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Abstract: With the frequent occurrence of network security events, the intrusion detection system will
generate alarm and log records when monitoring the network environment in which a large number
of log and alarm records are redundant, which brings great burden to the server storage and security
personnel. How to reduce the redundant alarm records in network intrusion detection has always
been the focus of researchers. In this paper, we propose a method using the whale optimization
algorithm to deal with massive redundant alarms. Based on the alarm hierarchical clustering, we
integrate the whale optimization algorithm into the process of generating alarm hierarchical clustering
and optimizing the cluster center and put forward two versions of local hierarchical clustering and
global hierarchical clustering, respectively. To verify the feasibility of the algorithm, we conducted
experiments on the UNSW-NB15 data set; compared with the previous alarm clustering algorithms,
the alarm clustering algorithm based on the whale optimization algorithm can generate higher quality
clustering in a shorter time. The results show that the proposed algorithm can effectively reduce
redundant alarms and reduce the load of IDS and staff.

Keywords: intrusion detection system; whale optimization algorithm; alarm reduction;
hierarchical clustering

1. Introduction

With the continuous development of computer network technology, people are more
and more dependent on the convenience brought by the internet, but at the same time, the
characteristics of the network, such as openness and complexity, also lead to the complexity
and diversity of network security threats. In order to avoid the damage caused by network
threats, many network security technologies are widely used, such as firewall, intrusion
detection system (IDS), vulnerability scanning program and so on [1]. This study mainly
focuses on the IDS, especially on how to improve the efficiency and performance of the
IDS when dealing with network security events.

IDSs can be divided into two categories: the signature-based IDS and anomaly-based
IDS [2]. The signature-based IDS determines whether network traffic shows malicious or
normal behavior by maintaining a knowledge base [3]. The anomaly-based IDS detects
whether the network traffic deviates from the normal rule state to determine malicious
traffic [4]. Whether the signature-based IDS or the anomaly-based IDS can identify different
types of network attacks is an important factor to judge its effectiveness. Therefore, the
establishment of an intrusion detection system needs a network data set as the support. In
past studies, many open network data sets were used by scholars as benchmark data sets,
such as KDDCup99 [5] and NSL-KDD [6], which were widely used in various studies in
the field of network security. However, with the rapid development of network technology
and the emergence of new cyber security threats, these data sets have become outdated.
In recent years, many new network data sets have been published on the internet, such
as DDoS 2016 [7], UNSW-NB15 [8] and CICIDS 2017 [9]. Scholars are gradually using
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these relatively new data sets in their studies. Moreover, network data sets are still at-
tracting the attention of scholars, such as LITNET-2020 [10], a new data set proposed
by Damasevicius et al. based on the real network environment in 2020. These data sets
usually have a fairly high-dimensional number of features, and different features may have
different types, such as numerical type and categorical type. Due to the size of the data
set, it is inevitable that there will be missing values in the data set. In the past, researchers
proposed a series of methods, such as clustering, to deal with this problem [11–13].

According to literature statistics [14,15], the IDS will generate a large number of alarms
in a very short period of time, 85% of which are irrelevant alarms or false alarms. In the
past studies, many scholars have used different technologies to deal with the problem of
redundant alarms generated by the IDS [16]. These methods can be generally divided
into clustering-based methods [17–19], attribute-similarity-based methods [1,20], expert-
system-based methods [21,22], genetic-algorithm-based methods [23,24], data-mining-
based methods [25,26], etc.

Swarm intelligence optimization algorithms in recent years, as a kind of heuristic
algorithm, are receiving more and more attention from researchers [27]. This kind of
optimization algorithm is a good way to deal with the NP problem. The whale optimiza-
tion algorithm (WOA), as an emerging swarm intelligence optimization algorithm, was
proposed by Mirjalili and Lewis in 2016 [28]. Mirjalili and Lewis took inspiration from the
behavior of humpback whales as they hunted their prey and modeled the process in the
abstract into concrete mathematical equations. WOA is applied in many academic fields
and achieves good results [29]. The specific application and theoretical background of
WOA are described in detail in Sections 2 and 3.

The main contributions and findings of this paper are as follows:

• To deal with the alarm reduction problem, we propose a coding and decoding scheme
that applies WOA to hierarchical clustering and propose a new fitness function. We
apply crossover and mutation operators to WOA to enhance the search capability of
the algorithm.

• To solve the problems of premature convergence of clustering and the tendency of
clustering algorithm to fall into the local optimum, we propose a local version of WOA
applied to hierarchical clustering, namely WOAHC-L. On the basis of WOAHC-L,
we further propose a global version of WOAHC to resolve the problem of the high
overlap degree of the cluster center, namely WOAHC-G.

• We conducted experiments on UNSW-NB15 data set to explore the performance of
WOAHC in the search of cluster centers, time consuming, clustering results, accuracy
and other indicators. Compared with the alarm hierarchical clustering algorithm in
the past, the proposed framework can obtain higher quality alarm clustering within
the allowed time range and solves the problem of alarm redundancy well.

The structure of this paper is as follows: The second part introduces the related
work. The third part provides the theoretical background and introduces the framework
of hierarchical clustering and the method of alarm distance calculation. In the fourth
part, we propose our new methods for alarm hierarchy clustering, named WOAHC-L and
WOAHC-G. The fifth part carries on the experiment and provides the experiment result
and our discussion. The sixth part is the conclusion of this paper.

2. Literature Review

In the previous section, we gave an overview of several categories of methods for
dealing with redundant alarms. In this section, we mainly discuss hot approaches for
dealing with alarm problems in recent years and explore the application of heuristic algo-
rithms (such as WOA) in dealing with alarm problems in the intrusion detection domain.
Firstly, we introduce the research results of scholars on alarm problems of the past few
years. Wang et al. [30] proposed a framework to improve the intelligent false alarm reduc-
tion for DIDS based on edge computing devices. They built a false alarm filter by using
machine learning classifiers, which can select an appropriate algorithm to maintain the
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filtration accuracy. Toldinas et al. [31] proposed a new image recognition method using
multi-level deep learning to solve the problem of intrusion detection system identification
of network attacks. They converted network features into four-channel images that were
used to train and test the pre-trained deep learning model ResNet50. Kinghorst et al. [32]
introduced a pre-processing step in the process of alarm flood analysis to enhance the ro-
bustness of the alarm system in dealing with the random alarm or interference alarm mode
through probability calculation of alarm correlation. Fahimipirehgalin et al. [33] proposed
a data-driven method, using alarm log files to detect the causal sequence of alarms. In this
method, an efficient alarm clustering method based on the time distance between alarms is
proposed, which is helpful to preserve adjacent alarms in a cluster. To solve the problem
of a large number of redundant alarms generated by IDS, Sun and Chen [1] proposed an
alarm aggregation scheme based on the combination of conditional rough entropy and
knowledge granularity. Based on this scheme, the weights of different attributes in the
alarms were obtained, and the similarity values of the alarms were calculated within the
sliding time window to aggregate the similar alarms to reduce redundant alarms.

In recent years, the development of swarm intelligence optimization algorithms has
attracted the attention of researchers. Swarm intelligence (SI) optimization algorithms can
be divided into two main categories: one is the particle swarm optimization algorithm
(PSO), and the other is the ant colony optimization algorithm (ACO). The emergence of SI
was first used to solve optimization problems and was subsequently applied by scholars
in the field of network attack detection. Alharbi et al. [34] proposed a method combining
the bat algorithm and neural network to detect botnet attacks. The bat algorithm is used
to select feature subsets and adjust hyperparameters in a network attack, and is used to
adjust the hyperparameters and weight optimization of a neural network. In article [35],
Khurma et al. combined the salp swarm algorithm and ant lion optimization algorithm
to propose a wrapper feature selection model to solve the problem of high dimension
of features in IDS. Zhang et al. [36] proposed an improved particle swarm optimization
algorithm to solve the problems of repeated alarms and high false positive rate in IDS. In
the process of reconstructing the attack path between DDoS attack victims and attackers
based on an internet protocol backtracking scheme, Lin et al. [37] proposed a multi-mode
optimization scheme that applied the improved locust swarm optimization algorithm to
the reconstructed attack path in order to solve the problem that the traditional route search
algorithm was prone to fall into local optimum. This method shows the excellent search
performance of the SI algorithm. In addition, there is also a lot of research of SI in the
feature selection stage of the IDS and attack target detection [38–40].

PSO and ACO algorithms have achieved good results in many fields. On this ba-
sis, scholars have proposed more excellent swarm intelligence optimization algorithms
inspired by nature, such as the WOA [28], bat algorithm [41], wolf optimization algo-
rithm [42], pathfinder algorithm [43], etc. Mirjalili and Lewis studied the behavior of
humpback whales in preying on prey, analyzed and modeled the behavior patterns of the
bubble net attack and spiral approach, and put forward the WOA. It is proved that the
WOA has strong competitiveness, compared with the existing meta-heuristic algorithms
and traditional algorithms. After WOA was proposed, due to its excellent problem opti-
mization ability, it was quickly applied in various fields of research. In a review article on
the application of WOA [29], the author listed the research progress of WOA, including
hybridization, improvement and variation, as well as application scenarios such as engi-
neering problems, clustering problems, classification problems, image processing, network
and task scheduling and other problems. It can be seen that WOA, as a new meta-heuristic
swarm intelligent optimization algorithm, has proved its reliability and good performance
in handling optimization problems. However, in the field of alarm clustering, previous
scholars did not carry out further research on it. Based on the proven global and local
search capabilities of WOA, this paper studies the application of WOA in alarm clustering,
focusing on the optimization of alarm hierarchical clustering based on WOA.
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3. Theoretical Background

In this section, we introduce the relevant theoretical background of the study. Firstly,
we introduce the alarm reduction algorithm based on hierarchical clustering, including the
concept of generalization level, the calculation method of distance and the basic process
of the algorithm. Second, we introduce the main ideas and basic process of WOA. Table 1
shows the list of notations used in this paper.

Table 1. Table of notations used in this paper.

Symbol Description

Ni ith node of a hierarchical tree
Ai ith alarm in an alarm set

DAi−Aj The distance between ith alarm and jth alarm in an alarm set
Ci ith alarm cluster center
→
X(t) In WOA, the current solution at iteration t
→
X∗(t) In WOA, the best solution at iteration t
→
Xrand In WOA, a random solution in the current solution space
→
D In WOA, the distance between ith

→
X and jth

→
X

SearchAgents In WOA, the number of search agents to search solution simultaneously
MaxIter In WOA, a predetermined maximum number of iterations
C, r, a, l Random numbers used in WOA to control logical judgment

ETk(t, x) Fitness value of alarm number for cluster center k
Es(k) Fitness value of alarm distance for cluster center k

O
(

Ci, Cj

)
The degree of overlap between ith cluster center Ci and jth cluster center Cj

ESO Fitness value of the coincidence degree of all cluster centers in the cluster
TP Number of normal network traffic clustering to normal cluster
TN Number of network attack clustering to attack cluster
FP Number of network attack alarms incorrectly clustering to normal cluster
FN Number of normal network traffic incorrectly clustering to attack cluster

3.1. Alarm Reduction Algorithm Based on Hierarchical Clustering
3.1.1. Generalization Hierarchies

We first introduce the concept of generalization hierarchy. As mentioned earlier, if
newly generated alarms are arranged in a meaningful cluster according to predefined
rules, operators can easily understand what is happening in the network. According to
this idea, we define the concept of cluster, and classify the alarms into the cluster they
belong to according to the rules. We use the basic idea of hierarchical clustering proposed
by Julisch [44,45]. As shown in Figure 1 below, for all the attributes in the alarm, we can
use the method of hierarchical division to layer the attributes. Figure 1a shows the attribute
hierarchical tree composed of IP attributes, and each leaf node of the tree represents a
unique specific IP address. We can generalize it once to obtain the specific protocol using
this IP, such as firewall and WWW/FTP in Figure 1a. If we continue to generalize it, we
can obtain more advanced generalizations, such as DMZ and EXTERN. When we find
that the generalization has reached the highest level and can no longer be generalized,
we define the root of the hierarchy tree. For example, the root of the hierarchy tree to
which the IP attribute belongs is ANY IP. The generalized structure of other attributes is
similar, as shown in Figure 1b–d. In the past, scholars have proposed many methods for
the construction of a hierarchical tree, with which we can construct a hierarchical tree for
various attributes of the alarm data.
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Figure 1. Hierarchical tree structure of four attributes: (a) IP address attribute; (b) time attribute measured in weeks; (c) port
number attribute; (d) time attribute measured in months.

After providing the construction process of a hierarchical tree, we provide the follow-
ing definitions of nodes in the hierarchical tree.

Definition 1. A basic alarm is the alarm triggered by IDS that correspond to leaf nodes in the
hierarchy tree. An abstract alarm is derived from the basic alarm by generalization and corresponds
to intermediate or root nodes in the hierarchy number. Naturally, a basic alarm is also a special
abstract alarm.

Definition 2. In a hierarchical tree, if there is a path from N1 node to N2 node, then N1 is a
generalization of N2, and N2 is a specification of N1.

Definition 3. For both abstract alarms A1 and A2, A1 is a generalization of A2 if each attribute
in A1 is a generalization of the corresponding attribute in A2, and at the same time, A2 is a
specification of A1.

Definition 4. For an alarm set, the minimum cover refers to the common generalization of all
alarms in the set, and the generalization is a minimum specification.

Based on the four definitions above, considering the four hierarchical trees shown in
Figure 1, there is an alarm set that contains three alarms: A1 (ip1,80,h1,11), A2 (DMZ,80,h0,
MIDDLE), and A3 (DMZ, PRIVATE, WEEKEND, MIDDLE). A1 is a basic alarm because
all the attributes of the alarm are at leaf nodes in the hierarchical tree. A2 and A3 are
abstract alarms because there is at least one attribute in the alarm that is the middle nodes
in the hierarchy tree. A3 is a generalization of A1 and A2 because every attribute of A3 is
a generalization of A1 and A2, and obviously A3 is a common generalization of A1, A2,
and A3.

3.1.2. Distance Definition

After obtaining the generalized alarm set, in order to cluster the alarms in the original
alarm set, we need to define the distance calculation rule in the clustering problem, that is,
defining the distance between two alarms to judge whether they belong to the same cluster.
In fact, it is easy to calculate the distance between attributes of a numeric type, but there
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is a problem if the alarm property is a category, time, or string property using the same
distance calculation method. We give the following definition to calculate the distance
between two alarms in a hierarchical tree.

Definition 5. The distance between any two nodes in the same hierarchical tree depends on the
number of edges between them. If two nodes have directly linked edges, the distance between them
is 1.

Definition 6. If there is a generalization–specification relationship between two alarms, the distance
between the two alarms is defined as the average distance between their attributes.

Definition 7. The distance of an alarm set is defined as the average distance between the minimum
coverage in the set and each alarm.

Consider the alarm sets A1 (ip1,80,h1,11), A2 (DMZ,80,h0,MIDDLE), and A3 (DMZ,
PRIVATE, WEEKEND, MIDDLE) mentioned above, where the minimum coverage in the
alarm set is A3. The distance between A1 and A2 is (2 + 0 + 2 + 1)/4 = 1.25. The distance
between the minimum coverage and alarm sets is (1.5 + 0.75 + 0)/3 = 0.75.

3.1.3. Definition of the Clustering Problem

The clustering method is now described as the following: among all triggered alarms,
a group of generalized alarms is found; the number of alarms within each generalized alarm
exceeds or is equal to a given threshold; and the distance between the alarms is as small as
possible. This method is proved to be an NP complete problem, that is, the exact solution
cannot be obtained in feasible time. Julisch presented an approximate algorithm [44] as
shown in Algorithm 1.

Algorithm 1 Julisch’s alarm hierarchical clustering algorithm

Input: a set of events; a threshold T; a set of trees of all the attributes considerer;
Output: an alarm/ /an abstract event
1: select an arbitrary alarm A, each member of which is a leaf in a tree
2: while the number of events A covers is less than T do
3: select an arbitrary member of A, and replace the member with its direct parent
4: end while

3.2. Whale Optimization Algorithm

Mirjalili and Lewis proposed the whale optimization algorithm based on abstract
modeling of the hunting strategies of humpback whales; it mimics the bubble-net feeding
in the foraging behavior of humpback whales [28]. Humpback whales hunt close to the
surface while trapping the prey in a net of bubbles. They create this net when swimming
on a ‘6′-shaped path. The algorithm mimics two phases: the first phase (exploitation phase)
is to encircle the prey and attack with spiral bubble nets, and the second phase (exploration
phase) is searching randomly for prey. Figure 2 shows a series of behaviors of humpback
whales as they hunt prey. Figure 2a shows the movement of the whale toward the prey,
during which the whale can choose to move toward the lead whale or in a random direction.
Figure 2b illustrates the shrinking encircling mechanism used by whales to capture prey.
Besides the shrinking encircling mechanism, the whale also moves further toward the prey
in a spiral shape, during which the whale emits a bubble attack to surround the prey, as
shown in Figure 2c. The details of each phase are presented in the following subsections.
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3.2.1. Exploitation Phase (Encircling Prey/Bubble-Net Attacking Method)

Mirjalili et al. designed two methods to mathematically model the bubble-net behavior
of humpback whale, one of which is the shrinking encircling mechanism and the other is
the spiral updating position. We then analyze the concrete implementation of these two
processes from a mathematical point of view.

In the shrinking encircling mechanism, WOA applies the following two formulas to
update the problem solution to model the movement of a whale toward a prey.

→
D =

∣∣∣∣→C.
→
X∗(t)−

→
X(t)

∣∣∣∣ (1)

→
X(t + 1) =

∣∣∣∣ →X∗(t)−→A.
→
D
∣∣∣∣ (2)

where t represents the number of current iterations,
→
X∗ represents the optimal solution

obtained so far,
→
X is the current solution scheme, || is the absolute value, and . is the dot

product operation between the elements.
→
A and

→
C are the coefficient vectors, which can be

obtained from Equations (3)–(5):
→
A = 2

→
a .
→
r −→a (3)

→
C = 2.

→
r (4)

a = t
2

MaxIter
(5)
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where the value of A decreases linearly from 2 to 0 and its value is in the interval [−a, a]. r
is a random vector between [0, 1]. a increases linearly from 0 to 2 depending on the number
of iterations. t is the number of the current iteration, and Maxiter is the maximum number
of pre-set iterations.

According to Equation (2), the current solution updates the position of the current
solution according to the optimal solution obtained so far. Through the two vectors A
and C, the search range of the current solution can be controlled to be fixed within the
neighborhood range of the optimal solution. In order to imitate the behavior of whales
hunting prey in Figure 2b, we use the mathematical model shown in Figure 3a for modeling
and analysis. It is assumed that (X∗, Y∗) is the current global optimal solution, and the solid
dots in the figure, such as (X, Y), are the current solution. Figure 3a shows the possible
positions from (X, Y) toward (X∗, Y∗) that can be achieved by 0 ≤ A ≤ 1 in a 2D space.
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As mentioned above, whales also use a spiral motion to move toward prey as shown
in Figure 2c. WOA uses the following formula to model this behavior.

→
X(t + 1) = D′.ebl .cos(2πl) +

→
X∗(t) (6)

where
→
X∗ represents the optimal solution obtained so far,

→
X is the current ith solution,

D′ = |
→
X∗(t)−

→
X(t)∨ and indicates the distance of the ith whale to the prey (best solution

obtained so far), b is a constant for defining the shape of the spiral, and l is a random
variable between [−1, 1].

The approximate figure of Equation (6) and Figure 2c is shown in Figure 3b. In
this 1D space, Xt represents the current ith solution (i.e., the whale), X∗ represents the
current optimal solution (i.e., the prey), and the distance between Xt and X∗ is Di. The
x-coordinate of the coordinate axis represents a random number l, which is used to control
the movement direction of the whale, and the y-coordinate represents the next position
X(t+1) of the current solution Xt. In order to simulate the behavior of humpback whales
swimming around prey while following a spiral-shaped track in a shrinking circle, the
authors consider the contraction and spiral rise processes to occur equally with probability,
and the mechanism is defined in Equation (7).

→
X(t + 1) =


∣∣∣∣ →X∗(t)−→A.

→
D
∣∣∣∣i f (p < 0.5)

D′.ebl .cos(2πl) +
→
X∗(t)i f (p ≥ 0.5)

(7)
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where p is a random variable between [0, 1].

3.2.2. Exploration Phase (Search for Prey)

As mentioned above, besides moving toward the lead whale, the whale can also move
in a random direction, as shown in Figure 2a. This is called the exploration phase in WOA.
In this phase, we no longer require a random search of the solution based on the position of
the optimal solution found so far, but instead update the position with randomly selected
solutions. Thus, a vector with a random value greater than 1 or less than −1 is used to
force a solution away from the optimal search agent. This mechanism can be expressed in
mathematical models as Equations (8) and (9).

→
D =

∣∣∣∣→C.
→
Xrand −

→
X
∣∣∣∣ (8)

→
X(t + 1) =

∣∣∣∣→Xrand −
→
A.
→
D
∣∣∣∣ (9)

where
→
Xrand is a random solution of the current solution vector set. The meanings of the

other notations are mentioned above.
In WOA, the author uses A to control whether the algorithm specifically executes the

exploitation phase or exploration phase. When the absolute value of A is greater than 1,
WOA chooses to execute the exploration phase; when the absolute value of A is less than
1, WOA chooses to execute the exploitation phase. As mentioned in the previous paper,
the value range of A is [−a, a], and the value of A decreases linearly with the increase in
the number of iterations. Therefore, in the general trend, WOA has more chances to jump
out of the current optimal solution and choose the random solution at the early stage of
implementation. With the increase in the number of iterations, the range of A will gradually
shrink, and the WOA will gradually converge to the optimal solution.

4. Proposed Method

In this section, we introduce our proposed algorithm in detail. First, in Section 4.1, we
introduce two different coding schemes corresponding to the local and global versions of
the WOA applied to hierarchical clustering. In Section 4.2, we describe the fitness function
that generates alarm clustering using the WOA. In Section 4.3, we combine the WOA with
the crossover and variation factors of the genetic algorithm and propose the pseudo-codes
of the local and global versions of the WOA alarm hierarchical clustering algorithm.

4.1. Encoding and Decoding

We first introduced the encoding and decoding scheme of the local version of the WOA
applied to hierarchical clustering. In this scheme, a search agent in the WOA corresponds to
a cluster center of hierarchical clustering. As mentioned above, a cluster center is composed
of a basic alarm or an abstract alarm, so we can obtain the data structure encoded by the
search agent. Each attribute in the alarm corresponds to a binary string in the encoded data
structure, represented by 0 or 1, as shown in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 26 
 

 

3.2.2. Exploration Phase (Search for Prey) 
As mentioned above, besides moving toward the lead whale, the whale can also 

move in a random direction, as shown in Figure 2a. This is called the exploration phase in 
WOA. In this phase, we no longer require a random search of the solution based on the 
position of the optimal solution found so far, but instead update the position with ran-
domly selected solutions. Thus, a vector with a random value greater than 1 or less than 
−1 is used to force a solution away from the optimal search agent. This mechanism can be 
expressed in mathematical models as Equations (8) and (9). ܦሬሬԦ = หܥ.ሬሬሬԦ Ԧܺௗ − Ԧܺห  (8) Ԧܺሺݐ + 1ሻ = ห Ԧܺௗ − .Ԧܣ  ሬሬԦห (9)ܦ

where Ԧܺௗ is a random solution of the current solution vector set. The meanings of the 
other notations are mentioned above. 

In WOA, the author uses ܣ to control whether the algorithm specifically executes 
the exploitation phase or exploration phase. When the absolute value of ܣ is greater than 
1, WOA chooses to execute the exploration phase; when the absolute value of A is less 
than 1, WOA chooses to execute the exploitation phase. As mentioned in the previous 
paper, the value range of ܣ is ሾ−ܽ, ܽሿ, and the value of ܣ decreases linearly with the in-
crease in the number of iterations. Therefore, in the general trend, WOA has more chances 
to jump out of the current optimal solution and choose the random solution at the early 
stage of implementation. With the increase in the number of iterations, the range of ܣ will 
gradually shrink, and the WOA will gradually converge to the optimal solution. 

4. Proposed Method 
In this section, we introduce our proposed algorithm in detail. First, in Section 4.1, 

we introduce two different coding schemes corresponding to the local and global versions 
of the WOA applied to hierarchical clustering. In Section 4.2, we describe the fitness func-
tion that generates alarm clustering using the WOA. In Section 4.3, we combine the WOA 
with the crossover and variation factors of the genetic algorithm and propose the pseudo-
codes of the local and global versions of the WOA alarm hierarchical clustering algorithm. 

4.1. Encoding and Decoding 
We first introduced the encoding and decoding scheme of the local version of the 

WOA applied to hierarchical clustering. In this scheme, a search agent in the WOA corre-
sponds to a cluster center of hierarchical clustering. As mentioned above, a cluster center 
is composed of a basic alarm or an abstract alarm, so we can obtain the data structure 
encoded by the search agent. Each attribute in the alarm corresponds to a binary string in 
the encoded data structure, represented by 0 or 1, as shown in Figure 4. 

 
Figure 4. A cluster center (A3,B6,C1,D5) and its corresponding coding scheme: (a) the coding 
scheme of the cluster center; (b) the cluster center (A3,B6,C1,D5). 

Figure 5a shows the coding scheme of the cluster center in binary form, and Figure 
5b shows the attribute values of the cluster center corresponding to this coding. Figure 4 
shows an alarm with four attributes (A, B, C, and D) with decimal values of 3, 6, 1, and 
5. The four attribute fields of the alarm are located in their respective hierarchical trees, 
as shown in Figure 5. 

Figure 4. A cluster center (A3,B6,C1,D5) and its corresponding coding scheme: (a) the coding scheme
of the cluster center; (b) the cluster center (A3,B6,C1,D5).

Figure 5a shows the coding scheme of the cluster center in binary form, and Figure 5b
shows the attribute values of the cluster center corresponding to this coding. Figure 4
shows an alarm with four attributes (A, B, C, and D) with decimal values of 3, 6, 1, and 5.
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The four attribute fields of the alarm are located in their respective hierarchical trees, as
shown in Figure 5.
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We can find the location of the node corresponding to the binary-encoded attribute
in the hierarchical tree. At the same time, we can easily obtain the binary fragment
corresponding to the alarm through the hierarchical tree. This coding scheme indicates
that a search agent corresponds to a cluster center. The goal of the WOA is to find the
best search agent for the fitness function over multiple iterations, output its corresponding
cluster center, and categorize the alarms that belong to that cluster.

In this encoding and decoding scheme, a WOA search agent corresponds to a cluster
center, assuming that the cluster center is composed of N attributes and the binary length
of each attribute is K, then the encoding length of a search agent is N ∗ K, corresponding to
N hierarchical trees.

After giving the encoding and decoding scheme of the local version WOA–hierarchical
tree, we introduce the encoding and decoding schemes of the global version WOA–
hierarchical tree. In the coding scheme of the global version, a WOA search agent is
composed of a group of cluster centers. Assuming that WOA eventually obtains C cluster
centers, each of which is composed of N attributes with length K, the coding length of
the global version WOA–hierarchical tree is C ∗ N ∗ K. Let us take the example shown in
Figure 6 for illustration.
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In Figure 6, there are three hierarchical trees corresponding to the three attributes of
an alarm, respectively. If we need to finally obtain three cluster centers for this alarm set,
which are (A4, B2, C3), (A1, B1, C2) and (A3, B2, C4), then one of our search agents can be
encoded as shown in Figure 7a in the second coding method. Figure 7b shows the three
cluster centers corresponding to this coding scheme.
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4.2. Fitness Function

The core of WOA is to find the best solution set in a finite solution set space through
a finite number of iterations. The fitness function is the standard to evaluate whether a
solution set is excellent. Therefore, how to set up an appropriate fitness function is the
key to solve the problem of hierarchical clustering using WOA. The selection of the fitness
function in this paper mainly considers the following three factors: the number of alarms
contained in the cluster center, the distance between alarms belonging to the same cluster,
and the coincidence degree between clusters. We believe that, given a fixed threshold of
alarm distance, the more alarms that a cluster contains, the greater the fitness value will
be. In addition, when the similarity of alarms belonging to the same cluster is higher (the
distance is smaller), the fitness value is higher. If the coincidence degree of cluster center is
higher, we believe that the meanings of the two clusters are closer, and the overall fitness
value will be smaller.

For a given alarm cluster center, S = (N1, N2, N3,N4, . . . Nm), where the value of m
corresponds to the number of hierarchical trees used in the alarm cluster. If the alarm
distance meets the number of alarms within the given threshold, we believe that the fitness
of the alarm cluster center is higher. In Refs. [45–47], the setting of the fitness function is
to determine whether the number of alarms belonging to a certain alarm cluster center
exceeds the given threshold. If the number exceeds, the fitness is set to 1, and if not, the
fitness is set to 0. This processing method has a simple idea and can well distinguish the
alarms that do not meet the clustering requirements from those that meet the clustering
requirements. However, the problem is that the method cannot reflect the quality of the
cluster centers which exceed the threshold value. For example, if the threshold value is
set to 500, the existing two clusters C1 and C2 contain alarm numbers of 2000 and 5000,
respectively. We intuitively feel that C2 is better than C1 but their fitness values are set to
the same value, which does not achieve a good distinction. In this paper, a new calculation
method of alarm number fitness is adopted, as shown in Equation (10).

ETk(t, x) =
{

0, i f (x < t)
ln
( x

t
)
, i f (x ≥ t)

(10)

where t represents the threshold of the number of alarms that the cluster should contain,
and x represents the number of alarms belong to the cluster center.

When x < t, we think that the cluster contains too few alarms, and the cluster center
should not be selected; when x > t, we think that the fitness value of the cluster center
increases with the increase in x, and taking t = 500 as an example, the image of the fitness
function is shown in Figure 8.
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For a cluster center, only considering the number of alarms contained in the cluster
center as an evaluation index cannot indicate the quality of the cluster center. Only when
the number of alarms contained in the cluster center is large enough and the difference
between alarms is small enough do we believe that the selection of the cluster center is
reasonable. Therefore, we define a fitness function for the internal differences in the alarm
cluster center, as shown in Equation (11). The average depth of the four hierarchical trees
as shown in Figure 1 is (3 + 2 + 3 + 2)/4 = 2.5.

ES(k) =
1
n

n

∑
i=1

(
1− D(Ci)

Md

)
(11)

where i = (1, 2, 3, . . . , n) represents n alarms belonging to a cluster center k, D(Ci) repre-
sents the sum of the distances between the alarm and each attribute of the cluster center in
its attribute tree, and Md represents the average depth of all attribute hierarchy trees.

4.3. Crossover and Mutation Operator

One of the difficulties of the WOA in solving hierarchical clustering problems is how
to apply Equations (2), (6) and (9) to transform search agent positions for different types
of attributes. If an attribute is a continuous variable, the use of the above formula is not
affected, but if an attribute is a discrete variable then using the formula is difficult. Because
we use the attributes of the hierarchical tree structure and type of binary coding structure,
we can easily transform the attributes into a hierarchical tree. Here, we use crossover and
mutation operators of the genetic algorithm to solve this problem. Another advantage
of using these two operators is that the WOA is combined with crossover and genetic
operators to further improve the algorithm’s ability to search for local and global optimal
solutions. This conclusion is mentioned in Ref. [48].

Now, we present the application of crossover operator based on the WOA coding
scheme. Taking an alarm with four attributes as an example, the binary identity of the
attribute field with two alarms is shown in Figure 9.

As can be seen from Figure 10, the attributes of the two coded alarms are Alarm1
(A3B6C1D5) and Alarm2 (A3B10C2D3). Starting with 6 bit, cross transposition of the at-
tributes of the two alarms can be carried out so that two new alarms can be obtained after
operation, as shown in Figure 10.

From Figure 10, we can see that the two new alarms, Alarm1′ (A3B6C2D3) and
Alarm2′ (A3B10C1D5), are generated after crossing. Looking at the changes in the at-
tribute fields of the two alarms, we find that, except for the change in the attribute of the
exchange location, the other attributes only changed the location.
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After introducing the application of crossover operator in alarm clustering, we intro-
duce the use of the mutation operator in alarm clustering. Taking the alarm shown in the
left figure of Figure 9 as an example, the change of the alarm after a mutation operation
is performed on a bit of the alarm attribute is shown in the right figure of Figure 11. By
changing the value of the sixth bit in the binary from 1 to 0, the alarm changes from
Alarm (A1, B5, C6) to Alarm(A1, B4, C6). Observing the change in the alarm, we can find
that the mutation operation only makes a certain attribute of the alarm field change, while
the other attributes remain unchanged.
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4.4. WOA-Based Alarm Hierarchical Clustering Process

After introducing the coding and decoding scheme, fitness function and crossover and
mutation operator of the WOA applied to hierarchical clustering, in this section, we present
the processing of the local and global versions of WOA applied to the alarm hierarchical
clustering process. In order to express clearly, the WOA hierarchical clustering of the local
version and global version are respectively called WOAHC-L and WOAHC-G. Compared
with the traditional alarm hierarchical clustering algorithm, which can only generate one
random generalization alarm at a time, WOA uses multiple search agents to search the
solution set space of the generalization alarm simultaneously, which can improve efficiency
and obtain more possibilities of solution sets. The random agent selection stage of WOA
provides a higher possibility to jump out of the local optimum to find a better solution set.
The use of crossover operators and mutation operators can help WOA deal with various
types of data and enhance the ability of local search and global search.

We first provide the algorithm flow of WOAHC-L. The process of WOAHC-L can be
described as follows: the algorithm first initializes several search agents, each representing
a cluster center of the alarm. Then, we calculate the fitness value of each search agent
according to the fitness function. The cluster center represented by the search agent with
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the best fitness value is the optimal solution. After that, according to WOA’s search
mechanism, the remaining search agents explore the solution set space around the optimal
solution through exploitation phase and exploration phase and update the value of the
optimal solution whenever there is a better solution. After several iterations, the cluster
center represented by the search agent with the optimal fitness value is output, and alarms
belonging to that cluster are added to the cluster and removed from the original alarm set.
Each time the algorithm is executed, a cluster center is output and the alarms belonging
to the cluster are deleted from the original alarm set. When the remaining alarms no
longer meet the clustering rules after several times of algorithm execution, the algorithm is
finished. The alarm clustering process based on WOAHC-L is shown in Figure 12.

The algorithm pseudocode of WOAHC-L is shown in Algorithm 2.

Algorithm 2 WOA for alarm hierarchical clustering (local version)

Input: threshold, N, maxIteration, mutation rate, t = 0, k = 0
Output: alarm_center[], alarms after clustering
1: while the number of current alarms is bigger than threshold do
2: Randomly generate initial population Xi (i = 1, 2, . . . , N)
3: Calculate the fitness value of each solution
4: Get the best Xi that has the largest fitness value, mark it as X*
5: while t < MaxIterationr do
6: for population Xi(i = 1, 2, . . . , N) do
7: Use Eqations (3)–(5) to update a,A,C
8: Generate values for random numbers 1 and P
9: if p < 0.5 then
10: if |A| < 1 then
11: Use Equations (1) and (2) to update the position of Xi
12: Apply mutation operation on X* (best solution) given mutation rate (r) to get Xmut
13: Perform crossover operation between Xmut and Xi
14: Set the new position of Xi to the output of crossover operation
15: else if |A| ≥ 1 then
16: Select a random search agent (Xrand)
17: Use Equations (8) and (9) to update the position of Xi
18: Apply mutation operation on Xrand given mutation rate(r) to get Xmut
19: Perform crossover operation between Xmut and Xrand
20: Set the new position of Xi to the output of crossover operation
21: end if
22: else if p ≥ 0.5 then
23: Use Equation (6) to update the position of the current solution Xi
24: Apply mutation operation on X* (best solution) given mutation rate (r) to get Xmut
25: Perform crossover operation between Xmut and Xi
26: Set the new Position of Xi to the output of crossover operation
27: end if
28: end for
29: Calculate the ftness value of each solution, check if any solution goes beyond the search space
30: If there is a better solution Xi update Xi as X*
31: t = t + 1
32: end while
33: Mark X* as cluster k
34: Put alarms which belong to the cluster k to the alarm_center[k]
35: Remove alarms from the original alarms set
36: k = k + 1
37: end while
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Based on the excellent local and global search capabilities and the group search
mechanism of WOAHC-L algorithm, we can find excellent alarm cluster centers. However,
the problem of WOAHC-L is that there may be a high degree of overlap between the
cluster centers obtained by executing WOAHC-L several times, so that the alarm sets
originally belonging to the same cluster may be divided into multiple clusters. In other
words, WOAHC-L only focuses on the generation of single cluster centers and does not
consider the overlap between the finally obtained cluster centers. In order to solve the
above problem of the WOAHC-L algorithm, we propose a global version based on WOA
hierarchical clustering, namely WOAHC-G, which uses the second encoding scheme of the
search agent mentioned in Section 4.1 above.

The process of WOAHC-G can be described as follows: the algorithm initializes
several search agents, each of which is composed of N cluster centers and represents the
final clustering result. According to the fitness function, each search agent calculates a
fitness value. The search agent with the best fitness value is the optimal search agent,
and the cluster center represented by the agent is the final cluster center set. Based on
the WOA exploitation phase and exploration phase, the cluster center set represented by
the search agent with the optimal fitness value is finally obtained after several iterations.
WOAHC-G differs from WOAHC-L in that WOAHC-G only needs to execute once to
obtain all cluster centers, while WOAHC-L needs to execute several times until the number
of remaining alarms is insufficient for the next algorithm execution. In addition, WOAHC-
G considers the problem of coincidence degree between different cluster centers and takes
the coincidence degree as an important indicator of fitness value. Therefore, the fitness
function of the algorithm needs to be changed to add the coincidence degree of cluster
centers, as shown in Equation (12).

O
(
Ci, Cj

)
=

{
1, Ci ∩ Cj = ∅
0, Ci ∩ Cj 6= ∅ (12)

where Ci, Cj represent two cluster centers. If each attribute of the two cluster centers has
no intersection, the coincidence degree is considered to be 0; otherwise, it is 1.

After the calculation function of clustering coincidence degree is given, the evaluation
equation of clustering coincidence degree is given as Equation (13).

ESo =
2

k(k− 1) ∑
0≤i<j≤k

O
(
Ci, Cj

)
(13)

where k represents the number of cluster centers. When there are k cluster centers, k(k−1)
2

times are needed to calculate the coincidence degree between them. Therefore, the coef-
ficient in the calculation formula of ESo is set as 2

k(k−1) to ensure that the value of ESo is
within the interval [0, 1].

The alarm clustering process based on WOAHC-G is shown in Figure 13.
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The algorithm pseudocode of WOAHC-G is shown in Algorithm 3

Algorithm 3 WOA for alarm hierarchical clustering (global version)

Input: N, maxIteration, mutation rate, t = 0, k = 0
Output: alarm_center[], alarms after clustering
1: Randomly generate initial population Xi (i = 1, 2, . . . , N)
2: Calculate the fitness value of each solution
3: Get the best Xi that has the largest fitness value, mark it as X*
4: while t < MaxIteration do
5: for population Xi (i = 1, 2, . . . , N) do
6: Use Equations (3)–(5) to update a,A,C
7: Generate values for random numbers 1 and p
8: if p < 0.5 then
9: if |A| < 1 then
10: Use Equations (1) and (2) to update the position of Xi
11: Apply mutation operation on X* (best solution) given mutation rate (r) to get Xmut
12: Perform crossover operation between Xmut and Xi
13: Set the new position of Xi to the output of crossover operation
14: else if |A| ≥ 1 then
15: Select a random search agent (Xrand)
16: Use Equations (8) and (9) to update the position of Xi
17: Apply mutation operation on Xrand given mutation rate (r) to get Xmut
18: Perform crossover operation between Xmut and Xrand
19: Set the new position of Xi to the output of crossover operation
20: end if
21; else if p ≥ 0.5 then
22: Use Equation (6) to update the position of the current solution Xi
23: Apply mutation operation on X* (best solution) given mutation rate (r) to get Xmut
24: Perform crossover operation between Xmut and Xi
25: Set the new position of Xi to the output of crossover operation
26: end if
27: end for
28: Calculate the fitness of each solution, check if any solution goes beyond the search space
29: If there is a better solution Xi, update Xi as X*
30: t = t + 1
31 end while
32: return X*

5. Experiments and Results
5.1. Experiment Data Set

In this section we describe the data sets used in the experiment. We use UNSW-
NB15 as the experimental data set [8]. The UNSW-NB15 data set was developed by Ixia
Perfectstorm. It is used to simulate and generate real and contemporary attack models. This
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is a tool called Tcpdump, which contains up to 100 GB of PCAP files and is used to simulate
nine different types of attacks. These include DOS, Shellcode, worms, Fuzzers, backdoors,
exploits, analytics, generality, and scouts. In addition, the data set consists of 12 algorithms
for generating 49 features belonging to class tags. The following Table 2 shows a set of
features in UNSW-NB15, along with the corresponding groups and data types.

Table 2. UNSW-NB15 Features with their data type and category.

Category No Name Data Type Category No Name Data Type

Flow 1 srcip Nominal Content 25 trans_depth Integer
2 sport Integer 26 res_bdy_len Integer
3 dstip Nominal Time 27 Sjit Float
4 dsport Integer 28 Djit Float
5 proto Nominal 29 Stime Timestamp

Basic 6 state Nominal 30 Ltime Timestamp
7 dur Float 31 Sintpkt Float
8 sbytes Integer 32 Dintpkt Float
9 dbytes Integer 33 Tcprtt Float

10 sttl Integer 34 Synacj Float
11 dttl Integer 35 Ackdat Float
12 sloss Integer General 36 Is_sm_ips_ports Binary
13 dloss Integer Purpose 37 Ct_state_ttl Integer
14 service Nominal 38 Ct_flw_http_mthd Integer
15 Sload Float 39 Is_ftp_login Binary
16 Dload Float 40 Ct_ftp_cmd Integer
17 Spkts Integer Connection 41 Ct_srv_src Integer
18 Dpkts Integer 42 Ct_srv_dst Integer

Content 19 swin Integer 43 Ct_dst_ltm Integer
20 dwin Integer 44 Ct_src_ltm Integer
21 stcpb Integer 45 Ct_src_dport_ltm Integer
22 dtcpb Integer 46 Ct_dst_sport_ltm Integer
23 smeansz Integer 47 Ct_dst_src_ltm Integer
24 dmeansz Integer 48 Attack_cat Nominal

49 Class Binary

The UNSW-NB15 data set has a total of 2,540,044 records, which are stored in four
files respectively. In order to better conduct the experiment, the data set provides the
training set and test set that have removed the missing values, with 175,341 records and
82,332 records respectively. As can be seen from the above table, the 49 fields in the data
set include fields of different types, such as Flow, Basic, Content, Time, Content, etc., and
each attribute belongs to either the discrete or continuous types.

5.2. Experimental Setup

The experimental operating environment used Intel Core i5-7500CPU 3.40 GHz and
8 GB memory. The configuration of the software environment is as follows: the operating
system is Microsoft Windows 10, the experimental program is written in Python, and
the development version is Python 3.7.3. We use PyCharm and Juptyer Notebook as
the integrated development environment for Python. In addition, we use WEKA as an
auxiliary tool for data processing and analysis. WEKA is an open-source machine learning
and data mining software based on Java environment [49]. It is one of the most complete
data mining tools today.

5.3. Experimental Results

As mentioned above, we use the UNSW-NB15 data set as our experimental data set.
A total of 50,801 data were randomly selected from the training set and test set to carry out
the clustering calculation of the alarm. The extracted alarm label distribution is shown in
Table 3.
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Table 3. Distribution of alarm labels in 50,801 pieces of data.

Attack_Catgory Number Attack_Catgory Number

1 Null 44,387 6 Reconnaissance 289
2 Generic 4257 7 Backdoor 53
3 Exploits 913 8 Analysis 52
4 Fizzers 463 9 Shellcode 29
5 DoS 355 10 Worms 3

Attack types marked 2–10 in the table represent specific types of attacks, while the
type marked 1 is normal network traffic. It is not difficult to see that this data set contains a
large number of normal network traffic, which is identified by IDS as a malicious alarm,
resulting in a large number of false alarms. Our goal is to use clustering methods to
correctly identify normal network traffic and eliminate it from alarms.

We analyze the source IP address and destination IP address in the experimental data
set as follows. The data set contains two types of IP addresses: Class B and Class C (such
as Class C IP addresses 149.171.126.43 and 149.171.126.50). We can extract the same fields
and classify the IP addresses, and the uncertain part is represented by X. The statistics of
each type of IP address and its number are shown in Table 4.

Table 4. Distribution of source and destination IP addresses.

Source_IP Number Destination_IP Number

59.166.0.X 38,817 149.171.126 46,051
175.45.176.X 7234 175.45.176 4284

149.171.126.X 4338 10.40.X.X 298
10.40.X.X 412 224.0.0.X 108

59.166.0.X 55
192.168.241 5

After analyzing the experimental data, we first explore the performance of WOAHC-L
in looking for a single alarm cluster center. The specific parameters of WOAHC-L are set
as follows: SearchAgents = 10 and MaxIter = 50, respectively, which means that we use
10 search agents to search the solution space of the clustering at the same time, and the
maximum number of iterations of the algorithm is 50. Other parameters in WOAHC-L,
such as r, a, p, etc., are generated by random numbers or are related to MaxIter so we do
not have to set it up. The fitness function is set as the equation mentioned in Section 4.2.

According to the mechanism of WOAHC-L, the cluster center obtained by calling the
algorithm for the first time has the best fitness value. In order to explore the performance
of WOA in hierarchical clustering, we independently perform WOAHC-L four times and
record the change in the optimal fitness value with the number of iterations during each
algorithm execution. The performance of WOAHC-L is shown in Figure 14. The X axis is
the number of iterations and the Y axis is the fitness value of the currently found optimal
cluster center.
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As can be seen from Figure 14, WOAHC-L constantly seeks the most excellent cluster
center in the search space through its exploitation phase and exploration phase. It can be
seen from the figure that WOAHC-L has an excellent ability to break through the local
optimum, which can be clearly seen from the stage of 20–50 iteration times.

After verifying that WOAHC-L has excellent global search capability in alarm cluster-
ing, we continue to explore the use of WOAHC-L to solve the local clustering problem of
alarm hierarchical clustering, that is, every time we call the WOAHC-L, an alarm cluster
is obtained, which is obtained through the iterative search of WOAHC-L, according to
the fitness function. Taking MaxIter of 50 as the maximum number of iterations and the
number of search agents of 10 as an example, we perform WOAHC-L four times and obtain
four cluster centers successively from 50,801 alarms. The number of alarms contained in
the four cluster centers varies with the number of iterations as shown in Figure 15.
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Figure 15. Alarm clustering result of 4 consecutive calls to WOAHC-L.

According to the experimental statistics, the number of alarms contained in each
cluster obtained by calling WOAHC-L four times is as follows. By analyzing the obtained
cluster center, we find that the tag field in the cluster center obtained by the first, second
and fourth calls to WOAHC-L is (null, 0), and the tag field in the cluster center obtained by
the third calls to WOAHC-L is (Generic, 1). In other words, these four calls to WOAHC-L
distinguish the generic attacks from the normal traffic in the original data set by clustering.
We add up the number of alarms generated by the first, second and fourth calls to WOA to
45,469, which is within the allowable range when compared with the number of normal
network traffic 44,387 in the table. The third call to the WOAHC-L cluster is 3819, which is
within an acceptable distance of the 4257 alarms for the generic attacks in the table. This
experiment proves that hierarchical clustering using WOAHC-L can well distinguish the
type of alarm.

After proving WOAHC-L’s excellent local and global search ability and clustering
ability, we next explore statistical analysis of WOAHC-L on time consumption and clus-
tering results. Based on the algorithm flow of WOAHC-L in Figure 12, when the number
of remaining alarms no longer meets the clustering threshold, the algorithm ends, and
the clustering result is output. Therefore, we constantly call WOAHC-L to obtain new
clustering until the condition of the algorithm ending is met. The experimental results are
shown in Figure 16.
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As can be seen from Figure 16, as the number of algorithm executions increases, the
time of each algorithm execution gradually decreases, and the number of alarms contained
in the cluster obtained by each invocation of the algorithm also decreases. The reason is
obviously that every time the algorithm is called to obtain the cluster center, the alarms
belonging to the cluster in the alarm set are removed from the alarm set, so the next time
the algorithm is called, the alarm items scanned by the algorithm are fewer and fewer, and
the time and number of alarms are also reduced.

In order to verify the robustness of WOAHC-L, we conduct five experiments. In each
experiment, WOAHC-L is called several times to obtain multiple cluster centers, until the
amount of remaining data in the data set are less than the requirement of alarm clustering.

As can be seen from Table 5, except the first row, there are five rows in the table,
representing five experiments. Except the first column, from a total of 12 columns, the
top 11 columns represent each experiment that invokes the WOAHC-L to obtain cluster
center containing the number of alarms. What we need to pay attention to is that in the
table there are some gaps, such as the third line 10 columns; these blanks show that the
experiments, after several WOAHC-L calls, have met the conditions of the end of the
algorithm, such as the second experiment. We find that WOAHC-L is called eight times
and then stops executing. The last column of the table represents the total time of the
experiment. Compared with the five experiments, the average time and standard deviation
of the total time spent in our calculation algorithm are 58.7 s and 5.3, which are within
the allowable range of the experiment. In addition, we should also note that although the
number of cluster centers generated by each experiment is different (the five experiments
are 11, 8, 10, 10, and 9, respectively), as we mentioned before, cluster centers generated by
this kind of local clustering method will cause the problem of a too high coincidence degree
of cluster centers. However, we can study the experimental data in the first experiment of
two previous cluster centers containing the sum of the number of alarms for 33,303. For
the properties of alarm analysis, we find that they all belong to the normal network traffic,
so we can combine the two-cluster center as a cluster center, representing the clustering of
normal network traffic. Excluding the problem of clustering overlap, we have reason to
believe that the robustness of the algorithm is relatively excellent.

Meanwhile, in order to compare with other algorithms, we repeat the alarm clustering
algorithm mentioned in the references [45–47] and compare it with WOAHC-L. In order to
more intuitively feel the results of clustering, we use the number of alarms contained in
the cluster center as the Y axis to compare the four algorithms. Please note that it is not
accurate to rely only on the number of clusters contained in the cluster center to evaluate
the quality of the clustering results. The quality of the clustering results is also greatly
related to the distance between the alerts contained in the cluster center (called difference
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in some works), that is, the fitness function mentioned in the formula. The experimental
results are shown in Figure 17.

Table 5. The results of the number of alarms contained in the cluster and the number of algorithms calls in five experiments.

Time Rounds 1 2 3 4 5 6 7 8 9 10 11 Time Consuming

1 18,433 14,870 3219 6553 4170 745 421 921 31 29 51 66.3 s
2 38,923 4331 3490 993 671 210 78 32 52.0 s
3 36,544 4370 4921 2008 719 198 43 23 104 97 56.5 s
4 24,003 18,995 4109 529 899 32 390 241 45 122 55.3 s
5 15,023 30,901 2104 2233 920 320 429 290 102 63.4 s
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As can be seen from Figure 17, compared with Julisch’s algorithm, SA and GA,
WOAHC-L can well jump out of the local optimum in the process of clustering search,
while other algorithms begin to converge at the beginning or middle of the iteration and
no longer search for a better cluster center. We need to emphasize that the purpose of this
experiment is to intuitively show that compared with the other three algorithms, WOAHC-
L can better jump out of the local optimal and achieve better results when carrying out
hierarchical clustering. A more detailed comparison of experimental results with other
algorithms is presented in the following experiments. We use the following formula to
calculate the values of these indicators.

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

where TP represents the number of normal network traffic clustering to normal cluster,
TN represents the number of network attack clustering to attack cluster, FP represents the
number of network attack alarms incorrectly clustering to normal cluster, FN represents
the number of normal network traffic incorrectly clustering to the attack cluster. Accuracy
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represents the accuracy of the clustering; Precision represents how much of the data
clustered as normal traffic are really normal traffic; and Recall represents how much of the
normal traffic is correctly clustered.

Table 6 shows the comparison of various indicators of different algorithms. These
indicators have specific meanings, introduced in Table 1.

Table 6. A detailed comparison of experimental results between WOA and Julisch’s method, GA and SA.

Cluster
Numbers

Time
Consuming

Remaining
Alarms Accuracy Precision Recall

Julisch’s
method 16 43.2 831.4 91.8% 97.6% 92.9%

GA-based 10 31.5 432.4 93.5% 97.1% 95.4%
SA-based 13 25.5 913.0 91.7% 96.7% 93.7%

WOAHC-L 10 68.3 322.5 95.2% 98.4% 96.1%

As can be seen from Table 6, WOAHC-L is obviously superior to other algorithms in
terms of the number of clustering, number of remaining alarms, accuracy, precision and
recall. It should be noted that recall refers to the rate of aggregation of false alarms, or
reduction in redundant alarms. However, WOAHC-L has obvious deficiencies in terms of
time consumption, which is caused by the multi-search agent mechanism of the WOA and
the calculation of the fitness value.

As the excellent performance of WOAHC-L in alarm reduction is proved by comparing
with other algorithms, we explore the stability of WOAHC-L in clustering and the rule
analysis of clustering results. In order to avoid the contingency of experimental results, we
conduct eight experiments, where each experiment performs several WOAHC-L times until
the number of remaining alarms no longer meets the clustering requirements. The results
of the experiment are shown in Figure 18. The X axis represents the number of cluster
centers, that is, the number of WOAHC-L calls, and the Y axis represents the number of
remaining alarms in the original alarm set.

According to Figure 18, we find that in the eight experiments, WOAHC-L generates
cluster centers with more alarms in the previous calls. According to the output of the code,
we can find that these cluster centers are all clusters related to redundant alarms, which is
consistent with our expected assumption: WOAHC-L first clusters redundant false alarms
that account for a higher proportion in the alarm data set, and then clusters the remaining
real alarms. We set the alarm number threshold of algorithm end condition as 500 and
observe that the times of calling WOAHC-L are different in the eight groups of experiments
(10, 6, 10, 7, 8, 6, 10, and 7, respectively). In Section 4.4, we explained the reason for this,
that is, there may be an overlap between the cluster centers generated by WOAHC-L, and
it is confirmed in our experiment.

Through a series of experiments above, we prove the superiority of WOAHC-L in
the process of alarm reduction, but its disadvantages are also exposed: the algorithm is
time consuming, the results obtained by multiple executions of the algorithm have certain
differences (also known as idempotency), and the high degree of overlap between some
cluster centers lead to an increase in algorithm calls. To solve this problem, we propose a
global clustering version of WOAHC, namely WOAHC-G, and explore the performance of
WOAHC-G in the following experiments.

As mentioned in Section 4.4, WOAHC-G only needs to be called once to obtain all the
cluster centers, provided that the number of cluster centers need to be specified, which is
a difficult problem. However, with the experimental results of WOAHC-L as a reference,
we can choose an appropriate number of cluster centers as a parameter. Here, we set the
number of cluster centers as eight, which is based on the above experimental results of
the comprehensive consideration. Meanwhile, our search agent code is 72 dimensions
(each cluster center contains nine attributes, a total of eight cluster centers). We still select
10 search agents to search for the cluster space. Other parameters of WOAHC-G are set as
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above, and the fitness function of the global version is selected, adding the influence of
clustering coincidence degree. Under the same data set configuration, we conduct eight
experiments and use a boxplot to represent the number of alarms in each cluster, as shown
in Figure 19.
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In each boxplot in Figure 19, the blue line at the top represents the maximum, the blue
line at the bottom represents the minimum, the upper edge of the square represents the
upper quartile, the lower edge represents the lower quartile, the red line represents the
median, the green dot represents the average, and the white dots represent outliers. As
can be seen from Figure 19, when we fix the number of clustering as 8, the experimental
results generated by the eight experiments are basically not significantly different. As can
be seen from the number of alarms in cluster 1 to cluster 3, the global clustering version
using WOAHC-G can effectively eliminate the problem of excessive cluster repetition.
However, the problem of the global clustering version is that it is difficult to determine an
appropriate number of cluster centers. In this round of experiments, we set the number
of cluster centers to 8 according to the experience of WOAHC-L to eliminate the impact
of this problem. However, how to determine an appropriate number of cluster centers
requires further research and analysis in the future.

Finally, we discuss the time complexity of the proposed algorithm framework. It is
assumed that WOAHC eventually generates C clusters, with a total of M alarms to be
clustered, the maximum iteration time of the algorithm is T, there are N search agents
searching the solution set space at the same time, and each hierarchical tree has m nodes.
For WOAHC-L, the time complexity of calculating the fitness value is O(M + log2m), so
the total time complexity of the algorithm is O(C ∗ T ∗ N ∗ (M + log2m)). During our
experiment, N threads are used to search N search agents at the same time, so the time com-
plexity can be optimized to O(C ∗ T ∗ (M + log2m)). For WOAHC-G, the time complexity
of calculating the fitness value is O

(
log2m + M + C2), so the overall time complexity is

O
(
T ∗ N ∗

(
log2m + M + C2)), and the time complexity after multithreading optimization

is O
(
T ∗

(
log2m + M + C2)).
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6. Conclusions and Future Work

In previous studies, in order to solve the problem of a large number of redundant
alarms generated by IDS, some scholars proposed the hierarchical alarm clustering al-
gorithm. With the development of the swarm intelligence optimization algorithm, the
WOA has been widely used to solve various optimization problems. In this paper, we
propose two new methods to solve the problem of alarm reduction by applying the WOA
to hierarchical clustering, namely WOAHC-L and WOAHC-G. Through experiments on
the UNSW-NB data set, we prove that WOAHC-L can solve the problems of the clustering
falling into the local optimum and the poor clustering quality well. Experimental results
show that WOAHC-L can achieve 95.2% clustering accuracy and reduce redundant alarms
by 96.1%. Compared with WOAHC-L, which generates more than 11 clusters, WOAHC-G
reduces the problem of clustering overlap by generating 8 accurate clusters.

Although our new method achieves good results in dealing with redundant alarms, it
still has some limitations. For example, WOAHC-L can solve the problem of premature
convergence in the clustering process well, but it is easy to produce an excessive number
of repeated clusters. WOAHC-G solves this problem well, but it requires the space size
of multiple orders of magnitude to encode the hierarchical tree. Meanwhile, WOAHC-G
requires a prior number of clusters to ensure that the clustering is not repeated, which will
make it difficult to deal with real network problems.

Future work will consider shifting the focus of work to the processing of security
events in the real network environment and studying how to adjust a more excellent
fitness function to obtain more accurate clustering. In addition, the adaptive setting of the
clustering number of WOAHC-G will also be a key point of future work.
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