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Abstract: Paper sludge ash (PSA) typically has a low Si abundance and significant Ca content because
of the presence of calcite fillers, which interfere with the zeolitic conversion of PSA. Ca-masking
with ethylenediaminetetraacetic acid (EDTA) was used to reduce Ca interference during zeolite
synthesis so that a zeolitic product with a high cation exchange capacity (CEC) could be synthesized.
Hydroxysodalite, zeolite-P, hydroxycancrinite, tobermorite, and zeolite-A can be synthesized from
PSA by an alkali reaction with EDTA. With the addition of EDTA, calcium ions in the solution were
trapped by chelation, and the number of zeolitic crystals with low Si/Al (Si/Al = 1), zeolite-A,
increased owing to the promotion of the synthesis reaction. A product with a high CEC that has
a high zeolite-A content was obtained. The chelating agent can inhibit Ca interference for zeolite
synthesis by Ca-masking, and a product with a high zeolite-A content can be obtained from PSA
using EDTA.

Keywords: paper sludge ash; EDTA; zeolite-A; cation exchange capacity; Ca-masking

1. Introduction

Zeolites are a group of microporous aluminosilicate minerals that are tectosilicates
with three-dimensional aluminosilicate structures containing water molecules, alkali, and
alkaline earth metals in their structural framework [1,2]. Zeolites have unique properties
owing to their specific structure, i.e., their aluminosilicate skeleton structure with a hierar-
chical character. The center of the tetrahedron is an atom “T” (Si or Al), which is linked to
four other T-atoms by an oxygen bond. The tetrahedrons AlO4 and SiO4 are known as the
primary building units (PBUs). These tetrahedrons can be arranged into larger structures
called secondary building units (SBUs) consisting of up to 16 T atoms, and it is assumed
that the entire framework is made up of only one type of SBU. Presently, 23 different types
of SBUs are known to exist, and approximately 250 zeolite framework types have been
defined in the “Atlas of zeolite framework types” [3].

Based on the Si/Al ratio, zeolites can be divided into: (i) low (1–1.5), (ii) intermediate
(2–5), (iii) high silica zeolites (10–100), and (iv) silica molecular sieves (>100) [4]. With
decreasing Si/Al ratios, the zeolites are more hydrophilic and have a greater affinity for
polar adsorbates. Generally, according to Loewenstein’s role, the amount of tetrahedral
AlO4 should not be higher than SiO4 in the zeolite structure, and the lowest Si/Al ratio has
the highest negative charge in the skeleton structure [5].

Zeolites occur naturally in the environment, but they can also be synthesized in a
laboratory or industry [6]. The outstanding physicochemical properties of zeolites, such
as their cation exchange, catalysis, and sorption, make them very useful in a variety of
industrial [7,8], environmental [9–11], biotechnological [12–14], biomedical [15,16], and
medical applications [17,18]. Numerous researchers have reported the synthesis of various
types of zeolites (such as zeolite-A, P, and X, and ZSM-5) from industrial waste (for example,
coal fly ash, paper sludge ash, municipal incinerated ash, and waste porcelain or perlite),
which are mainly composed of SiO2 and Al2O3 in amorphous phases [19–27], via different
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hydrothermal activation methods, such as classic alkali activation [28], alkali fusion [29],
two-stage synthesis [30], acid leaching [31], and addition of silica sources [32,33].

In the manufacture of recycled paper, paper sludge is discharged as industrial waste,
and its amounts have continued to increase annually worldwide, for example, 11 million
tons were discharged in Europe [34], 5.1 million tons were generated in Japan [35], and
2.6 million tons were generated in Korea [36]. Paper sludge ash (PSA) is produced by the
fluidized bed combustion of paper sludge for the volume reduction of waste sludge for
landfills (80–90% reduction) and partial recovery of energy from paper sludge combustion.
Although a part of PSA is used for some applications such as soil improvement, cement
additives, and water treatment [37,38], a large part of the ash is landfilled to cause environ-
mental problems, incurring high costs for the paper industry due to the shortage of landfill
sites. Therefore, alternative routes to the landfilling and valorization of PSA are desired.

In the past few decades, PSA has been used for the synthesis of functional minerals,
such as zeolites and tobermorites [39,40]. Owing to their ion-exchange properties and
unique structures, they are used in various applications such as gas removal and water
purification [41–43]. Some methods for the chemical conversion of PSA into functional
materials exist, such as the conventional hydrothermal reaction [44], alkali fusion [45], and
the use of silica additives [46].

Calcite, which is used in this study as a filler, has been recently used to make ash with
high calcium content in the form of anorthite, gehlenite, and amorphous phases. Calcium-
containing ash can be converted into zeolites, but the product has a low cation exchange
capacity (CEC) [47]. In previous studies, we applied acid leaching to reduce the Ca content
in calcium-containing ash to synthesize zeolitic materials with high CECs [48–50]. However,
in practice, it is difficult to add an acid leaching process before the synthesis process.

In this study, we applied Ca-masking with a chelating agent, ethylenediaminete-
traacetic acid (EDTA), to reduce Ca interference during zeolite synthesis. EDTA is the most
popular chelating agent and is used as a Ca-masking agent to decrease the hardness of
water. Adding EDTA to a conventional reactor is a simple technique that can improve the
synthesis of a product with a high CEC. The effect of EDTA on zeolite synthesis from PSA
under an alkali reaction was determined to synthesize zeolite materials with a high CEC.

2. Materials and Methods
2.1. Samples

The PSA used in this study was obtained from a major paper manufacturer in Japan.
It is noted that the specific surface area of the PSA was 4.5 m2/g, and it consisted of spher-
ical particles with a diameter of 0.5–2 µm and aggregates with a diameter of 10–100 µm.
Ethylenediamine-tetraacetic acid disodium dehydrate (EDTA) (Wako) was used as the
chelating agent.

2.2. Experimental Method

To investigate the effect of the addition of EDTA on zeolite synthesis, 10 g of PSA
was added to 100 mL of 3 M NaOH solution with an EDTA concentration ranging from 0
to 2 M in a 200 mL Erlenmeyer flask fabricated from polymethylpentene (TPX) and was
heated at 80 ◦C for 24 h in a water bath to synthesize zeolitic material. After heating,
the resulting solid was filtered, washed with distilled water, and dried in an oven at
60 ◦C overnight to obtain the product. The mineralogical composition of the product was
identified by X-ray powder diffraction (XRD) (Rigaku, XRD-DSC-XII, Tokyo, Japan) using
CuKα radiation (30 kV, 15 mA) over the 2θ range of 5–55◦ (scan speed of 5◦/min and
step scan size of 0.02). The morphologies of the products were observed using a scanning
electron microscope (SEM) (JEOL, JSM-6510A, Tokyo, Japan) under a vacuum pressure of
1 × 10−6 Pa and an accelerating voltage of 15 kV. The concentrations of Si, Al, and Ca in the
filtrate after synthesis were analyzed using inductively coupled plasma spectrometry (ICP)
(Shimadzu, ICP-7500, Kyoto, Japan) (RF power: 1150 W; peristaltic pump speed: 50 r/min;
auxiliary gas flow rate: 0.5 L/min; atomizer gas flow rate: 0.7 L/min). The CECs of the
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product were measured using the method reported by Wajima et al. [51], as follows. The
product was immersed in 1 M ammonium acetate solution, and the solution was shaken
for 20 min to replace NH4

+ in exchangeable sites in the product. It was then centrifuged,
and the supernatant was removed by decantation. This procedure was repeated three
times. The sample was then washed with 80% EtOH for subsequent replacement. The
NH4

+ in the product was replaced by K+ using a 10% KCl solution in a procedure that was
repeated three times, and the NH4

+ content in the supernatant was measured. The CEC
was calculated using the following equation:

CEC(mmol/g) =
CAm·V

w
, (1)

where CAm is the NH4
+ concentration in the supernatant (mmol/L), V is the volume of the

supernatant solution (L), and w is the weight of the sample (g).
To investigate the effect of temperature on zeolite synthesis, 1 g of PSA was added to

10 mL of 3 M NaOH solution with or without 1 M EDTA in a 50 mL pressure vessel, and
the vessel was heated at 80, 120, and 160 ◦C for 24 h in an electric furnace. After heating,
the vessel was quenched with tap water, and the solid product was filtered, washed with
distilled water, and dried overnight in an oven at 60 ◦C. The mineralogical composition
of the product was identified by XRD, and the CEC of the product was measured. The
morphologies of the products were observed by SEM. The concentrations of Si, Al, and Ca
in the filtrate after synthesis were analyzed using ICP.

The zeolitization processes of PSA with and without EDTA were compared to de-
termine the differences in the reaction processes. PSA (100 g) was added to 1 L of 3 M
NaOH solution with or without 1 M EDTA in a 1 L Erlenmeyer flask (made of polymethyl
pentene) equipped with a dimroth condenser, and the mixture (slurry) was continuously
stirred at 80 ◦C for 24 h. Five milliliter aliquots of the slurry were removed at varying time
intervals to monitor the reaction process. The aliquots were filtered, and the filtrates were
analyzed by ICP to determine the concentrations of Si, Al, and Ca during the synthesis
reaction. The solid product was washed with distilled water and dried overnight at 60 ◦C.
The products were analyzed by XRD and SEM to identify the zeolite phases, and the CECs
of the products were measured. The relative crystallinities (RC) of the zeolitic phases in the
products were calculated using the method reported by Machado and Miotto [52] using
the following equation:

RC(%) =
∑ Intensity o f XRD peaks o f the product phases

∑ Intensity o f XRD peaks o f standard
× 100. (2)

Hydroxysodalite and zeolite-P were prepared using the procedure reported by Kato
et al. [53], and these zeolites and commercial zeolite A (MS-4A, Wako, Kyoto, Japan) were
used as standards.

3. Results and Discussion

The chemical and mineralogical compositions of the PSA used in this study are shown
in Table 1 and Figure 1, respectively. Ash is mainly composed of CaO (42.6%), SiO2 (28.1%),
and Al2O3 (18.5%) in the form of crystalline phases, gehlenite (Ca2Al2SiO7), anorthite
(CaAl2Si2O8), and amorphous phases [54].
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Table 1. Chemical compositions of the PSA.

Oxide
(wt.%) PSA

Without 1 M EDTA With 1 M EDTA

80 ◦C 120 ◦C 160 ◦C 80 ◦C 120 ◦C 160 ◦C

SiO2 28.1 31.2 29.0 28.7 41.3 46.2 45.1
Al2O3 18.5 12.1 13.0 13.1 24.2 25.8 24.7
CaO 42.6 46.4 47.3 47.2 19.6 11.7 13.3
MgO 4.0 3.5 3.5 3.9 5.1 5.3 5.1
Fe2O3 1.6 1.9 1.9 1.9 2.8 3.0 3.0
TiO2 2.7 3.0 3.1 3.1 4.5 4.8 4.8

Others 2.5 1.9 2.2 2.1 2.5 3.2 4.0

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 15 
 

Table 1. Chemical compositions of the PSA. 

Oxide 
(wt.%) PSA 

Without 1 M EDTA With 1 M EDTA 
80 °C 120 °C 160 °C 80 °C 120 °C 160 °C 

SiO2 28.1 31.2 29.0 28.7 41.3 46.2 45.1 
Al2O3 18.5 12.1 13.0 13.1 24.2 25.8 24.7 
CaO 42.6 46.4 47.3 47.2 19.6 11.7 13.3 
MgO 4.0 3.5 3.5 3.9 5.1 5.3 5.1 
Fe2O3 1.6 1.9 1.9 1.9 2.8 3.0 3.0 
TiO2 2.7 3.0 3.1 3.1 4.5 4.8 4.8 

Others 2.5 1.9 2.2 2.1 2.5 3.2 4.0 

 
Figure 1. XRD patterns of the products obtained with the addition of EDTA (NaOH concentration: 
3 M NaOH, Temperature: 80 °C, Reaction time: 24 h). 

Figure 1 also show the XRD patterns of the products as a function of EDTA addition. 
PSA contains two mineral phases: gehlenite and anorthite. When 1 M EDTA was added, 
the product phases changed from a mixture of hydroxysodalite (Na6Al6Si6O24·8H2O) and 
zeolite-P (Na6Si10Al6O32·12H2O) to a mixture of hydroxysodalite, zeolite-P, and zeolite-A 
(Na12Si12Al12O48·27H2O), with high peaks for hydroxysodalite and zeolite-A. For concen-
trations of EDTA above 1 M, the product had almost the same XRD patterns as raw PSA, 
indicating that the zeolite synthesis reaction did not occur. Hydroxysodalite is a member 
of the sodalite group, and its structure comprises a framework of four—and six-mem-
bered rings of SiO4 and AlO4 tetrahedra. Zeolite-P is a member of the gismondine group, 
and its structural framework is composed of four- and eight-membered rings. Zeolite-A 
crystallizes in a typical cubic form, and its structural framework consists of four—and 

0 10 20 30 40 50 60

In
te

ns
ity

 (a
. u

.)

2θ [CuKα (degree)]

EDTA: 0 M
●

●●
●● ●● ● ● ● ●

● : Gehlenite
▲ : Anorthite

□ □ □ □

□ : Hydroxysodalite
○ : Zeolite-P

○ ○ ○ ○ ○

EDTA: 1 M

●●●
◇ ◇ ◇ ◇ ◇

◇ ◇
◇

◇
◇

●
□ □□

●
●

●

□

EDTA: 0.1 M

EDTA: 0.2 M

EDTA: 0.5 M

EDTA: 2 M

●

●●●● ●● ● ● ● ●□ □ □ □○ ○ ○ ○ ○

●●●◇ ◇ ◇ ◇ ◇◇ ◇

◇
◇

◇ ●
□ □□

●

●

●

□

●●●◇ ◇ ◇ ◇ ◇◇ ◇
◇ ◇ ◇ ●□ □□ ●

●

●□

◇ : Zeolite-A

●

●●●
● ●● ● ● ●●

◇

●

●●●
● ●● ● ● ●●

PSA

▲▲

▲▲

▲

▲▲

○

○

○

○

○

○

○

○

○

○

○

○

Figure 1. XRD patterns of the products obtained with the addition of EDTA (NaOH concentration:
3 M NaOH, Temperature: 80 ◦C, Reaction time: 24 h).

Figure 1 also show the XRD patterns of the products as a function of EDTA addition.
PSA contains two mineral phases: gehlenite and anorthite. When 1 M EDTA was added,
the product phases changed from a mixture of hydroxysodalite (Na6Al6Si6O24·8H2O) and
zeolite-P (Na6Si10Al6O32·12H2O) to a mixture of hydroxysodalite, zeolite-P, and zeolite-A
(Na12Si12Al12O48·27H2O), with high peaks for hydroxysodalite and zeolite-A. For con-
centrations of EDTA above 1 M, the product had almost the same XRD patterns as raw
PSA, indicating that the zeolite synthesis reaction did not occur. Hydroxysodalite is a
member of the sodalite group, and its structure comprises a framework of four—and
six-membered rings of SiO4 and AlO4 tetrahedra. Zeolite-P is a member of the gismon-
dine group, and its structural framework is composed of four- and eight-membered rings.
Zeolite-A crystallizes in a typical cubic form, and its structural framework consists of
four—and eight-membered rings. Notably, the eight-membered rings are larger than the
six-membered rings of hydroxysodalite, while the Si/Al ratio is the same (Si:Al = 1:1). The
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order of the Si/Al ratios in the zeolite structure is hydroxysodalite (1:1) = zeolite-A (1:1)
< zeolite-P (5:3), and the CEC of zeolite-A is generally higher than those zeolite-P and
hydroxysodalite because zeolite-A has a lower Si/Al ratio and ring size.

Figure 2 show the concentration of Si, Al, and Ca in the solution after synthesis
as a function of EDTA addition. As the concentration of the added EDTA increased
to 1 M, the Ca concentration increased due to Ca-masking with EDTA, and above an
EDTA concentration of 1 M, the Ca concentration drastically decreased to zero. The Si
concentration increased in the solution with 0–0.3 M EDTA and gradually decreased in the
solution with an EDTA concentration higher than 0.3 M. The Al concentration drastically
decreased in the solution with 0–0.3 M EDTA and gradually decreased in the solution with
an EDTA concentration higher than 0.3 M. Without EDTA addition, the Si, Al, and Ca
concentrations in the solution were 227, 2225, and 0 mg/L, respectively, while those in the
solution containing 1 M EDTA were 728, 228, and 21,434 mg/L, respectively. Although the
reaction between Ca and Si is stronger than that between Si and Al, the Si-Al reaction is
promoted by Ca-masking with EDTA [47].
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Figure 2. Concentrations of Si, Al, and Ca in the solution after synthesis with various concentrations
of added EDTA (NaOH concentration: 3 M NaOH, Temperature: 80 ◦C, Reaction time: 24 h).

Figure 3 show the relative crystallinities of the zeolite crystals in the product and
the CECs of the product as a function of the concentration of the added EDTA. As the
concentration of the added EDTA increased to 1 M, the zeolitic phases in the product
increased, and the CECs of the product increased from 1.2 to 3.4 mmol/g. The behavior of
the CEC as the concentration of EDTA increased is associated with that of the zeolitic phase
in the product because Ca masking promoted the reaction between Si and Al to synthesize
zeolite crystals, which have a high CEC. These results also indicate that Ca remained in
the solution after synthesis owing to Ca-masking by EDTA. Above an EDTA concentration
of 1M, the zeolitic phases decreased, and the CECs of the products decreased due to the
decrease in Ca-masking in the solution. These results suggest that a product with a high
CEC can be synthesized in a 3 M NaOH solution containing 1 M EDTA.
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Figure 3. Relative crystalinities of hydroxysodalite, zeolite-P, and zeolite-A in the product, and CECs
of the product after synthesis with various concentrations of added EDTA (NaOH concentration: 3 M
NaOH, Temperature: 80 ◦C, Reaction time: 24 h).

The XRD patterns of PSA and the products synthesized from raw ash at various
temperatures after a 24-h of reaction with or without 1 M EDTA are shown in Figure 4.
PSA contains two mineral phases: gehlenite and anorthite. For the product synthesized
without 1 M EDTA (Figure 4a), the anorthite peaks are less intense than those in the raw
ash, indicating that a part of the anorthite dissolves in the alkali solution, whereas gehlen-
ite does not seem to be affected at 80 ◦C. The phases formed were hydroxysodalite and
zeolite-P. At 120 ◦C, anorthite was absent from the products, indicating that most of it
dissolved in the alkali solution, while the gehlenite peaks were less intense than those in
raw ash and the product at 80 ◦C, indicating that some of the gehlenite dissolved in the
alkali solution. The phases formed were hydroxysodalite and zeolite-P. At 160 ◦C, both
anorthite and gehlenite were absent, indicating that most of them dissolved in the alkali
solution. The phases formed were tobermorite (Ca5(HSi3O9)2·2H2O) and hydroxycancri-
nite (Na8(OH)2Al6Si6O24·2H2O) because the increase in Ca supply from gehlenite and
the high temperature caused a change in the crystal phases of the product [1,40,55]. It
should be noted that the CEC of hydroxycancrinite is generally lower than that of zeolite-A,
even though it is Si/Al = 1. In the case of the product obtained in a solution containing
1 M EDTA (Figure 4b), the anorthite peaks are less intense than those in the raw ash,
indicating that a part of the anorthite dissolved in the alkali solution, whereas gehlenite
did not seem to be affected at 80 ◦C. The phases formed were hydroxysodalite, zeolite-P,
and zeolite-A. At 120 ◦C, anorthite was absent from the products, indicating that most of it
dissolved in the alkali solution, whereas the gehlenite peaks were less intense than those in
raw ash and the product at 80 ◦C, indicating that some of the gehlenite dissolved in the
alkali solution. At 160 ◦C, both anorthite and gehlenite were absent, indicating that most
of them dissolved in the alkali solution. The phases formed at 120 ◦C and 160 ◦C were
hydroxysodalite and hydroxycancrinite, respectively. Although the dissolution behaviors
of the mineral phases, gehelenite and anorthite, in raw ash are almost the same, the product
phases differ with EDTA addition. It should be noted that the XRD patterns of the products
synthesized at 80 ◦C without EDTA in Figures 1 and 5 are almost the same regardless of
stirring or standing.
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Figure 4. XRD patterns of the products synthesized at 80, 120, and 160 ◦C: (a) without 1 M EDTA and (b) with 1 M EDTA
(NaOH concentration: 3 M NaOH, Reaction time: 24 h).
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Figure 5. Concentrations of Si, Al, and Ca in the solutions after synthesis at 80, 120, and 160 ◦C
(NaOH concentration: 3 M NaOH, Reaction time: 24 h).

The crystallite sizes (D) of hydroxysodalite, hydroxycancrinite, tobermorite, and
zeolite-A in the product were calculated using the Scherrer equation:

D (nm) =
K·λ

β cos θ
, (3)

where K is the Scherrer constant, λ is the wavelength of the X-ray radiation, β is the full
width at half maximum (FWHM) of the XRD diffraction peaks, and θ is the diffraction
angle according to the Bragg formula [56–58]. It is noted that the separation of the peaks for
zeolite-P made it difficult to calculate the crystal size. For the products synthesized without



Appl. Sci. 2021, 11, 11231 8 of 15

1 M EDTA at 80, 120 and 160 ◦C, the crystal sizes of hydroxysodalite in the products were
58.0, 57.6 and 50.4 nm, respectively, and those of tobermorite and hydroxycanclinite in
the product synthesized at 160 ◦C were 9.8 and 49.8 nm, respectively. For the products
synthesized with 1 M EDTA at 80, 120, and 160 ◦C, the crystal sizes of hydroxysodalite
in the products were 67.3 nm, regardless of the temperature, and those of zeolite-A and
hydroxycanclinite in the product synthesized at 80 and 160 ◦C were 80.1 and 28.5 nm,
respectively. It should be noted that temperature and EDTA concentration have little effect
on the produced hydroxysodalite, independently synthesizing zeolite-A crystals in the
product at 80 ◦C with EDTA addition.

Figure 5 show the concentrations of Si, Al, and Ca in the solution after synthesis at 80,
120, and 160 ◦C. At all the temperatures, the Si concentrations in the solutions with and
without EDTA after synthesis were almost the same. Furthermore, the Al concentrations
in the solutions without EDTA were higher than those in the solutions with EDTA, while
the Ca concentrations in the solutions with EDTA were higher than those in the solutions
without EDTA. These results can be attributed to the promotion of the Si–Al reaction owing
to the capture of Ca by EDTA. It is noted that Ca-masking with EDTA occurs similarly at
80–160 ◦C.

Table 1 show the chemical compositions of the products synthesized from raw ash
with or without 1 M EDTA after a 24 h reaction at 80, 120, and 160 ◦C. Regardless of the
temperature, the decrease in the Ca content in the product with 1 M EDTA was greater than
that without 1 M EDTA, whereas the increase in the contents of Si and Al in the product
with EDTA was greater than that without EDTA. These results were corroborated by the
concentrations of Si, Al, and Ca determined after the 24 h reaction (Figure 5), indicating
that the Si–Al reaction was promoted with the addition of 1 M EDTA because the remaining
Ca in the solution was masked by EDTA.

Figure 6 show the CECs of PSA and the synthesized products with and without 1 M
EDTA at various temperatures. The CECs of all the products were higher than that of
raw ash (0.3 mmol/g). Regardless of the temperature, the CECs of the products with 1 M
EDTA were higher than those of products without 1 M EDTA. With increasing reaction
temperature, the CEC of the product with EDTA decreased from 2.3 mmol/g at 80 ◦C to
1.4 mmol/g at 160 ◦C, owing to the formation of zeolitic crystal phases with lower CEC,
i.e., hydroxysodalite and hydroxycancrinite, instead of zeolite-A and zeolite-P.
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Figure 6. CECs of PSA and the products synthesized from PSA with and without 1 M EDTA at
various temperatures (NaOH concentration: 3 M NaOH, Reaction time: 24 h).
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Figure 7 show SEM photographs of the products synthesized in solutions with or
without 1 M EDTA at 80, 120, and 160 ◦C. All the products were morphologically different
from each other. A higher number of prismatic crystals can be observed in the product
synthesized in a solution with 1 M EDTA than in that synthesized in a solution without 1
M EDTA. Platy shape crystals of tobermorite can be observed in the product synthesized at
160 ◦C without the addition of 1 M EDTA (Figure 7c). Furthermore, cubic crystals of zeolite-
A with a size of 1–2 µm can be observed in the product synthesized at 80 ◦C with EDTA
addition (Figure 7d), but these crystals are diminished in the products synthesized at 120 ◦C
and 160 ◦C with EDTA addition (Figure 7e,f). This is because zeolite-A is a metastable
phase at 60–100 ◦C and is easily transformed into the stable phases hydroxysodalite and
hydroxycancrinite at high temperatures [1]. These results suggest, to synthesize a product
with zeolite-A phases, which have a high CEC, the reaction temperature should be 80 ◦C.
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Figure 7. SEM photos of the synthesized products: (a) 80 ◦C without 1 M EDTA, (b) 120 ◦C without 1 M EDTA, (c) 160 ◦C
without 1 M EDTA, (d) 80 ◦C with 1 M EDTA, (e) 120 ◦C with 1 M EDTA, and (f) 160 ◦C with 1 M EDTA (NaOH concentration:
3 M NaOH, Reaction time: 24 h).

Figure 8 show the XRD patterns of the products synthesized from raw ash during the
reaction at 80 ◦C with and without 1 M EDTA addition. During synthesis without 1 M
EDTA, almost the same patterns were confirmed from 0.5 h to 12 h, and the low peaks
of zeolitic product phases (hydroxysodalite and zeolite-P) could be confirmed after the
24 h reaction. In contrast, during the synthesis with 1 M EDTA, almost the same patterns
were confirmed from 0.5 h to 4 h, zeolite-A and zeolite-P were confirmed at 6 h, and
hydroxysodalite appeared after the 8 h reaction.
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Figure 8. XRD patterns of the products synthesized at 80 ◦C (a) without the addition of 1 M EDTA and (b) with 1 M EDTA
during the synthesis reaction (NaOH concentration: 3 M NaOH).

The concentrations of Si, Al, and Ca during synthesis with and without 1 M EDTA
are shown in Figure 9, and the relative crystallinities of the product phases and CECs
of the product during the reaction are shown in Figure 10. In the case of the reaction
without 1 M EDTA, the concentration of soluble Al always exceeded that of Si during
the reaction, and the Ca concentration was almost zero. Initially, the concentrations of Si
and Al increased upon the addition of PSA; however, as the reaction progressed, the Si
concentration gradually decreased owing to the formation of aluminosilicate or calcium
aluminosilicate gels [55]. The Al concentration started increasing and remained almost
constant after 4 h of the reaction. The relative crystallinities of zeolite-P and hydroxysodalite
remained almost constant until 12 h and increased afterwards, while the CEC of the product
gradually increased during the reaction because of the formation of silicate gels and zeolite
crystals. In the case of the reaction with 1 M EDTA, the concentrations of Si, Al, and
Ca initially increased, that of Si gradually decreased, that of Ca increased, and that of
Al decreased to zero, reaching a steady-state after 8 h. This residual Al concentration
was lower than that in the former case, indicating that a large amount of aluminosilicate
precipitated out of the solution. The relative crystallinities of zeolite-A and zeolite-P
increased after 6 h, whereas that of hydroxysodalite increased after 8 h. The CEC of the
product increased for 8 h and then gradually increased, which is consistent with the relative
crystallinities of the zeolite phases.
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Figure 9. Concentrations of Si, Al, and Ca in the solution during synthesis at 80 ◦C: (a) without 1 M EDTA and (b) with 1 M
EDTA (NaOH concentration: 3 M NaOH).
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Figure 10. Relative crystallinities of the product phases in the product, and CECs of the product during synthesis at 80 ◦C:
(a) without 1 M EDTA and (b) with 1 M EDTA (NaOH concentration: 3 M NaOH).

In summary, we propose the following mechanism for 1 M EDTA addition at 80 ◦C, as
shown in Figure 11. Murayama et al. studied the formation of zeolites from coal fly ash
and found that zeolite synthesis from coal fly ash consists of three reactions: dissolution,
gelation, and crystallization [59]. As shown in Figure 9, the reaction sequence in the
present study is consistent with the results reported by Murayama et al. The dissolution,
gelation, and crystallization reactions started simultaneously after the ash was introduced.
Catalfamo et al. reported that the high affinity of Ca ions for silicate species disturbed the
dissolution of Si into the alkali solution [47]. Ando et al. reported that approximately 40%
of the Ca content in PSA is present as calcium aluminosilicate hydrate [54]. Without the
addition of 1 M EDTA Ca hydrate dissolves into the alkali solution, and the Al content
is higher than that of Si because of the Ca interference observed during zeolitization
(Figure 9a). The Si, Al, and Ca contents in PSA dissolve into the solution and precipitate as
a Si-Al-Ca gel because of the strong reaction between Ca and Si, forming aluminosilicate
gels with lower Si/Al ratios in the solid, and the unreacted Si and Al contents remain in
the liquid.
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Figure 11. Proposed mechanisms for the zeolitic reaction with the addition of 1 M EDTA at 80 ◦C.

During the crystallization process at 80 ◦C, the Si-Al-Ca gel did not react, and the
aluminosilicate gels with lower Si/Al ratios reacted with Si in the liquid forming zeolite
phases. Therefore, the product synthesized at 80 ◦C had low hydroxysodalite and zeolite-P
contents. With the addition of 1 M EDTA, the Ca hydrate dissolved into the alkali solution,
and the concentration of the Al content was almost the same as the Si content because
Ca capture by EDTA inhibited Ca interference during zeolitization (Figure 9b). The Si,
Al, and Ca contents in PSA dissolved into the solution; the Ca content was masked by
EDTA, the aluminosilicate gels with higher Si/Al ratios mainly precipitated, Si and Al
remained unreacted, and the Ca content was captured with EDTA in the liquid phase. In
the crystallization process, the aluminosilicate gels with higher Si/Al ratios reacted with
Si and Al in the liquid phase forming zeolite phases. The interference by Ca content was
inhibited by Ca-masking by EDTA, and a high content of the aluminosilicate gels with
higher Si/Al ratios were converted into zeolite-A, zeolite-P, and hydroxysodalite.

4. Conclusions

Zeolitic materials with high CEC, including zeolite-A crystals, can be synthesized
from PSA with the addition of EDTA because of the inhibition of Ca interference in
zeolite synthesis via Ca-masking by EDTA. The following conclusions can be drawn from
the results:

(1) EDTA can extract Ca from the solution and inhibit Ca interference during zeolite
synthesis by Ca masking.

(2) Hydroxysodalite, zeolite-P, and zeolite-A can be synthesized from PSA using an alkali
reaction with EDTA, and the main zeolite phase can be adjusted by the addition of
EDTA.

(3) A product with a high CEC, which has a high zeolite-A content, can be obtained.

Therefore, a chelating agent can inhibit Ca interference in zeolite synthesis by Ca-
masking, and a product with a high zeolite-A content can be obtained from PSA using an
alkali reaction with EDTA.
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