A Study of Variable Cell Spacings to the Heat Transfer Efficiency of Air-Cooling Battery Thermal Management System
Abstract
:Featured Application
Abstract
1. Introduction
2. 3D Modelling and Cooling Performance Indicators
2.1. Battery Cell Dimensions and Major Parameters
2.2. Air-Cooling BTMS Dimensions and Configurations
2.3. Cooling Performance Indicators and Evaluation Criteria
3. Mathematical Models and Validations
3.1. Battery Electrochemical Model
3.2. Mass and Heat Transfer Model
3.3. Model Validation
4. Results and Analysis
4.1. Inlet Air Velocities and Flow Rates
4.2. Maximum Temperature
4.3. Minimum Temperature
4.4. Temperature Difference
4.5. Pressure Difference
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
A | battery surface area (m2) |
C | capacitance (F) |
Cp | specific heat capacity (J·kg−1⋅K−1) |
I | current (A) |
j | current density (A·m−2) |
k | thermal conductivity (W·m−1·K−1) |
P, p | pressure (Pa) |
Q | battery capacity (Ah) |
q | heat generation rate (W·m−3) |
R | resistance (Ω) |
T | temperature (°C, K) |
V | voltage (V) |
v | air flow velocity (m·s−1) |
Greek symbols | |
Δ | difference |
ρ | mass density (kg·m−3) |
σ | electrical conductivity (Siemens·m−1) |
viscous stress tensor (Pa) | |
φ | phase potential (V) |
ϕ | electric potential (V) |
∇ | Gradient operator, represents the partial derivative of a quantity with respect to all directions in the chosen coordinate system (m−1) |
∇2 | Laplace operator, represents the sum of second partial derivatives of the function with respect to each independent variable in a Cartesian coordinate system (m−2) |
Subscripts | |
+ | anode |
− | cathode |
a | air |
b | battery |
max | maximum |
min | minimum |
OC | open circuit |
Abbreviations | |
BTMS | battery thermal management system |
CVSG | constant vertical spacing group |
ECM | electric circuit model |
EV | electric vehicle |
FSP | field synergy principle |
GVSG | gradient vertical spacing group |
LIB | lithium-ion battery |
MSMD | multi scale multi domain |
OEM | original equipment manufacturer |
SoC | state of charge |
Appendix A
Inlet Flow Rate (×10−3 m3/s) | Design 1 | Design 2 | Design 3 | Design 4 | Design 5 | Design 6 | Design 7 | |
---|---|---|---|---|---|---|---|---|
Tmax | 10.56 | 315.91 | 316.52 | 317.05 | 318.28 | 317.09 | 317.43 | 317.69 |
21.12 | 308.78 | 310.19 | 310.24 | 311.18 | 309.32 | 309.67 | 310.08 | |
31.68 | 305.74 | 306.98 | 307.19 | 307.80 | 305.49 | 306.27 | 306.23 | |
42.24 | 303.80 | 304.82 | 305.04 | 305.62 | 303.33 | 303.87 | 303.93 | |
52.80 | 302.40 | 303.33 | 303.53 | 304.06 | 301.90 | 302.30 | 302.38 | |
Tmin | 10.56 | 310.58 | 312.12 | 312.30 | 311.90 | 307.55 | 308.99 | 309.81 |
21.12 | 305.67 | 305.95 | 306.80 | 305.16 | 303.74 | 304.78 | 305.93 | |
31.68 | 302.59 | 302.95 | 303.36 | 302.05 | 301.14 | 301.96 | 302.85 | |
42.24 | 300.76 | 301.18 | 301.49 | 299.89 | 299.60 | 300.18 | 301.05 | |
52.80 | 299.37 | 299.89 | 300.20 | 299.00 | 298.55 | 299.07 | 299.78 | |
ΔT | 10.56 | 5.33 | 4.40 | 4.75 | 6.38 | 9.53 | 8.43 | 7.88 |
21.12 | 3.11 | 4.24 | 3.44 | 6.02 | 5.58 | 4.90 | 4.15 | |
31.68 | 3.14 | 4.03 | 3.83 | 5.76 | 4.35 | 4.31 | 3.37 | |
42.24 | 3.04 | 3.64 | 3.55 | 5.72 | 3.74 | 3.69 | 2.88 | |
52.80 | 3.04 | 3.44 | 3.33 | 5.05 | 3.34 | 3.23 | 2.60 | |
ΔP | 10.56 | 14.15 | 11.31 | 9.05 | 23.84 | 22.50 | 16.06 | 11.42 |
21.12 | 55.06 | 40.90 | 32.26 | 89.06 | 85.66 | 61.82 | 42.73 | |
31.68 | 115.70 | 89.75 | 73.55 | 196.00 | 189.60 | 133.59 | 91.10 | |
42.24 | 202.02 | 154.49 | 131.26 | 356.09 | 334.80 | 233.41 | 159.34 | |
52.80 | 314.86 | 240.33 | 197.78 | 537.13 | 513.49 | 367.07 | 252.43 |
References
- Hou, J.; Yang, Y.; He, H.; Gao, T. Adaptive dual extended Kalman filter based on variational bayesian approximation for joint estimation of lithium-ion battery state of charge and model parameters. Appl. Sci. 2019, 9, 1726. [Google Scholar] [CrossRef] [Green Version]
- Gourley, S.W.D.; Or, T.; Chen, Z. Breaking free from cobalt reliance in lithium-ion batteries. Iscience 2020, 23, 101505. [Google Scholar] [CrossRef]
- Ye, B.; Rubel, M.R.H.; Li, H. Design and optimization of cooling plate for battery module of an electric vehicle. Appl. Sci. 2019, 9, 754. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles. J. Power Sources 2021, 501, 230001. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.; Pesaran, A.A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 2013, 238, 301–312. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, H.; Wu, K.; Li, J.; Wang, Y. The impact of enclosure and boundary conditions with a wedge-shaped path and air cooling for battery thermal management in electric vehicles. Int. J. Energy Res. 2018, 42, 4054–4069. [Google Scholar] [CrossRef]
- Chen, K.; Wang, S.; Song, M.; Chen, L. Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy. Appl. Therm. Eng. 2017, 123, 177–186. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Wei, W.; Wang, S. Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement. Int. J. Heat Mass Transf. 2019, 132, 309–321. [Google Scholar] [CrossRef]
- Chen, K.; Chen, Y.; She, Y.; Song, M.; Wang, S.; Chen, L. Construction of effective symmetrical air-cooled system for battery thermal management. Appl. Therm. Eng. 2020, 166, 114679. [Google Scholar] [CrossRef]
- Zhao, J.; Rao, Z.; Huo, Y.; Liu, X.; Li, Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Appl. Therm. Eng. 2015, 85, 33–43. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Li, G.; Hua, D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Appl. Therm. Eng. 2015, 80, 55–65. [Google Scholar] [CrossRef]
- Waldmann, T.; Scurtu, R.-G.; Richter, K.; Wohlfahrt-Mehrens, M. 18650 vs. 21700 Li-ion cells–A direct comparison of electrochemical, thermal, and geometrical properties. J. Power Sources 2020, 472, 228614. [Google Scholar] [CrossRef]
- Wang, H.; He, F.; Ma, L. Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads. Int. J. Heat Mass Transf. 2016, 103, 154–164. [Google Scholar] [CrossRef]
- Huo, Y.; Rao, Z. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. Int. J. Heat Mass Transf. 2015, 91, 374–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, X.; Ma, C.; Hao, D.; Chen, Y. Effects of the structure arrangement and spacing on the thermal characteristics of Li-ion battery pack at various discharge rates. Appl. Therm. Eng. 2020, 165, 114610. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Zhao, C.; Cao, W.; Dong, T.; Jiang, F. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. Int. J. Heat Mass Transf. 2018, 120, 751–762. [Google Scholar] [CrossRef]
- Zhao, C.; Sousa, A.C.; Jiang, F. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow. Int. J. Heat Mass Transf. 2019, 129, 660–670. [Google Scholar] [CrossRef]
- Patil, M.S.; Seo, J.-H.; Panchal, S.; Jee, S.-W.; Lee, M.-Y. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. Int. J. Heat Mass Transf. 2020, 155, 119728. [Google Scholar] [CrossRef]
- Ye, Y.; Shi, Y.; Saw, L.H.; Tay, A.A. Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs. Int. J. Heat Mass Transf. 2016, 92, 893–903. [Google Scholar] [CrossRef]
- Monika, K.; Chakraborty, C.; Roy, S.; Dinda, S.; Singh, S.A.; Datta, S.P. Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates. Int. J. Heat Mass Transf. 2021, 164, 120568. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, M.; Huang, Q.; Weng, J.; Wang, Z.; Wang, J. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl. Sci. 2019, 9, 2483. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Rao, S.; Xiao, Y.; Gao, Z.; Chen, Y.; Wang, H.; Ouyang, M. Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway. Iscience 2021, 24, 102401. [Google Scholar] [CrossRef]
- Xiong, R.; Ma, S.; Li, H.; Sun, F.; Li, J. Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit. Iscience 2020, 23, 101010. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Wu, W.; Chen, K.; Wang, S.; Xin, C. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. Int. J. Heat Mass Transf. 2019, 144, 118581. [Google Scholar] [CrossRef]
- Sheng, L.; Su, L.; Zhang, H.; Li, K.; Fang, Y.; Ye, W.; Fang, Y. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger. Int. J. Heat Mass Transf. 2019, 141, 658–668. [Google Scholar] [CrossRef]
- Zou, D.; Ma, X.; Liu, X.; Zheng, P.; Hu, Y. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int. J. Heat Mass Transf. 2018, 120, 33–41. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Li, K.; Sun, J. Numerical study on the thermal performance of a composite board in battery thermal management system. Appl. Therm. Eng. 2016, 106, 131–140. [Google Scholar] [CrossRef]
- Shang, Z.; Qi, H.; Liu, X.; Ouyang, C.; Wang, Y. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. Int. J. Heat Mass Transf. 2019, 130, 33–41. [Google Scholar] [CrossRef]
- Choudhari, V.; Dhoble, A.; Panchal, S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int. J. Heat Mass Transf. 2020, 163, 120434. [Google Scholar] [CrossRef]
- Pan, M.; Zhong, Y. Experimental and numerical investigation of a thermal management system for a Li-ion battery pack using cutting copper fiber sintered skeleton/paraffin composite phase change materials. Int. J. Heat Mass Transf. 2018, 126, 531–543. [Google Scholar] [CrossRef]
- Tiedemann, W.; Newman, J. Mathematical modeling of the lead-acid cell. In Proceedings of the Symposium on Battery Design and Optimization; The Electrochemical Society: Princeton, NJ, USA, 1979; pp. 1–79. [Google Scholar]
- Lee, K.-J.; Smith, K.; Pesaran, A.; Kim, G.-H. Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries. J. Power Sources 2013, 241, 20–32. [Google Scholar] [CrossRef]
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and IV performance. IEEE Trans. energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Pinto, A.M.; Oliveira, V.S.; Falcão, D.S.C. Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Barbir, F. Pem Fuel Cells: Theory and Practice; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Sucec, J. Heat Transfer; Jaico Publishing House: Mumbai, India, 1999. [Google Scholar]
- Fan, Y.; Bao, Y.; Ling, C.; Chu, Y.; Tan, X.; Yang, S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl. Therm. Eng. 2019, 155, 96–109. [Google Scholar] [CrossRef]
Major Parameters | Values |
---|---|
Cell length (mm) | 66 |
Cell diameter (mm) | 21 |
Anode tab diameter (mm) | 21 |
Anode tab height (mm) | 2 |
Cathode tab diameter (mm) | 13 |
Cathode tab height (mm) | 2 |
Active material density (kg/m3) | 2092 |
Active material Cp (specific heat) (J/kg-K) | 678 |
Active material thermal conductivity (W/m-K) | 18.2 |
Active material electrical conductivity (Siemens/m) | 3.541 × 107 |
Passive material density (kg/m3) | 8978 |
Passive material Cp (specific heat) (J/kg-K) | 381 |
Passive material thermal conductivity (W/m-K) | 387.6 |
Passive material electrical conductivity (Siemens/m) | 1 × 107 |
Battery ECM Parameters | Values |
---|---|
Nominal Cell Capacity (Ah) | 4 |
Specified C-Rate | 2 |
Max Stop Voltage (V) | 4.3 |
Min Stop Voltage (V) | 2.5 |
Initial SoC | 1 |
Reference Capacity (Ah) | 20 |
Design | Inlet/Outlet Dimension (m) | Inlet/Outlet Area (m2) | Battery Pack Volume (m3) | Inlet Velocity (m/s) | Flow Rate (m3/s) |
---|---|---|---|---|---|
1 | 0.160 × 0.066 | 0.010560 | 2.9568 × 10−3 | 1 | 10.56 |
2 | 0.166 × 0.066 | 0.010956 | 3.0677 × 10−3 | 0.9639 | |
3 | 0.172 × 0.066 | 0.011352 | 3.1786 × 10−3 | 0.9302 | |
4 | 0.160 × 0.066 | 0.010560 | 2.9568 × 10−3 | 1 | |
5 | 0.160 × 0.066 | 0.010560 | 2.9568 × 10−3 | 1 | |
6 | 0.166 × 0.066 | 0.010956 | 3.0677 × 10−3 | 0.9639 | |
7 | 0.172 × 0.066 | 0.011352 | 3.1786 × 10−3 | 0.9302 |
Inlet Velocities (m/s) | Flow Rate (10.56 × 10−3 m3/s) | Flow Rate (21.12 × 10−3 m3/s) | Flow Rate (31.68 × 10−3 m3/s) | Flow Rate (42.24 × 10−3 m3/s) | Flow Rate (52.80 × 10−3 m3/s) |
---|---|---|---|---|---|
Design 1 | 1.0000 m/s | 2.0000 m/s | 3.0000 m/s | 4.0000 m/s | 5.0000 m/s |
Design 2 | 0.9639 m/s | 1.9278 m/s | 2.8917 m/s | 3.8556 m/s | 4.8195 m/s |
Design 3 | 0.9302 m/s | 1.8604 m/s | 2.7906 m/s | 3.7208 m/s | 4.6510 m/s |
Design 4 | 1.0000 m/s | 2.0000 m/s | 3.0000 m/s | 4.0000 m/s | 5.0000 m/s |
Design 5 | 1.0000 m/s | 2.0000 m/s | 3.0000 m/s | 4.0000 m/s | 5.0000 m/s |
Design 6 | 0.9639 m/s | 1.9278 m/s | 2.8917 m/s | 3.8556 m/s | 4.8195 m/s |
Design 7 | 0.9302 m/s | 1.8604 m/s | 2.7906 m/s | 3.7208 m/s | 4.6510 m/s |
Flow Rate (×10−3 m3/s) | Design 1 | Design 2 | Design 3 | Design 4 | Design 5 | Design 6 | Design 7 | |
---|---|---|---|---|---|---|---|---|
Tmax (<308.15 K) | 10.56 | 1 a | 2 | 3 | 7 | 4 | 5 | 6 |
21.12 | 1 | 5 | 6 | 7 | 2 | 3 | 4 | |
31.68 | 2 b | 5 | 6 | 7 | 1 | 4 | 3 | |
42.24 | 2 | 5 | 6 | 7 | 1 | 3 | 4 | |
52.80 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | |
ΔT (<5 K) | 10.56 | 3 | 1 | 2 | 4 | 7 | 6 | 5 |
21.12 | 1 | 4 | 2 | 7 | 6 | 5 | 3 | |
31.68 | 1 | 4 | 3 | 7 | 6 | 5 | 2 | |
42.24 | 2 | 4 | 3 | 7 | 6 | 5 | 1 | |
52.80 | 2 | 6 | 4 | 7 | 5 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Wang, X.; Negnevitsky, M. A Study of Variable Cell Spacings to the Heat Transfer Efficiency of Air-Cooling Battery Thermal Management System. Appl. Sci. 2021, 11, 11155. https://doi.org/10.3390/app112311155
Zhao G, Wang X, Negnevitsky M. A Study of Variable Cell Spacings to the Heat Transfer Efficiency of Air-Cooling Battery Thermal Management System. Applied Sciences. 2021; 11(23):11155. https://doi.org/10.3390/app112311155
Chicago/Turabian StyleZhao, Gang, Xiaolin Wang, and Michael Negnevitsky. 2021. "A Study of Variable Cell Spacings to the Heat Transfer Efficiency of Air-Cooling Battery Thermal Management System" Applied Sciences 11, no. 23: 11155. https://doi.org/10.3390/app112311155
APA StyleZhao, G., Wang, X., & Negnevitsky, M. (2021). A Study of Variable Cell Spacings to the Heat Transfer Efficiency of Air-Cooling Battery Thermal Management System. Applied Sciences, 11(23), 11155. https://doi.org/10.3390/app112311155