
applied
sciences

Article

AxP: A HW-SW Co-Design Pipeline for Energy-Efficient
Approximated ConvNets via Associative Matching

Luca Mocerino * and Andrea Calimera *

����������
�������

Citation: Mocerino, L.; Calimera, A.

AxP: A HW-SW Co-Design Pipeline

for Energy-Efficient Approximated

ConvNets via Associative Matching.

Appl. Sci. 2021, 11, 11164.

https://doi.org/10.3390/

app112311164

Academic Editor: Fabio La Foresta

Received: 29 September 2021

Accepted: 23 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy
* Correspondence: luca.mocerino@polito.it (L.M.); andrea.calimera@polito.it (A.C.)

Abstract: The reduction in energy consumption is key for deep neural networks (DNNs) to ensure
usability and reliability, whether they are deployed on low-power end-nodes with limited resources
or high-performance platforms that serve large pools of users. Leveraging the over-parametrization
shown by many DNN models, convolutional neural networks (ConvNets) in particular, energy
efficiency can be improved substantially preserving the model accuracy. The solution proposed in
this work exploits the intrinsic redundancy of ConvNets to maximize the reuse of partial arithmetic
results during the inference stages. Specifically, the weight-set of a given ConvNet is discretized
through a clustering procedure such that the largest possible number of inner multiplications fall
into predefined bins; this allows an off-line computation of the most frequent results, which in turn
can be stored locally and retrieved when needed during the forward pass. Such a reuse mechanism
leads to remarkable energy savings with the aid of a custom processing element (PE) that integrates
an associative memory with a standard floating-point unit (FPU). Moreover, the adoption of an
approximate associative rule based on a partial bit-match increases the hit rate over the pre-computed
results, maximizing the energy reduction even further. Results collected on a set of ConvNets trained
for computer vision and speech processing tasks reveal that the proposed associative-based hw-sw
co-design achieves up to 77% in energy savings with less than 1% in accuracy loss.

Keywords: deep learning; convolutional neural networks; energy efficiency; data reuse; clustering;
hw design

1. Introduction

In the last decade, convolutional neural networks (ConvNets) have outclassed tra-
ditional machine learning algorithms in several tasks, from image classification [1,2] to
audio [3,4] and natural language processing [5,6]. Many smart applications today make
use of ConvNets to infer meaningful information from raw data. Those ConvNets, first
trained off-line on a representative set of data and then deployed for on-line inference,
can be processed either remotely, on high-performance servers, or locally, close to the
source of data, on lightweight end-nodes. In both cases, achieving high energy efficiency
is paramount: on the cloud side, it is to reduce the power consumption, the costs of the
cooling systems, and hence it is a way to improve maintenance and reliability [7]; on the
edge side, is to cope with lower energy budgets and to maximize the battery lifetime still
ensuring reasonable processing time [8]. Unfortunately, ConvNets are created heavy and
cumbersome, and their algorithmic structure calls for high resource allocation, that is,
large memories for storing weights and partial results and highly parallel data-paths for
handling massive arithmetic workloads.

The need for practical optimization methods and training flows capable of lowering
the hardware requirements attracted large research interest in the last years, leading to
many possible alternatives. Most of them are based on different forms of approximate
computing strategies enabled by the intrinsic error resilience of ConvNets. Approximations
can be applied at different levels by means of different knobs: (i) the data format, with

Appl. Sci. 2021, 11, 11164. https://doi.org/10.3390/app112311164 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6086-0606
https://orcid.org/0000-0001-5881-3811
https://doi.org/10.3390/app112311164
https://doi.org/10.3390/app112311164
https://doi.org/10.3390/app112311164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311164
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311164?type=check_update&version=2

Appl. Sci. 2021, 11, 11164 2 of 17

mini-floats [9,10] or fixed-point quantization [11–13]; (ii) the arithmetic precision, replacing
exact multiplications with an approximate version [14,15]; (iii) the algorithmic structure,
for instance simplifying standard convolutions with an alternative formulation, such as
Winograd [16] or frequency domain convolution [3]. These techniques share a common
characteristic: the arithmetic algebra adopted for carrying on matrix convolutions is still
built upon the basic multiply and accumulate (MAC) operation.

A broader look at how ConvNets process data may suggest a radical and perhaps more
efficient alternative. The convolutional layers are characterized by stencil loops that update
array elements according to fixed patterns, thereby producing repetitive workloads with a
high degree of temporal and spatial locality. This offers the opportunity to implement reuse
mechanisms that alleviate the computational workload. To this end, associative memories
that store recurrent results have been proposed as a viable option to replace the arithmetic
MAC, and thus to skip redundant computations improving the energy efficiency [17,18]. To
further enhance the associative mechanism, additional approximations not strictly related
to the arithmetic MAC approximation can offer an orthogonal dimension for optimization.
Bit obfuscation and operand precision lowering were used to relax the matching rules
indeed, further increasing the repetitiveness of certain patterns and the probability the
required data get available in the associative memory [17–19]. To be noted that the error
introduced by approximate matching rules might call for auxiliary error-recovering policies
through online hardware calibration and/or custom training procedures. This represents a
substantial overhead. Furthermore, most of the proposed solutions rely on custom memory
architectures thought for Resistive-RAM technologies, which are more difficult to integrate
within standard CMOS designs and processes [20].

This work does focus on these aspects introducing a practical alternative to enhance
data reuse via approximate associative matching and standard CMOS circuits. Specifically,
we propose a hardware–software co-design pipeline consisting of a suite of automatic tools
that implement a multi-stage approximation and generate ConvNet models able to maxi-
mize the reuse mechanism implemented through a memory-enhanced processing element
(PE) borrowed from our preliminary work [21]. Similar input patterns are merged via
clustering at first, then a bit-wise approximate matching is implemented in such a way that
the associative memory utilization is maximized. Along the pipeline, the error tolerance
is regulated through a user-defined threshold, enabling an energy-accuracy tradeoff to
satisfy different application-level specifications and/or custom hardware constraints. High
prediction accuracy is achieved neither resorting to additional training epochs for weights,
nor any custom training procedure. This is an important feature as it ensures the use of
pre-trained models maximizing the integration with existing model architectures. The
processing element consists of tiny CMOS content addressable memories (CAMs) coupled
with a standard floating-point unit (FPU), which is easy to be integrated with modern
digital designs, e.g., existing GP-GPUs [17,22,23] or custom spatial accelerators [24–26].

The experiments conducted on computer vision tasks (image classification and object
recognition) and keyword spotting reveal that our approach achieves up to 77% of energy
savings with a negligible accuracy loss (<1%). Moreover, with the possibility of controlling
the accuracy-latency tradeoff at design-time, ConvNets obtained with the proposed tech-
nique cover a larger set of operating points (up to 23% energy savings when the accuracy
target gets relaxed from 0.5% to 3%). To prove the scalability of our solution, we also re-
peated experiments considering half-precision floating point data-paths. The results reveal
it is possible to achieve a comparable energy efficiency (72%) with negligible accuracy loss
(<1%). Finally, the comparison with the state-of-the-art shows remarkable energy saving
(up to 29.47%) against prior solutions.

2. Background and Related Works
2.1. Convolutional Neural Networks (ConvNets)

ConvNets belong to a sub-class of deep learning algorithms particularly suited for
inference on multidimensional inputs (e.g., images, video, spectrograms). Figure 1 depicts

Appl. Sci. 2021, 11, 11164 3 of 17

the internal structure of a classical ConvNet architecture; it consists of two main comput-
ing blocks, the first one in topological order (green) dedicated to features extraction, the
second one (blue) dedicated to features separation. The convolutional layers (CONV) extract
hierarchical features performing multidimensional convolution between the feature maps
received as input and their inner filters learned at training time. The CONV layers are
usually interleaved with batch normalization layers or pooling layers (POOL) that normalize
or re-scale the feature maps. The high-level and low-dimensional features produced by the
extraction block are then fed to the separation block, where fully-connected layers (FC) are
trained to implement the geometrical, non-linear separation of the features. A final softmax
layer calculates the output probability score across the available classes.

20

15
7

CONV1

POOL

20

78

CONV2

POOL

16
,2
80

FC1

10
00

FC2

31

Softmax

Figure 1. ConvNet architecture adopted on Google Speech Command dataset (GSC) [27].

2.2. ConvNets Approximation via Arithmetic Approximation and Data-Reuse

In this section, we briefly review some of the available energy-driven optimization
options for ConvNets, those most related to our proposal in particular. Specifically, we
discuss methods based on approximation strategies that do not alter the inner architecture
of the model. Interested readers can refer to existing surveys for a comprehensive literature
review on the topic [28,29].

Arithmetic precision scaling is by far the most adopted strategy [11,12,30]. The pa-
rameters, trained and optimized using a floating-point (FP) representation, are rescaled to
integers with a lower bit-width, e.g., 8-bit as the most common option. Even though integer
quantization has proven rather quite efficient, especially for resource-constrained devices
with limited instruction sets, it is no free lunch. Firstly, handling fixed-point operators in-
troduces additive computational overhead due to range alignment. This calls for optimized
kernel implementations depending on the underlying hardware architecture. Secondly,
additional re-training epochs are often needed in order to recover from the accuracy drop
coused by quantization. To notice that re-training is time-consuming and the original
training data are not always available for privacy or security reasons [31,32]. Recent trends
suggest the use of alternative floating-point formats rather than integers, which require
no extra fine-tuning steps, such as Bfloats [10] or reduced precision floating-point [33,34].
Alternatively, custom training loops that implement quantization-aware weights learn-
ing [35–37] represent a faster and more reliable option than fine-tuning. At the hardware
level, several custom designs make use of lightweight inexact MAC units integrated into
the data-path [15,38–40] to accelerate the arithmetic workload.

A side-product of the aforementioned algorithmic-level arithmetic approximation via
bit-width lowering is the increase of data repetitiveness during the inference stage, and
hence the opportunities offered by data-reuse policies. For instance, some prior works
investigated the use of memory-based associative mechanisms to replace classical hard-
ware arithmetic units. Razlighi et al. in [18] proposed a look-up search into a special
content-addressable memory (CAM) mapped onto a resistive technology as a substitute
for multiply-and-accumulate (MAC) units. This approach targeted simple multilayer
perceptrons (MLPs), which account for fully connected layers only, while it is known
that convolutions layers dominate the energy consumption in ConvNets [41,42]. Also, it

Appl. Sci. 2021, 11, 11164 4 of 17

requires additional re-training epochs to alleviate the dramatic accuracy drop. Moreover,
it was thought for emerging resistive memories. Other proposals elaborated on the same
idea embedding associative paths into the standard floating point units: a resistive ternary
content addressable Memory (TCAM) was proposed in [43], and a FeFET-based TCAM was
used in [44]. Further variants of the same concept foresee the replacement of the associative
memory with a classical software-based probabilistic data filter, such as a bloom filter
(BF) as proposed in [45], eventually implemented in hardware with resistive technologies.
The false positives introduced by BFs when retrieving a pattern contribute to substantial
accuracy drops. Moreover, a heterogeneous design with both CMOS and resistive tech-
nologies might limit applicability and savings in general. Moreover, even recent general
approximate matrix multiplication methods [46], based on product quantization algorithm,
target fully connected layers only and require an ad hoc training procedure for learning
the hashing functions parameters, which are the basis of the efficient lookup search.

Finally, in [21] we proposed a hardware–software co-design flow to implement a
fully-CMOS processing element that integrates an SRAM-based CAM into a standard
FPU. The design is enabled by a clustering procedure aimed at boosting the intrinsic reuse
opportunity. Experimental results have shown that achieving high accuracy may call for
large memory configurations, because of the high number of centroids needed and/or the
high number of input activations to be stored, reducing the energy savings achievable.
Borrowing the original idea proposed in [21], this work makes a step further introducing
the use of approximate matching for associative-based ConvNet processing.

3. Co-Design Pipeline: Concept and Methodology

As anticipated in the previous sections, the basic principle of our proposal is to accel-
erate the inference stage of a ConvNet by pre-computing and storing the most recurrent
multiplications offline and then reusing them whenever the same input pattern occurs.
We first introduce the processing element and its design parameters, then we provide a
detailed description of the co-design pipeline.

3.1. Hardware Design

An overview of the PE architecture is depicted in Figure 2a. There is an FPU composed
of a multi-stage floating-point multiplier (FPMul) and a single-stage accumulator, coupled
with an associative memory storing the most representative input patterns and weights
values. The PE functionality is simple, yet highly efficient. The CAMs process the input
operands in parallel. If they (partially) match those stored, the multiplication result is read
from the associative memory and the FPMul clock gated, otherwise, the multiplication is
normally computed using the FPMul. Due to the optimization stage done at design time,
the FPMul is turned off for most of the cycles with a marginal contribution to the total
power consumption.

FPMul

Inputs CAM

Weights CAM

Results
Memory

M
U

X

Ac
cu

m
ul

at
or

Input
Operands

Addr D
ecoder

Stage 1 Stage 2 Stage 3

hit/miss

Associative Memory

match

Input X
i

Addr

00

01

10

Weight W
i

Addr

00

01

10

A
d

d
r1 + A

d
d

r2

Addr Results

0000

0001

1010

X
0

X
1

X
2

X
0

W
0

W
2

W
1

W
0
 X

0

W
1
 X

0

W
2
 X

2

CAM

X
i
 = X

0

W
i
 = W

1

(a) (b)

Figure 2. A functional overview of the processing element (a) and associative memory (b).

Appl. Sci. 2021, 11, 11164 5 of 17

We implemented both single and half-precision floating-point units. The architecture
of the associative memory is depicted in Figure 2b. It is composed of two CAMs, one
dedicated to the most recurrent weights, the other dedicated to activations values. The
SRAM stores the results of the pre-computed approximate multiplications. The proposed
architecture is inspired to [18], whose design is more efficient in terms of area and energy
compared to a single CAM solution with a double word bit-width (weight and input
concatenation). If compared to a standard pipelined floating-point MAC, the proposed
hybrid processing element (PE) has an additional pipeline stage (Stage 1 in Figure 2a).
The latency of such an additional stage is given as the search time consumed by two
parallel CAMs and is function of the CAM configuration/size, of course. According to
our experiments and simulations, the latency of the largest CAM configuration (512 rows)
fits the design clock. To notice that larger CAM configurations can be designed (at no
clock-period penalty) leveraging a modular architecture composed of multi-stage sub-
CAMs, with a base module that replicates itself in cascading stages [18]. The design and
assessment of circuit and/or architecture optimization is out of the scope of this work. It
is worth emphasizing that the second and last stage of our hybrid processing element PE
(Stage 2 in Figure 2a) has a shorter latency compared to the FPMul. This would enable
further speed-up and optimization options, as most of the MAC operations could be faster.
Nonetheless, we kept the same clock period of the FPMul thus ensuring synchronization of
the workload.

The associative memory size and hence its performances are characterized by a set of
parameters defined as follows:

• Nw denotes the number of rows in CAM dedicated to relevant weights value;
• Nin indicates the number of rows in CAM dedicated to the most frequent input

and activations;
• Abit refers to the CAM and SRAM memory word size.

The parameter set (Nw, Nin, Abit) describes the size of the two CAMs and hence the
SRAM memory defined as Nm = (Nw · Nin) · Abit. Playing with different configurations
of those parameters leads to distinct memory designs and different energy consumption.
To this aim, the co-design tool explores those memory configurations to minimize the
energy consumption for a given user-defined accuracy constraint. This process might
return custom configurations, e.g., uneven word size (Abit) or non 2’s power Nw and Nin.
However, as depicted in Figure 3, we opted for a more regular memory structure with 8-bit
word bit-width when considering a PE with a half-precision (FPMul 16) and 16-bit word
bit-width when considering a 32-bit data format (FPMul 32).

Weights
CAM

Inputs
CAM

Results
Memory

(SRAM)

Nw

Nin

Nm = Nin x Nw

Abit=16 (8) Abit=16 (8) FPMul 32
FPMul 16

Figure 3. Energy model overview.

3.2. Energy Model

Given Nw, Nin and Abit, the overall energy consumption for a look-up in the as-
sociative memory is calculated through Equation (1), where Ew and Ein are the energy
contributions due to the CAMs with size Nw and Nin respectively, and Em is the contribu-

Appl. Sci. 2021, 11, 11164 6 of 17

tion given by the patterns memory of size Nm. The energy values come from a hardware
characterization done offline.

Elookup = Ew(Nw, Abit) + Ein(Nin, Abit) + Em(Nm) (1)

The simulation framework integrates the energy model shown in Equation (2), where
hr represents the hit rate, Emul is the energy consumption of the multiplier, Ew and Ein
refer to the energy consumption of the two CAMs given in Equation (1), Ehit is the energy
consumed once the inputs do match the CAM content (the pre-computed result is retrieved
from the small-size SRAM memory), and Emiss is the energy due to a missing search of the
pattern (in this case the multiplication is effectively computed).

Ehit = hr · Elookup

Emiss = (1− hr) · (Emul + Ew + Ein)

Etot = Emiss + Ehit

(2)

One can compute the energy-saving by comparing the energy consumed by the
stand-alone (single or half precision) FPMul to that retrieved by the energy model above.

3.3. Software Design

To enable such associative-based implementation, we introduce a co-design frame-
work depicted in Figure 4. It consists of two main stages: an Optimization Stage and a
Simulation Stage. The former searches for possible candidates of the memory and model
configurations that satisfy the user-defined constraints. The latter does a test over the
relevant configurations elaborated in the previous stage emulating the inference stage on
the designed PE, providing the weight-set of the clustered ConvNet and the corresponding
energy-efficient associative memory settings as main outcome. The Optimization Stage is the
core of the framework. It has two principal components: (i) the Approximation Pipeline (AxP)
that performs an iterative dual-step approximation based on a clustering & approximate
flow applied on the ConvNet model; (ii) the Activation Pattern Profiling (APP) stage that
works in parallel extracting relevant statistics on the activation maps produced by the inner
processing layers of the ConvNet model. The following sections provide a more detailed
description of these components.

Clustering Engine APMA Engine

Simulation
Engine

weights

input
activations

Activation Pattern
Profiling

User
Contraints

Dataset

Pre-Trained
 Model

Inference

Approximation Pipeline (AxP)

Configurations

Tech .
Parameters

Optimization Stage Simulation Stage

Memory
config.

New Model

Input Output

Figure 4. Co-Design tool overview.

3.4. Approximation Pipeline (AxP)

The approximation pipeline (AxP) is built to increase data repetitiveness across the
ConvNet model. The rationale is that reducing the number of different parameters and
activations minimizes the arithmetic unit utilization since most of the operations can
be pre-computed and reused during the inference by exploiting the associative-based
processing element. To achieve this, an iterative clustering and approximation procedure is
implemented as described by Algorithm 1.

Appl. Sci. 2021, 11, 11164 7 of 17

Algorithm 1: Approximation Pipeline (AxP) Algorithm

1 Input: model, valid_set, acc, ε, max_iter
2 Output: con f igs
3 con f igs = list()
4 for Ncnv, N f c in Sw and max_iter >0 do
5 Ncnv, N f c, new_model = clustering (model)

6 for Abit in Sab do
7 Abit, new_model = apma (new_model, Abit)
8 new_acc = forward (new_model, valid_set)
9 Error = acc - new_acc

10 if Error ≤ ε then
11 con f igs.append (Ncnv, N f c, Abit);
12 end
13 end
14 max_iter- -
15 end

The main inputs are (i) the pre-trained model, (ii) the validation set (valid_set), (iii) a
user-defined accuracy drop target (ε), and (iv) a stopping variable (max_iteration) to ensure
convergence of the iterative loop. The algorithm delivers as main outcome the set of
configurations (Ncnv, N f c, Abit) which are fed as input to the latter stage of the framework,
namely, the simulation engine. Going deeper into details, the AxP is composed of two sub-
stages run sequentially: clustering and Approximate Pattern Matching Analysis (apma). The
clustering step explores different solutions in a discrete space Sw ∈ {21, . . . , 2n}, n defined
empirically, seeking the optimal number of weight clusters for both the convolutional
and the fully-connected layers (the parameters Ncnv and N f c respectively). The optimal
number of bits used for the approximation pattern matching (the parameter Abit) is
evaluated during the apma sub-stage, which explores the viable configurations in the
interval Sab = [bw

2 , bw], bw as the parallelism of the current hardware data-path (32- or
16-bit in our study). During the iterative loop, shown in Algorithm 1, all the tuples (Ncnv,
N f c, Abit) that satisfy the accuracy constraint are kept as possible optimal solutions. Here
the tool employs the solution found in the clustering stage, characterized by Ncnv and
N f c parameters, and iteratively performs the forwarding pass on the validation set. In
each iteration, a certain partial matching configuration (while Ncnv and N f c are fixed) is
evaluated on the validation set and all the solutions that meet the user constraint ε are
collected. This additional approximation phase introduces a new degree of freedom in the
design phase and a finer grain control in the accuracy vs. energy efficiency space.

From here follows the detailed description of clustering and apma sub-stages and
the knob involved.

3.4.1. Clustering Engine

During the clustering stage, the ConvNet’s weights are merged into the lowest possible
number of clusters using a similarity distance metric. Once the engine returns the cluster
centroids, all the weights in a certain range are mapped on the corresponding centroid
values. This procedure affects the ConvNet model complexity, that is, the lower the number
of clusters, the lower the cardinality of the weight-set. Indeed, only the values of the cluster
centroids are the weight patterns to be stored.

The clustering procedure was built upon the jenks natural breaks (JNB) algorithm [47].
It is an iterative method whose objective is to maximize the inter classes variance while
minimizing the intra-class variance. The weight tensors are unrolled and treated as a 1D
vector, then sorted by magnitude during a pre-processing step to achieve speed-up. We

Appl. Sci. 2021, 11, 11164 8 of 17

opted for a layer-wise clustering granularity with a differentiated strategy for convolutional
and fully connected layers. Each filter in a CONV layer is clustered independently, while
the entire weight matrix is considered for an FC layer. The resulting number of clusters are
Ncnv and N f c for CONV and FC layers respectively. The differentiated clustering strategy
adopted for the two types of layers is motivated by empirical evidence as it decreases both
the number of centroids and the accuracy drop.

As a practical example, the histograms reported in Figure 5 show the effect of the
clustering step on the weights-set of an FC layer using N f c = 16 clusters. The original
peak frequency for near-zero values (≈5k) is doubled after the clustering step (≈10k),
which suggests that the occurrence of zero patterns gets doubled at inference-time, hence
opening to a higher matching probability exploitable by an associative-memory based
processing element.

−0.3 0.0 0.3
Value

0

2500

5000

F
re

qu
en

cy

Original Distribution

−0.3 0.0 0.3
Value

0

5000

10000

F
re

qu
en

cy

Clustering Nfc = 16

Figure 5. Clustering. Original weights distribution (left), weight distribution after clustering (right).

3.4.2. APMA Engine

Once the weight-set of the ConvNet model has been discretized across a lower num-
ber of clusters, the second stage encompasses the approximate pattern matching anal-
ysis (APMA) (see Figure 4). APMA takes as input the model processed by the cluster-
ing engine and returns the approximation bits (Abit) parameter, which is the number of
bits used to implement the approximate matching function for the retrieving of the pre-
computed results stored in the associative memory of the processing element. The main
objective is to minimize the Abit while ensuring an accuracy drop lower or equal to the
user-defined constraint.

The target data formats are the single and half-precision floating-point defined within
the IEEE 754 standard. Figure 6 reports the single-precision floating-point format, com-
posed of a sign bit, 8 bits for the exponent and 23 fraction bits. During the approximate
matching, the least significant bits (LSB) are obfuscated, using the most significant bits
(MSB) as the search key. For instance, a possible approximate matching schema makes
use of 13 MSBs, pruning 19 fraction bits. This mechanism replaces the exact matching
between current input patterns (weight and activation) and the pre-computed patterns
in the associative memory, increasing the hit rate at the cost of a certain accuracy drop. It
is worth noticing this mechanism can be regulated with the Abit knob, which affects the
memory size, the energy efficiency, and the accuracy drop.

Exponent Significand Precision

13bit matching

1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 000

1 1 0 0 1 1 0 1 1 1 1 1 1

30 23 22 031

31 19

Figure 6. IEEE 754 single-precision floating point format (top) and a possible approximate
matching (bottom).

3.4.3. Activation Pattern Profiling (APP)

We exploit the information stored in the training data to retrieve the best representative
values for the possible inputs and activation. The tool performs the feed-forward pass

Appl. Sci. 2021, 11, 11164 9 of 17

on the training data to collect and profile the most frequent inputs and the intermediate
activation values. Those values fed the dedicated CAM memory (Inputs CAM in Figure 2a)
and based on the empirical evaluation, we adopted a layer-wise granularity, where (Nin)
indicates the number of input activations to store for each layer.

3.5. Understanding Co-Design Knobs

The optimization stage returns a set of optimal configurations (Ncnv, N f c, Nin, Abit)
and the corresponding accuracy degradation. Each configuration reflects a different hard-
ware setting, which in turn affects the energy efficiency and the accuracy drop as follows:

• Nw defined as max(Ncnv, N f c) and Abit affect the weight-CAM size and the overall
accuracy;

• Nin and Abit impact the activation-CAM size and the overall hit rate in the associative
memory;

• Nw, Nin and Abit contribute to the static random access memory (SRAM) size for
collecting the multiplication results: Nm = (Nw · Nin) · Abit.

Fixing Abit, there exist solutions with the same accuracy degradation (same Nw), but
different associative memory sizes (varying Nin), hence higher or lower energy savings.

3.6. Simulation Engine

Once all viable configurations have been computed and assessed based on the actual
accuracy target, a further iterative step emulates the inference stage on the customized
hardware. This step encompasses the assessment of the CAM-enhanced FPU. The associa-
tive memory is initialized with the patterns provided by the optimization pipeline. The
technological characterization of the PE (Tech. Parameters in Figure 4) and the hit rate in the
associative memory are used for estimating the energy consumption. The best associative
memory configuration that satisfies the user’s constraints with minimum energy consump-
tion is finally returned as the main outcome of the framework. It is worth emphasizing
that multiple accuracy constraints can be used by the end-user to trade energy efficiency
with performance according to specific requirements (hardware equipment or application).

4. Experimental Results
4.1. Benchmarks and Datasets

Table 1 reports the benchmarks adopted. Specifically, the dataset and ConvNet
employed for each task, the input data size, and the detailed model topology. It also
collects the baseline accuracy for the full-precision model (FP32) and the half-precision one
(FP16). A detailed description of the tasks follows.

Table 1. Benchmark overview. Convolutional layers with shape (cho × kh × kw), fully-connected layers with shape
(chi × cho) and pooling layers with shape (kh, kw, s); kh and kw are kernel height and width, s is the stride, chi and cho refer
to the number of input and output channels, respectively.

Task IC OR KS

Dataset MNIST [48] GTSRBD [49] GSC [27]
Model LeNet-Like [45] LeNet-5 [50] GscNet [27]

Input 1× 32× 32 3× 32× 32 1× 44× 44

Topology

Conv 6× 5× 5 Conv 6× 5× 5 Conv 20× 5× 5
MaxPool (2, 2, 2) MaxPool (2, 2, 2) MaxPool (2, 2, 1)

Conv 16× 5× 5 Conv 16× 5× 5 Conv 20× 5× 5
MaxPool (2, 2, 2) MaxPool (2, 2, 2) MaxPool (2, 2, 1)

Conv 120× 5× 5 Conv 120× 5× 5 FC 16,280 ×1000
FC 120× 10 Conv 120× 84 FC 1000× 31

FC 84× 43

Acc. Top-1 (%) FP32 98.82 87.13 69.41
FP16 98.67 87.10 69.22

Appl. Sci. 2021, 11, 11164 10 of 17

Image Classification (IC): the goal is to classify 10 different handwritten digits. The
dataset employed is the popular MNIST [48] consisting of 60 k 32 × 32 gray-scale images,
50k samples used for training, 10k for testing. The model employed is inspired by the
LeNet [50] architecture widely adopted in previous works.

Object Recognition (OR): the objective is to recognize 43 different traffic signals, a
popular sub-task for autonomous driving. The dataset adopted is the German Traffic Sign
Recognition Dataset (GTSRD) [49]. It collects 50 K samples of 32 × 32 RGB samples of
traffic signals spread in the German streets, 40 k used for training, 10k testing. For this task,
the ConvNet architecture is the LeNet-5 [50] model.

Keyword Spotting (KS): the objective is to recognize 30 simple vocal commands.
The adopted dataset comes from Google research, Google Speech Commands (GSC) [27],
with 65k one-second-long audio samples of 30 different keywords plus noise, labeled as
“unknown”. The inputs are the 2D spectrograms of the recorded samples, 56,196 samples are
for training, 7518 for testing. The model adopted is the GSCNet taken from an open-source
repository [51] ,which is inspired by the original work [27].

4.2. Hardware and Software Setup

We designed a PE with a single and half-precision floating-point multiplier using the
open-source FloPoCo library [52]. The energy performance is retrieved from Synopsys
Design Compiler and PrimeTime leveraging a commercial CMOS 28nm FDSOI technology
library from STMicroelectronics. The CAMs are designed and mapped with a standard 6T
cell that comes from the 28 nm technology library. The energy characterization was done in
HSPICE by Synopsys. Experimental results show that the adopted design performance is
aligned with state-of-the-art CAM memories [53]. The SRAM bank is characterized using
CACTI 7.0 [54]. A parametric characterization of the three memory components is depicted
in Figure 7. Here, the energy consumption increases with memory size (the number of
rows) while fixing the word size as described in the previous section.

8 16 32 64 128 256 512
CAM Entries

0.0

0.1

0.2

0.3

N
o
r
m

.
E

n
e
r
g

y
(
F

P
3

2
M

u
l=

1
)

Norm. Search Energy vs Entries

16 32 64 128 256 512 1024 2048

SRAM Entries

0.0

0.1

0.2

0.3

Norm. Read Energy vs Entries

(4, 4) (8, 8) (16, 16) (32, 32) (64, 64)

Entries (Nw, Nin)

0.0

0.2

0.4

0.6

Associative Memory Energy vs Entries

8 16 32 64 128 256 512
CAM Entries

0.0

0.1

0.2

0.3

N
o
r
m

.
E

n
e
r
g

y
(
F

P
1

6
M

u
l=

1
)

Norm. Search Energy vs Entries

16 32 64 128 256 512 1024 2048

SRAM Entries

0.0

0.1

0.2

0.3

Norm. Read Energy vs Entries

(4, 4) (8, 8) (16, 16) (32, 32) (64, 64)

Entries (Nw, Nin)

0.0

0.2

0.4

0.6

Associative Memory Energy vs Entries

Figure 7. Normalized energy vs. entries: from left to right CAM, SRAM and associative memory. The
energy is normalized with respect to single precision (green bars) and half precision multiplier (grey bars).

The entire framework was built upon the deep-learning framework PyTorch (v1.4).
The baseline models were trained with hyper-parameters from original papers [27,50]. Both
training and inference stages were run on a server powered with 40-core Intel Xeon CPUs
and accelerated with NVIDIA Titan Xp GPU (CUDA 10.0). The models were trained twice

Appl. Sci. 2021, 11, 11164 11 of 17

using FP32 first and FP16 then, however, Table 1 revealed that there is no difference for the
considered benchmarks.

4.3. Weight Approximation Pipeline

This section quantifies the existing relationship between the prediction accuracy of
ConvNets and the design knobs explored in the approximation pipeline. A first analysis
shows how clustering (i.e., Ncnv and N f c) affects the accuracy along with the benefits of the
proposed approximate pattern matching strategy.

The clustering effects are depicted in Figure 8 where the accuracy drop is linked
to the number of clusters used in that stage. For graphical purposes, we just plotted the
solutions where Ncnv = N f c, however, the tool can explore also uneven working points.
Intuitively, the accuracy degradation decreases for larger values of Ncnv and N f c. This
behavior shows the hidden relationship between the number of different parameters,
i.e., the model complexity and the generalization ability of a ConvNet. The break-even
(near-to-zero accuracy) configuration differs among benchmarks and it is strictly related
to the model topology and the task complexity. In particular, for ConvNets with similar
size (e.g., for OR and IC tasks), the number of clusters required are strictly related to
the task difficulty (43 vs. 10 classes), when the number of weights grows up (wider
architecture) more clusters are required to represent the entire weight space, as shown by
the KS benchmark for instance. The results achieved are remarkable. It is possible to shirk
the complex high-dimensional information of a ConvNet model with no substantial loss
in the prediction ability. For instance, negligible accuracy degradation is obtained with
Ncnv = N f c = 64 for OR, Ncnv = N f c = 16 for IC and Ncnv = N f c = 512.

16 32 64 128

Ncnv = Nfc

0

20

40

60

A
cc

u
ra

cy
D

ro
p

[%
] FP32

FP16

(a)

4 8 16 32

Ncnv = Nfc

0

25

50

75

A
cc

u
ra

cy
D

ro
p

[%
] FP32

FP16

(b)

64 128 256 512

Ncnv = Nfc

0

10

20

30

A
cc

u
ra

cy
D

ro
p

[%
] FP32

FP16

(c)
Figure 8. Accuracy drop (%) variation changing the weight clusters configurations (Ncnv, N f c). Results for 32 bit (FP32) and
16 bit (FP16) data. (a) OR; (b) IC; (c) KS.

The Abit is a key knob in our proposal, as it affects both accuracy and hit rate in the
associative memory. Figure 9 shows the accuracy degradation trend for a different number
of bits used to implement the approximate matching. In order to assess the impact due to
Abit, we fixed the number of clusters (Nw) such a way that the accuracy drop is negligible:
Nw = 64 for OR, Nw = 16 for IC and Nw = 512 for KS. Those points represent possible
candidate solutions indeed. The accuracy drop decreases as Abit gets larger. Although the
initial error differs among benchmarks, the common ground is that it gets close to zero
using 13 MSB over the whole 32-bit; for the FP16 format, 8 MSBs are just enough to achieve
negligible accuracy losses (<1%). From Figures 8 and 9, it is also clear that Abit is a finer
knob when compared to the number of clusters, as it leads to minor accuracy variations.

Appl. Sci. 2021, 11, 11164 12 of 17

9 (6) 10 (7) 11 (8) 12 (9) 13 (10)

Abit FP32 (FP16)

0

10

20

A
cc

u
ra

cy
D

ro
p

[%
] FP32

FP16

(a)

9 (6) 10 (7) 11 (8) 12 (9) 13 (10)

Abit FP32 (FP16)

0

1

2

3

A
cc

u
ra

cy
D

ro
p

[%
] FP32

FP16

(b)

9 (6) 10 (7) 11 (8) 12 (9) 13 (10)

Abit FP32 (FP16)

0

10

20

A
cc

u
ra

cy
D

ro
p

[%
] FP32

FP16

(c)
Figure 9. Accuracy drop (%) when changing the Abit, fixing the number of clusters: Nw = 64 for OR, Nw = 16 for IC and
Nw = 512 for KS. Results are presented for 32 bit (FP32) and 16 bit data (FP16). (a) OR; (b) IC; (c) KS.

4.4. Input Activations Profiling

Figure 10 (top) shows the hit rate trends as function of the number of input and
activation patterns stored Nin. As expected, the hit rate increases with Nin, yet with different
rates depending on the task. IC and KS reach higher hit rates for instance (71–81%). The
best case for IC gets close to 75%, whereas KS goes even higher to 81% when Nin = 64.
The direct implication of this observation is that the FPMul workload decreases up to 80%,
which means a mere 20–30% of the overall input patterns are handled as classical arithmetic
operations. The results get slightly different for the OD task where the hit rate ranges are
limited between 25% and 36%. This might be due to the higher variance in input data.
Similar behavior is depicted when scaling bit-width (FP16). Here, the hit rate for OR and
KS slightly increases (up to ≈3%) due to the natural reduction of the bit-width. The peak
performance is recorded for the KS benchmark, where the hit rate ranges from 76% to 89%.

2 4 8 16 32 64

#Inputs (Nin)

20
30
40
50
60
70
80
90

H
it

R
at

e
[%

]

Hit Rate vs #Inputs

FP32

FP16

2 4 8 16 32 64

#Inputs (Nin)

20
30
40
50
60
70
80
90

H
it

R
at

e
[%

]

Hit Rate vs #Inputs

FP32

FP16

2 4 8 16 32 64

#Inputs (Nin)

20
30
40
50
60
70
80
90

H
it

R
at

e
[%

]

Hit Rate vs #Inputs

FP32

FP16

32(16) 16(16) 13(10) 12(9) 11(8) 10(7) 9(6)

Abit FP32 (FP16)

20
30
40
50
60
70
80
90

H
it

R
at

e
[%

]

Hit Rate vs Abit

FP32

FP16

(a)

32(16) 16(16) 13(10) 12(9) 11(8) 10(7) 9(6)

Abit FP32 (FP16)

20
30
40
50
60
70
80
90

H
it

R
at

e
[%

]

Hit Rate vs Abit

FP32

FP16

(b)

32(16) 16(16) 13(10) 12(9) 11(8) 10(7) 9(6)

Abit FP32 (FP16)

20
30
40
50
60
70
80
90

H
it

R
at

e
[%

]

Hit Rate vs Abit

FP32

FP16

(c)
Figure 10. On top, the hit rate variation changing the number of most frequent inputs and intermediate activation profiled
(Nin). On bottom, the hit rate (%) variation when adding the approximation pattern matching, controlled by Abit. Nin = 16.
(a) OR; (b) IC; (c) KS.

However, an increment in the hit rate due to a higher number of clusters has a side
effect on energy consumption. Higher Nin means larger associative memory indeed, and
hence more energy consumption. This behavior motivates the need to balance those con-
trasting metrics (hit rate and energy consumption) through extensive co-design exploration.

4.5. Approximate Pattern Matching on Input Activation

Figure 10 (bottom) shows the hit rate when varying Abit while fixing the other knobs
(Nin = 16). This configuration guarantees a moderate hit rate (as depicted in Figure 10 (top))
and may be a good representation point to analyse the impact of apma stage on hit rate.

Appl. Sci. 2021, 11, 11164 13 of 17

As expected, the hit rate increases when resorting to a lower number of bits for
approximate matching. Specifically, the hit rate increases up to 58% for OR, 83% for IC, and
89% for KS. More interesting is the understanding of how the hit rate behavior changes
after the apma step to isolate the impact on that stage. This is depicted in Figure 10 (bottom),
where the leftmost values represent the baseline values (equals to Figure 10 (up), Nin = 16).
When comparing this behavior with the hit rate after the clustering (Figure 10 (bottom),
leftmost values) it turns out that the apma phase leads to substantial hit rate improvements.

In particular, even on the benchmark with a high hit rate after the clustering step, the
apma step leads to an additional improvement: up to 14% (13%) for KS and 9% (10%) for
IC, referred to 32 bit-data width (16 bit-data). Moreover, the results are impressive on OR
benchmark, where this additional approximation step guarantees up to for 30% (FP16 28%)
of hit rate improvement. This suggests that the apma phase is very effective, as it leads to
new energy-efficient solutions, unreachable with the clustering stand-alone.

4.6. Energy-Accuracy Trade-Off and Comparison with Previous Works

The plots collected in Figure 11 show the Pareto analysis obtained running multiple
instances of the framework under different user-defined accuracy constraints.

Those constraints on the x-axis (dashed vertical lines) are represented as the accuracy
drop w.r.t. the nominal accuracy (in Table 1). On the y-axis, the energy savings w.r.t. a
standard convolution-as-GEMM implementation running on fully arithmetic processing
element are reported. In this space, the plots depict our solutions (in colored full lines) and
our preliminary work (in grey dashed lines). Each color refers to a different benchmark:
object recognition with blue, image classification task with green, and keywords spotting
with yellow. Moreover, the top row refers to the FP32 data-path (circle marker), whereas
the bottom one to FP16 (star marker).

< 0.5 < 1 < 2 < 3

Accuracy Drop [%]

0

20

40

60

E
n

er
gy

S
av

in
gs

[%
]

Our

Mocerino et al.

< 0.5 < 1 < 2 < 3

Accuracy Drop [%]

60

70

80

E
n

er
gy

S
av

in
gs

[%
]

Our

Mocerino et al.

< 0.5 < 1 < 2 < 3

Accuracy Drop [%]

20

40

60

80

E
n

er
gy

S
av

in
gs

[%
]

Our

Mocerino et al.

< 0.5 < 1 < 2 < 3

Accuracy Drop [%]

0

20

40

60

E
n

er
gy

S
av

in
gs

[%
] Our

Mocerino et al.

(a)

< 0.5 < 1 < 2 < 3

Accuracy Drop [%]

50

60

70

80

E
n

er
gy

S
av

in
gs

[%
] Our

Mocerino et al.

(b)

< 0.5 < 1 < 2 < 3

Accuracy Drop [%]

20

40

60

80

E
n

er
gy

S
av

in
gs

[%
] Our

Mocerino et al.

(c)
Figure 11. Pareto point into energy-accuracy space for each benchmark. On the top, results corresponding to single-precision
floating-point data-path, on the bottom half-precision. Each column (and color) represents a different benchmark, from left
to right: OR, IC and KS. The current approach is compared to our preliminary work [21] (grey dashed lines). (a) OR; (b) IC;
(c) KS.

Intuitively, energy savings get lower for stricter accuracy constraints. The amount of
energy savings vary across the benchmarks as a consequence of different configurations,
hence different associative memory designs. Looking at the FP32 results, with a close-
to-zero accuracy drop (<0.5%), energy savings are substantial: 48.50% (OR), 74.75% (IC),
49.65% (KS). Results get even more interesting when relaxing the constraints (<3%): 61.50%
(OR), 79.45% (IC), 72.40% (KS).

Appl. Sci. 2021, 11, 11164 14 of 17

Efficacy has been proven for FP16 too, yet with narrow margins. Specifically, the
energy savings range from 29.32% to 39.5% (OR), 69.91% to 76.42% (IC), and from 41.74%
to 65.22% (KS) for the three accuracy constraints respectively. The best scaling ratio is
shown by KS with an improvement of 22.75% relaxing the constraints, while IC shows
a smoother scaling with 5.45% of accuracy improvement. Reducing data path bit-width
leads to similar trends, in particular, KS presents a maximum scaling of 23.38% while the
minimum occurs for IC (6.51%).

Concerning prior arts, the first analysis we conducted aims at showing the improve-
ments brought by our new framework when compared to our preliminary work [21] (gray
dashed line in Figure 11). The energy efficiency increases up to 37.06% for OR, 9.42%
for IC, and 32.79% for KS for FP32 data path, while for FP16 data path it is possible to
save up to 13.37% for OR, 17.92% for IC, and 14.42 for KS from a strict to more relaxed
accuracy constraint. It is noted that our solution heavily improves the energy efficiency on
benchmarks where our preliminary work shows the poorest results (e.g., OR benchmark).
This gets empirical evidence that the additional approximation step introduced with this
work enhances data-reuse opportunity. Even though savings slightly decrease, the results
on the FP16 data path confirm the dominance of the new approximate technique.

As a final remark, Table 2 reports a fair comparison to other prior works based on
associative-based computing integrated with a floating-point unit [38,40] or probabilistic
data-structure such as bloom filter [45]. Moreover, in Table 2 details on the memory
technology adopted, the type of cell, the technological node and the clock period of
processing element are reported. The voltage supply for each solution is set to 1V. The
analysis involves a common benchmark (IC) under the same accuracy constraint (<1%).

Table 2. Comparison w.r.t. state of the art.

Work Dataset
Energy

Savings [%]
Memory

Tech.
Cell
Type

Tech. Node
(nm)

Tclk
(ns)

Our

IC

76.97
(+29.47) CMOS 6T 28 1.5

[45] 47.50 ReRAM 1T1R 45 1.5
[40] 45.92 - - 45 -
[38] 44.81 FeFET 4T-2FeFET 45 -

The results reveal the proposed framework outperforms prior arts, with up to 29.47%
of energy improvement. This achievement is the result of a joint hardware–software opti-
mization process, in which a sophisticated data-reuse strategy fully exploits the compact
and energy-efficient associative processing element.

Finally, we found that the search time for a feasible solution grows in the case of large
ConvNets (i.e., with a high number of channels). We realized that the bottleneck is the
clustering stage, where the clustering iterations in convolutional layers increase with the
number of active channels. There are different ways to address this limitation, for instance
adopting a recently proposed high parallel implementation [55,56].

5. Conclusions

This work presents a hardware–software co-design tool that affects the arithmetic
workload in ConvNet processing: (i) enhancing the recurrent pattern reuse with an ad hoc
approximation pipeline composed of a clustering step followed by the approximate pattern
matching phase; (ii) integrating an FPU with associative memory. We experimentally tested
the solution on three different applications reaching up 77% of energy-saving under a
negligible accuracy drop (<1%) outperforming all priors-related solutions. Results are
almost preserved with precision scaling.

Appl. Sci. 2021, 11, 11164 15 of 17

Author Contributions: Conceptualization, L.M. and A.C.; Investigation, L.M. and A.C.; Methodol-
ogy, L.M. and A.C.; Resources, A.C.; Software, L.M.; Writing—review & editing, L.M. and A.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Druzhkov, P.; Kustikova, V. A survey of deep learning methods and software tools for image classification and object detection.

Pattern Recognit. Image Anal. 2016, 26, 9–15. [CrossRef]
2. Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing

image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [CrossRef]
3. Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition.

IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]
4. Kwon, S. A CNN-assisted enhanced audio signal processing for speech emotion recognition. Sensors 2020, 20, 183.
5. Lopez, M.M.; Kalita, J. Deep Learning applied to NLP. arXiv 2017, arXiv:1703.03091.
6. Babić, K.; Martinčić-Ipšić, S.; Meštrović, A. Survey of Neural Text Representation Models. Information 2020, 11, 511. [CrossRef]
7. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.

In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

8. Lu, Z.; Rallapalli, S.; Chan, K.; La Porta, T. Modeling the resource requirements of convolutional neural networks on mobile
devices. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October
2017; pp. 1663–1671.

9. Kang, H.J. Short floating-point representation for convolutional neural network inference. IEICE Electron. Express 2018, 15,
20180909. [CrossRef]

10. Kalamkar, D.; Mudigere, D.; Mellempudi, N.; Das, D.; Banerjee, K.; Avancha, S.; Vooturi, D.T.; Jammalamadaka, N.; Huang, J.;
Yuen, H.; et al. A study of BFLOAT16 for deep learning training. arXiv 2019, arXiv:1905.12322.

11. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June, 2018; pp. 2704–2713.

12. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks with low
precision weights and activations. arXiv 2016, arXiv:1609.07061.

13. Mocerino, L.; Calimera, A. Fast and accurate inference on microcontrollers with boosted cooperative convolutional neural
networks (bc-net). IEEE Trans. Circuits Syst. Regul. Pap. 2020, 68, 77–88. [CrossRef]

14. Hashemi, S.; Bahar, R.I.; Reda, S. DRUM: A dynamic range unbiased multiplier for approximate applications. In Proceedings
of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2–6 November 2015;
pp. 418–425.

15. Camus, V.; Schlachter, J.; Enz, C.; Gautschi, M.; Gurkaynak, F.K. Approximate 32-bit floating-point unit design with 53%
power-area product reduction. In Proceedings of the ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference,
Lausanne, Switzerland, 12–15 September 2016; pp. 465–468.

16. Li, S.; Park, J.; Tang, P.T.P. Enabling sparse winograd convolution by native pruning. arXiv 2017, arXiv:1702.08597.
17. Imani, M.; Rahimi, A.; Rosing, T.S. Resistive configurable associative memory for approximate computing. In Proceedings

of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March 2016;
pp. 1327–1332.

18. Razlighi, M.S.; Imani, M.; Koushanfar, F.; Rosing, T. Looknn: Neural network with no multiplication. In Proceedings of the 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1779–1784.

19. Imani, M.; Masich, M.; Peroni, D.; Wang, P.; Rosing, T. CANNA: Neural network acceleration using configurable approximation
on GPGPU. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju Island,
Korea, 22–25 January 2018; pp. 682–689.

20. Jalaleddine, S.M. Associative memories and processors: The exact match paradigm. J. King Saud Univ. Comput. Inf. Sci. 1999,
11, 45–67. [CrossRef]

21. Mocerino, L.; Tenace, V.; Calimera, A. Energy-Efficient Convolutional Neural Networks via Recurrent Data Reuse. In Proceedings
of the 2019 Design, Automation Test in Europe Conference Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 848–853.
[CrossRef]

http://doi.org/10.1134/S1054661816010065
http://dx.doi.org/10.1109/JSTSP.2011.2139193
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.3390/info11110511
http://dx.doi.org/10.1587/elex.15.20180909
http://dx.doi.org/10.1109/TCSI.2020.3039116
http://dx.doi.org/10.1016/S1319-1578(99)80003-2
http://dx.doi.org/10.23919/DATE.2019.8714880

Appl. Sci. 2021, 11, 11164 16 of 17

22. Peroni, D.; Imani, M.; Nejatollahi, H.; Dutt, N.; Rosing, T. ARGA: Approximate Reuse for GPGPU Acceleration. In Proceedings
of the 56th Annual Design Automation Conference 2019 (DAC ’19), Las Vegas, NV, USA, 2–6 June 2019; Volume 8, pp. 1–6.
[CrossRef]

23. Peroni, D.; Imani, M.; Rosing, T. ALook: Adaptive Lookup for GPGPU Acceleration. In Proceedings of the 24th Asia and South
Pacific Design Automation Conference (ASPDAC ’19), Tokyo, Japan, 21–24 January 2019; pp. 739–746. [CrossRef]

24. Mittal, S. A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 2020, 32, 1109–1139.
[CrossRef]

25. Locke, K. Parameterizable Content-Addressable Memory; Xilinx Application Note XAPP1151; Xilinx: San Jose, CA, USA 2011.
26. Irfan, M.; Ullah, Z.; CC Cheung, R. Zi-CAM: A power and resource efficient binary content-addressable memory on FPGAs.

Electronics 2019, 8, 584. [CrossRef]
27. Sainath, T.N.; Parada, C. Convolutional neural networks for small-footprint keyword spotting. In Proceedings of the Sixteenth

Annual Conference of the International Speech Communication Association, Dresden, Germany 6–10 September 2015.
28. Wang, E.; Davis, J.J.; Zhao, R.; Ng, H.C.; Niu, X.; Luk, W.; Cheung, P.Y.; Constantinides, G.A. Deep neural network approximation

for custom hardware: Where we’ve been, where we’re going. ACM Comput. Surv. 2019, 52, 1–39. [CrossRef]
29. Mittal, S. A survey of techniques for approximate computing. ACM Comput. Surv. 2016, 48, 1–33. [CrossRef]
30. Mocerino, L.; Calimera, A. TentacleNet: A pseudo-ensemble template for accurate binary convolutional neural networks. In

Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genoa, Italy,
31 August–2 September 2020; pp. 261–265.

31. Choi, Y.; Choi, J.; El-Khamy, M.; Lee, J. Data-free network quantization with adversarial knowledge distillation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020;
pp. 710–711.

32. Bhardwaj, K.; Suda, N.; Marculescu, R. Dream distillation: A data-independent model compression framework. arXiv 2019,
arXiv:1905.07072.

33. Sun, X.; Choi, J.; Chen, C.Y.; Wang, N.; Venkataramani, S.; Srinivasan, V.V.; Cui, X.; Zhang, W.; Gopalakrishnan, K. Hybrid 8-bit
floating point (HFP8) training and inference for deep neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 4900–4909.

34. Johnson, J. Rethinking floating point for deep learning. arXiv 2018, arXiv:1811.01721.
35. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 25 June–1 July 2016; pp. 4820–4828.
36. Lai, L.; Suda, N.; Chandra, V. Cmsis-nn: Efficient neural network kernels for arm cortex-m cpus. arXiv 2018, arXiv:1801.06601.
37. Lin, D.D.; Talathi, S.S. Overcoming challenges in fixed point training of deep convolutional networks. arXiv 2016,

arXiv:1607.02241.
38. Ma, D.; Yin, X.; Niemier, M.; Hu, X.S.; Jiao, X. AxR-NN: Approximate Computation Reuse for Energy-Efficient Convolutional

Neural Networks. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, Virtual Event China, 7–9 September 2020;
pp. 363–368.

39. Jiang, H.; Liu, L.; Lombardi, F.; Han, J. Approximate arithmetic circuits: Design and evaluation. In Approximate Circuits; Springer:
Cham, Switzerland, 2019; pp. 67–98.

40. Zhang, Q.; Wang, T.; Tian, Y.; Yuan, F.; Xu, Q. ApproxANN: An approximate computing framework for artificial neural network.
In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March
2015; pp. 701–706.

41. Yang, X.; Pu, J.; Rister, B.B.; Bhagdikar, N.; Richardson, S.; Kvatinsky, S.; Ragan-Kelley, J.; Pedram, A.; Horowitz, M. A systematic
approach to blocking convolutional neural networks. arXiv 2016, arXiv:1606.04209.

42. Chen, Y.H.; Yang, T.J.; Emer, J.; Sze, V. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

43. Imani, M.; Peroni, D.; Kim, Y.; Rahimi, A.; Simunic, T. Efficient neural network acceleration on GPGPU using content addressable
memory. In Proceedings of the 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne,
Switzerland, 27–31 March 2017; pp. 1026–1031.

44. Yin, X.; Niemier, M.; Hu, X.S. Design and benchmarking of ferroelectric FET based TCAM. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1444–1449.

45. Jiao, X.; Akhlaghi, V.; Jiang, Y.; Gupta, R.K. Energy-efficient neural networks using approximate computation reuse. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018;
pp. 1223–1228.

46. Blalock, D.; Guttag, J. Multiplying Matrices Without Multiplying. arXiv 2021, arXiv:2106.10860.
47. Jenks, G.F. The data model concept in statistical mapping. In International Yearbook of Cartography; George Phillip and Son:

London, UK, 1967; Volume 7, pp. 186–190.
48. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database; AT&T Labs: Bedminster, NJ, USA, 2010; Volume 2.
49. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign

recognition. Neural Netw. 2012, 32, 323–332. [CrossRef]
50. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]

http://dx.doi.org/10.1145/3316781.3317776
http://dx.doi.org/10.1145/3287624.3287634
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.3390/electronics8050584
http://dx.doi.org/10.1145/3309551
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1016/j.neunet.2012.02.016
http://dx.doi.org/10.1109/5.726791

Appl. Sci. 2021, 11, 11164 17 of 17

51. Google Speech Commands PyTorch. Available online: https://github.com/adiyoss/GCommandsPytorch (accessed on 28 August 2021).
52. De Dinechin, F.; Pasca, B. Designing custom arithmetic data paths with FloPoCo. IEEE Des. Test Comput. 2011, 28, 18–27.

[CrossRef]
53. Gupta, N.; Makosiej, A.; Vladimirescu, A.; Amara, A.; Anghel, C. 1.56 GHz/0.9 V energy-efficient reconfigurable CAM/SRAM

using 6T-CMOS bitcell. In Proceedings of the ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference, Leuven,
Belgium, 11–14 September 2017; pp. 316–319.

54. Balasubramonian, R.; Kahng, A.B.; Muralimanohar, N.; Shafiee, A.; Srinivas, V. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. In Proceedings of the ACM Transactions on Architecture and Code Optimization (TACO), New
York, NY, USA, 2 July 2017; Volume 14, pp. 1–25.

55. Daoudi, S.; Anouar Zouaoui, C.M.; El-Mezouar, M.C.; Taleb, N. Parallelization of the K-Means++ Clustering Algorithm. Ingénierie
Syst. d’Inform. 2021, 26, 59–66. [CrossRef]

56. Shahrezaei, M.H.; Tavoli, R. Parallelization of Kmeans++ using CUDA. arXiv 2019, arXiv:1908.02136.

https://github.com/adiyoss/GCommandsPytorch
http://dx.doi.org/10.1109/MDT.2011.44
http://dx.doi.org/10.18280/isi.260106

	Introduction
	Background and Related Works
	Convolutional Neural Networks (ConvNets)
	ConvNets Approximation via Arithmetic Approximation and Data-Reuse

	Co-Design Pipeline: Concept and Methodology
	Hardware Design
	Energy Model
	Software Design
	Approximation Pipeline (AxP)
	Clustering Engine
	APMA Engine
	Activation Pattern Profiling (APP)

	Understanding Co-Design Knobs
	Simulation Engine

	Experimental Results
	Benchmarks and Datasets
	Hardware and Software Setup
	Weight Approximation Pipeline
	Input Activations Profiling
	Approximate Pattern Matching on Input Activation
	Energy-Accuracy Trade-Off and Comparison with Previous Works

	Conclusions
	References

