bottled and tap water: A chemometric approach. Water Res. 2012, 47, 693–704. [Google Scholar] [CrossRef]
- Wak, A.D. The role of dietary salt and alcohol use reduction in the management of hypertension. Exp. Rev. Cardiovasc. Ther. 2021, 19, 27–40. [Google Scholar] [CrossRef]
- Chimin, R.Q.F.; de Castro, E.V.R.; Lima, T.A.; Machado, F.G.; Gomes, A.O.; Guimarães, R.C.L.; Malacarne, M.M. Development of method for monitoring of chloride release in the oil refining processes. Petroleum Sci. Technol. 2016, 34, 726–731. [Google Scholar] [CrossRef]
- Gwak, D.S.; Chung, I.; Kim, B.K.; Lee, S.; Jeong, H.G.; Kim, Y.S.; Chae, H.; Park, C.Y.; Han, M.K. High Chloride Burden and Clinical Outcomes in Critically III Patients with Large Hemispheric Infarction. Front. Neurol. 2021. [Google Scholar] [CrossRef]
- Rivera, F.B.; Alfonso, P.; Golbin, J.M.; Lo, K.; Kazory, A. The Role of Serum Chloride in Acute and Chronic Heart Failure: A Narrative Review. CardioRenal Med. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Breen, T.J.; Padkins, M.; Brueske, B.; Sidhu, M.S.; Jentzer, J.C. Abnormal serum chloride is associated with increased mortality among unselected cardiac intensive care unit patients. PLoS ONE 2021, 16, e0250292. [Google Scholar] [CrossRef]
- Ji, Y.; Li, L. Lower serum chloride concentrations are associated with increased risk of mortality in critically ill cirrhotic patients: An analysis of the MIMIC-III database. BMC Gastroenterol. 2021, 21, 200. [Google Scholar] [CrossRef] [PubMed]
- Valga, F.; Monzon, T.; Vega-Diaz, N.; Ruiz-Santana, S.; Diallo-Saavedra, R.; Aladro, S.; De la Flor, J.C.; Rodriguez-Perez, J.C. MO870 Hypochloremia is associated with a greater incidence of pneumonia in chronic hemodialysis patients with Covid-19: A center’s experience. Nephrol. Dial. Transplant. 2021, 36. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Zhang, Y.; Gao, Y.; Zheng, Y. Instantaneous chloride diffusion coefficient and its time dependency of concrete exposed to a marine tidal environment. Constr. Build. Mater. 2018, 167, 225–234. [Google Scholar] [CrossRef]
- Chen, D.; Sun, G.; Hu, D.; Shi, J. Study on the bearing capacity and chloride ion resistance of RC structures under multi-factor corrosive environment and continuous load. J. Build. Eng. 2021, 44, 102990. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Liu, Y.; Wang, Y. Comparison of three different methods for measuring chloride transport in predamaged concretes. J. Mater. Civil Eng. 2020, 32, 04020033.1–04020033.11. [Google Scholar] [CrossRef]
- Javidi, M.; Nematollahi, M.R.; Lalehparvar, M.M.; Ghassemi, A. Failure analysis of AISI 321 austenitic stainless steel water piping in a power plant. J. Fail. Anal. Prevent. 2016, 16, 209–215. [Google Scholar] [CrossRef]
- Li, H.S.; Chen, Y.H.; Long, J.Y.; Jiang, D.Q.; Liu, J.; Li, S.J.; Qi, J.Y.; Zhang, P.; Wang, J.; Gong, J. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins. J. Hazard. Mater. 2017, 333, 179–185. [Google Scholar] [CrossRef]
- National Health and Family Planning Commission. National Standard for Food Safety Determination of Chloride in Food (GB5009.44); China National Standard: Beijing, China, 2016.
- General Administration of Quality Supervision, Inspection and Quarantine. Determination of Water-Soluble Chlorides in Feeds (GB6439); China National Standard: Beijing, China, 2007.
- General Administration of Quality Supervision. Test Methods of Wooden Activated Carbon—Determination of Chloride Content (GB/T12496.16); China National Standard: Beijing, China, 1999.
- General Administration of Quality Supervision, Inspection and Quarantine. Paper, Board and Pulp—Determination of Water Soluble Chlorides (GB/T2678); China National Standard: Beijing, China, 2021.
- General Administration of Quality Supervision, Inspection and Quarantine. Inorganic Chemicals for Industrial Use—General Method for the Determination of Chloride Content—Visible Turbidimetric Method (GB/T23945); China National Standard: Beijing, China, 2009.
- General Administration of Quality Supervision, Inspection and Quarantine. Determination of Chloride Content for Compound Fertilizers (GB/T24890); China National Standard: Beijing, China, 2010.
- Ministry of Health of the People’s Republic of China. Methods for Determination of Chlorides in the Air of Workplace (GBZ/T160.37); China National Standard: Beijing, China, 2004.
- Ministry of Agriculture of the People’s Republic of China. Determination of Chloride Ion Content in Soil; China National Standard: Beijing, China, 2007.
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Specification for Test of Chloride Ion Content in Concrete (JGJ/T322); China National Standard: Beijing, China, 2013.
- State Environmental Protection Administration. Water Quality. Determination of Chloride-Mercury Nitrate Titration (HJ/T343); China National Standard: Beijing, China, 2007.
- General Administration of Quality Supervision, Inspection and Quarantine. Analysis of Water Used in Boil and Cooling System. Determination of Chloride. Ammonium Thiocyanate Titration Method. (GB/T29340); China National Standard: Beijing, China, 2012.
- General Administration of Quality Supervision, Inspection and Quarantine. Seawater Quality Requirements and Analysis Methods for Seawater Cooling System-Part 3:Determination of Chloride (GB/T33584.3); China National Standard: Beijing, China, 2017.
- Ministry of Health of the People’s Republic of China. Standard Examination Methods for Drinking Water. Nonmetal Parameters (GB5750); China National Standard: Beijing, China, 2006.
- State Bureau of Environmental Protection. Water Quality—Determination of Chloride—Silver Nitrate Titration Method (GB/T11896); China National Standard: Beijing, China, 1989.
- State Market Supervision and Administration. Determination of Chloride in Water for Industrial Circulating Cooling System and Boiler (GB/T15453); State Market Supervision and Administration; China National Standard: Beijing, China, 2018.
- State Environmental Protection Administration. Determination of Chloride in Wet Precipitation. Ferrithiocyanate Spectrophtometry (GB/T13580.9); China National Standard: Beijing, China, 1992.
- Administration of Quality Supervision, Inspection and Quarantine of People’s Republic of China. Industrial Circulating Cooling Water and Boiler Water. Determination of Fluoride, Chloride, Phosphate, Nitrite, Nitrate and Sulfate. Ion Chromatography (GB/T14642); China National Standard: Beijing, China, 2019.
- Liu, H. Optimization of determination of chloride in drinking water by silver nitrate volumetric method. Biol. Chem. 2015, 1, 40–42. [Google Scholar]
- Barra, C.M.; Vieira, B.H.S.; Junior, J.G.R.; Pimentel Lã, R.B. Substituio do nitrobenzeno pelo leo de soja como uma proposta para o ensino do mtodo de volhard em anlise quantitativa. Quim. Nova 2017, 40, 1130–1135. [Google Scholar]
- Wanda, G.; Monique, R.; Koen, V.V.; Jan, Y.; Robert, C. Monitoring the chloride concentration in international scheldt river basin district water using a low-cost multifunction data acquisition board. Water 2018, 10, 1025. [Google Scholar] [CrossRef] [Green Version]
- Vasilyeva, M.S.; Rudney, V.S.; Arefieva, O.D.; Lapina, A.S.; Plyusnina, V.I.; Marinina, G.I. Ti/TiO2 indicator electrodes formed by plasma electrolytic oxidation for potentiometric analysis. Int. J. Environ. Anal. Chem. 2016, 96, 1–17. [Google Scholar] [CrossRef]
- Pankratova, N.; Cuartero, M.; Jowett, L.A.; Howe, E.N.; Gale, P.A.; Bakker, E.; Crespo, G.A. Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids. Biosens. Bioelectron. 2017, 99, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, C.; Zhang, Z.; Ye, J.; Fang, P. A novel carbon paste electrode for sensitive, selective and rapid electrochemical determination of chloride ion based on three-dimensional graphene. Sens. Actuat. B Chem. 2019, 299, 126951. [Google Scholar] [CrossRef]
- Prkić, A.; Vukušić, T.; Mitar, I.; Giljanović, J.; Sokol, V.; Bošković, P.; Jakić, M.; Sedlar, A. New sensor based on AgCl containing Iron Oxide or Zinc Oxide Nanoparticles for Chloride Determination. Int. J. Electrochem. Sci. 2019, 14, 861874. [Google Scholar]
- Sopstad, S.; Imenes, K.; Johannessen, E.A. Chloride and pH determination on a wireless, flexible electrochemical sensor platform. IEEE Sens. J. 2019, 99, 1–20. [Google Scholar] [CrossRef]
- Jiang, L.; Peng, Y.; Wang, Q.; Wang, J.; Liu, F.Y.; Chen, J.W.; Jiang, M.; Lai, Y.Q.; Li, J. A Photochemical Method for Determination of Chloride Ion Concentration in Water. China Patent Number CN110487864B, 27 November 2020. [Google Scholar]
- Venancio, L.; Farinha, A.; Gomes, M. Analysing sulphate and chloride in mineral drinking water by flow injection analysis with a single acoustic wave sensor. Talanta 2018, 189, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Zhaoxi, W.; Jingwu, W. Determination of chloride ions in water by reverse flow injection turbidimetry. J. Nanchang Univ. 2003, 3, 248–251. [Google Scholar]
- Zhang, Z.; Gao, Y.; Li, P.; Qu, B.; Jing, L. Highly sensitive fluorescence detection of chloride ion in aqueous solution with Ag-modified porous g-C3N4 nanosheets. Chin. Chem. Lett. 2020, 31, 2725–2729. [Google Scholar] [CrossRef]
- Xiao, Z.; Wenyan, C.; Guiyan, T.; Danhui, W.; Jiangjun, G.; Lihui, Z.; Gangxue, B.; Ze, W. Determination of chloride ion in water samples by silver chloride turbidimetry. J. Food Saf. Qual. 2020, 11, 268–272. [Google Scholar]
- Liu, X. Research and Application of High Content Chlorine Ion Automatic Detection Technology in Power Plant Wastewater; North China Electric Power University Press: Beijing, China, 2018. [Google Scholar]
- Cao, H.; Wu, D. Rapid and sensitive determination of trace chloride ion in drinks uding resonance light scattering technique. J. Automat. Methods Manag. Chem. 2014, 2008, 635–647. [Google Scholar]
- Zhang, J.-X.; Wei, Y.-H.; Jin, H.-Z.; Shen, X.B. Quantitative analysis of trace chloride ion in aqueous solution by raman spectroscopy. Spectrosc. Spectr. Anal. 2020, 40, 3147–3152. [Google Scholar]
- Wang, H.; Hu, H.; Jin, M.; Kang, R.Q. Determination of chlorine content in dry base of molecular sieve powder by atomic absorption spectrometry. Phys. Testing Chem. Anal. Part B Chem. Anal. 2015, 51, 1145–1146. [Google Scholar]
- Xiao, X.; Le Berre, S.; Fobar, D.G.; Burger, M.; Skrodzki, P.J.; Hartig, K.C.; Motta, A.T.; Jovanovic, I. Measurement of chlorine concentration on steel surfaces via fiber-optic laser-induced breakdown spectroscopy in double-pulse configuration. Spectrochim. Acta Part B Atomic Spectrosc. 2018, 141, 44–52. [Google Scholar] [CrossRef]
- Ma, S.; Tang, Y.; Zhang, S.; Ma, Y.; Lu, Y. Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy. Talanta 2020, 214, 120849. [Google Scholar] [CrossRef]
- Watanabe, A.; Furukawa, H.; Miyamoto, S.; Minagawa, M. Non-destructive chemical analysis of water and chlorine content in cement paste using near-infrared spectroscopy. Constr. Build. Mater. 2019, 196, 95–104. [Google Scholar] [CrossRef]
- Muhammad, N.; Lao, L.; Intisar, A.; Cui, H.; Zhu, Y. Simultaneous determination of fluoride and chloride in iron ore by steam distillation followed by ion chromatography. Chromatographia 2019, 82, 1839–1844. [Google Scholar] [CrossRef]
- Pereira, R.M.; Costa, V.C.; Hartwig, C.A.; Picoloto, R.S.; Flores, E.M.M.; Duarte, F.A.; Mesko, M.F. Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwaveinduced combustion. Talanta 2016, 147, 76–81. [Google Scholar] [CrossRef]
- Cantlay, T.; Eastham, J.L.; Rutter, J.; Bain, D.J.; Stolz, J.F. Determining conventional and unconventional oil and gas well brines in natural samples I: Anion analysis with ion chromatography. J. Environ. Sci. Health Part A 2019, 55, 1–9. [Google Scholar] [CrossRef]
- Shen, M.; Ti, M.; Zhang, W.; Zou, J.; Zou, B. Ion chromatography as candidate reference method for the determination of chloride in human serum. J. Clin. Lab. Anal. 2020, 34, 1–6. [Google Scholar] [CrossRef]
- Xu, D.; Yu, S.; Yin, Y.; Lin, Q.; Peng, X.; Guo, X.; Wang, S.; Zhang, L.; Xiao, H. Gold Nanoparticle Paper and Its Application in Chloride Ion Detection. China Patent CN108776133B, 24 November 2020. [Google Scholar]
- Mbambo, A.T.; Kruger, H.G.; Mdludi, P.S.; Madikizela, L.M. Fabrication and application of a gold nanoparticle-based colorimetric device for the determination of NaCl in seawater and estuarine water. J. Nanopart. Res. 2019, 21, 1–17. [Google Scholar] [CrossRef]
- Yakoh, A.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoprisms. Talanta 2018, 178, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Gorbunva, M.O.; Shevchenko, A.V.; Apyari, V.V.; Furletov, A.A.; Volkov, P.A.; Garshev, A.V.; Dmitrienko, S.G. Selective determination of chloride ions using silver triangular nanoplates and dynamic gas extraction. Sens. Actuat. B Chem. 2018, 256, 699–705. [Google Scholar] [CrossRef]
- Rahbar, M.; Paull, B.; Macka, M. Instrument-free argentometric determination of chloride via trapezoidal distance-based microfluidic paper devices. Anal. Chim. Acta 2019, 1063, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Fiore, L.; Massoud, R.; Cortese, C.; Arduini, F. Low-cost and Reagent-free Paper-based Device to Detect Chloride Ions in Serum and Sweat. Talanta 2017, 179, 186–192. [Google Scholar] [CrossRef]
- Ma, C. Synthesis and Application of Fluorescent Probes and Nanocarriers for Chloride and Bromide; Lanzhou University Press: Lanzhou, China, 2020. [Google Scholar]
- Kronfeld, K.P.; Ellinger, T.; Khler, J.M. Microfluidically prepared sensor particles for determination of chloride by fluorescence quenching of matrix-embedded lucigenin. SN Appl. Sci. 2020, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pineda, L.H.; Tecia, A.; Flores, E.D.; Hernández, J.G.; Thangarasu, P.; Ramos, J. Ruthenium complex of bis(benzimidazole-yl ethyl)sulfide as chemo-sensor for the selective recognition of chloride ion, and its application in real bacterial samples. Inorg. Chim. Acta 2021, 522, 120354. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Z.; Yu, Y.; Liu, Z.; Chen, J. Chemiluminescence determination of potassium bromate in flour based on flow injection analysis. Food Chem. 2016, 190, 20–24. [Google Scholar] [CrossRef]
- Chetty, A.A.; Surendra, P. Flow injection analysis of nitrate and nitrite in commercial baby foods. Food Chem. 2016, 197, 503–508. [Google Scholar] [CrossRef]
- Chen, X.; Chu, B.; Xi, H.; Xu, J.; Lai, L.; Peng, H.; Deng, D.; Huang, G. Determination of chlorine ions in raw milk by pulsed amperometric detection in a flow injection system. J. Dairy Sci. 2018, 101, 9647–9658. [Google Scholar] [CrossRef]
- Xing, C.; Wang, Y.; Li, Y.; Wang, L. Research and application of the automatic detection technique of trace chloride in industrial water. Ind. Water Treat. 2017, 37, 91–95. [Google Scholar]
- Galvis-Sánches, A.C.; Tóth, I.V.; Portela, A.; Delgadillo, I.; Rangel, A. Monitoring sodium chloride during cod fish desalting process by flow injection spectrometry and infrared spectroscopy. Food Control 2011, 22, 277–282. [Google Scholar] [CrossRef]
Detection Method | Name | Concentration Range (mg/L) | Applicable Objects | Standard Number |
---|---|---|---|---|
Volumetric Method | Mercury nitrate titration | 2.5–500 | Groundwater Surface water | HJ/T343 [39] |
Ammonium thiocyanate volumetric method | 5–100 mg | Natural and clean water | GB/T29340 [40] | |
Silver nitrate volumetric method | 10,000–42,000 | Seawater cooling water | GB/T33584.3 [41] | |
>1.0 | Domestic drinking water and source water | GB/T5750.5 [42] | ||
Mercuric nitrate volumetric method | >1.0 | Domestic drinking water and source water | GB/T5750.5 [42] | |
Silver nitrate titration | 10–500 | Natural water | GB/T11896 [43] | |
Electrochemical Method | Potentiometric titration | 5–1000 | Industrial circulating cooling water and boiler water | GB/T15453 [44] |
Spectrophotometry Method | Coprecipitation enrichment photometric method | 10–100 | Industrial circulating cooling water and boiler water | GB/T15453 [44] |
Ferric photometric method of mercury thiocyanate | 0.4–6.0 | Meteoric water | GB/T13580.9 [45] | |
Chromatography Method | Ion chromatography | 0.1–500 | Clean water | GB/T14642 [46] |
0.15–2.5 | Domestic drinking water and source water | GB/T5750.5 [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Hu, Y.; Liu, Y.; Zhang, R. Review of Chloride Ion Detection Technology in Water. Appl. Sci. 2021, 11, 11137. https://doi.org/10.3390/app112311137
Wu D, Hu Y, Liu Y, Zhang R. Review of Chloride Ion Detection Technology in Water. Applied Sciences. 2021; 11(23):11137. https://doi.org/10.3390/app112311137
Chicago/Turabian StyleWu, Dan, Yinglu Hu, Ying Liu, and Runyu Zhang. 2021. "Review of Chloride Ion Detection Technology in Water" Applied Sciences 11, no. 23: 11137. https://doi.org/10.3390/app112311137
APA StyleWu, D., Hu, Y., Liu, Y., & Zhang, R. (2021). Review of Chloride Ion Detection Technology in Water. Applied Sciences, 11(23), 11137. https://doi.org/10.3390/app112311137