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Abstract: The article describes a nonlinear theory of how the presence of third elements affects
the results of analyzing the elemental composition of substances by means of atomic emission
spectroscopy. The theory is based on the assumption that there is an arbitrary relationship between the
intensity of the analytical line of the analyte and the concentration of impurities and alloying elements.
The theory has been tested on a simulation problem using commercially available equipment (the
SPAS-05 spark spectrometer). By comparing the proposed algorithm with the traditional one, which
assumes that there is a linear relationship between the intensity of the analytical line of the analyte and
the intensities of the spectral lines (or concentrations) in the substance, it was revealed that there is a
severalfold decrease in the deviations of nominal impurity concentrations from the measured ones.
The results of this study allow for reducing the number of analytical procedures used in analyzing
materials that have different compositions and the same matrix element. For instance, it becomes
possible to determine the composition of iron-based alloys (low-alloy and carbon steels; high-speed
steels; high-alloy, and heat-resistant steels) using one calibration curve within the framework of a
universal analytical method.

Keywords: calibration; charge-coupled image sensors; impurities; metrology; plasma devices; spec-
tral analysis; spectroscopy

1. Introduction

Atomic emission spectroscopy (AES) is one of the most common methods for determin-
ing the elemental composition of materials, which largely influences their physicochemical
properties, and accordingly, their performance characteristics [1–5].

The basic principle of AES consists of atomizing the substance being analyzed by one
method or another and promoting the resulting atoms (or ions) to an excited state. Then,
by measuring the intensities of the spectral lines of various elements, one can find their
concentrations in the substance. As a rule, the relative intensity of the analytical line is
determined to eliminate the effect of the variability in the parameters of the spectrometer
system on measurements. That is, the intensity is determined in relation to that of a
specifically selected line (reference line) in the spectrum of the principal component of the
substance.

To conduct spectroscopy analysis, various types of atomic emission spectrometers
have been developed and are commercially available. They differ in terms of:

• the state of matter and the type of substances to be analyzed (gases, liquids, and
solids);

• the atomization method (flame atomization; electrothermal atomization in graphite
furnaces; laser ablation);

• the method of optical excitation (excitation of atoms and ions in different types of
plasma; selective excitation by light sources);
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• the type of system for recording light emission produced by the excited atoms and
(or) ions of the substance being analyzed (photomultiplier tubes; photodiodes; charge-
coupled devices).

However, whatever the type of the spectrometer, it is often found that when de-
termining the elemental composition of a material, the analytical signal depends on the
concentration of other elements in it [6–24]. Four causes of this can be distinguished [25,26]:

(1) changes in the concentration of the principal component at different concentrations,
the impurities being determined when working with relative intensities (see above);

(2) superposition of the spectral line of the analyte and that of another element on the
focal surface of the spectrometer;

(3) changes in the physicochemical properties (atomic structure, crystal structure, melting
point, evaporation temperature, etc.) of the substance when the concentration of the
influencing element changes, causing the rate at which the atoms of the substance
enter the optical excitation zone to change;

(4) changes in the parameters of the optical excitation system due to the presence of atoms
of influencing elements in the excitation zone (for example, changes in the temperature
of plasma electrons when using arc discharge or other discharge methods).

It should be noted that, as a rule, the first and second causes can be eliminated
by carefully choosing the analytical line of the analyte and accurately calculating the
concentration of base atoms by measuring the relative intensities of the impurities and
alloying elements, respectively.

The third and fourth causes directly affect how atoms enter the active zone and become
optically excited. In what follows, it is these causes of the dependence of the analytical
signal on the content of elements in the substance that we deal with when discussing the
problem of effects caused by third elements.

Examples of such effects in non-ferrous alloys are the influence that Zn and Si concen-
trations have on the results of analyzing copper-based alloys by means of spark spectrome-
ters [15–24,27–29] and the effect of Cu content on the determination of the quantities of Zn,
Fe, Mg, and Mn [26,30,31] in aluminum alloys. Similarly, when analyzing ferrous alloys, a
number of elements significantly affect the results of emission analysis due to the third and
fourth causes [32–40]. When analyzing substances using the method of evaporation from a
graphite electrode, there is an effect on elements with a boiling point lower than that of
carbon on the intensity of analytical lines of other impurities, which is caused by a decrease
in the rate of entry of sample atoms into the discharge zone [41,42] with an increase in the
concentration of such elements.

To factor in the influence of third elements on experimental data, various methods are
used [43]:

• mathematical methods for calculating corrections;
• methods that adjust the procedure of measuring the analytical signal;
• methods optimizing the process of measuring the analytical signal;
• spectrum transformation methods (Fourier transform, the differentiation of spectra,

etc.).

Calculating corrections is the most convenient method that does not involve making
changes to the sample preparation procedure, experimental conditions, the optical arrange-
ment of the equipment, or optical materials. However, the existing mathematical methods
have a number of disadvantages. The biggest one is that the relationship between the
corresponding correction and the concentration (or, in other modifications, the intensity
of the analytical line) of the influencing element and the analyte (see Formula (A4) in
Appendix A) [44–48] is assumed to be linear. When considering the complexity of the
physicochemical processes that occur during the emission of impurity and alloying ele-
ment atoms from the substance being analyzed (crystal structure rearrangement, diffusion,
melting, evaporation, explosive emission, etc.), and the complexity of the processes that
determine the dependence of plasma parameters (if plasma is used for optical excitation) on
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the composition of the plasma gas, it becomes obvious that the assumed linear relationship
does not correspond to the real one and, in the general case, can only give a qualitative
(and only to some extent quantitative) description of the observed effects caused by third
elements. In [49], it is noted that today the problem of factoring in the effects produced by
third elements has no solution in the general case.

The above means that when calibrating spectrometers for analyzing substances that
contain impurities and alloying elements whose concentrations fluctuate over a wide range
(two to four orders of magnitude), it is necessary to set different excitation and atomization
parameters, i.e., to develop analytical techniques specifically for relatively small groups of
alloys. For example, when analyzing low-alloy, high-speed, and high-alloy steels by means
of spark spectrometers, it is necessary to adjust the parameters of the spark generator and
the registration system and use different analytical and reference lines. However, when the
effects caused by third elements are adequately corrected for, only one technique can be
used. This obviously saves time and material resources in the production of spectrometers.

Thus, it is of importance to develop a method for factoring in the effects caused by third
elements that will adequately describe their influence on the results of AES experiments.

2. Materials and Methods

Derivation of the basic formulas. Appendix A describes the traditional method for
factoring in the effects caused by third elements. Some of the formulas within its framework
will be used in the Discussion section.

We will assume that we have M reference standards, in each of which N elements
are known. Let us imagine a situation in which the concentration of the i-th element (Ci),
determined by the analytical method, depends not only on the intensity of its analytical
line but also on the concentrations (and hence on the intensities of the analytical lines) of
other elements. Let us assume that the number of these elements V < N and number them
from m to m + V − 1. It is obvious that:

m + s 6= i, where s = 0, . . . , V − 1. (1)

Let us also assume that the relationship between the i-th element being determined
and the intensities of the analytical lines of the analyte Ii and the influencing elements
Im, . . . , Im+V−1 has the form:

Ci = Φi

(
Ii +

m+V−1

∑
k=m

dik Ik, Im, . . . , Im+V−1

)
(2)

where dik are yet unknown dimensionless numerical coefficients, and the relationship
between Φi

(
Ii + ∑m+V−1

k=m dik Ik, Im, . . . , Im+V−1

)
and the arguments Im, . . . , Im+V−1 has

not yet been determined. The form of the first argument of the function on the right side of
(2) Ii + ∑m+V−1

k=m dik Ik has a simple physical meaning. It takes into account possible spectral
line interferences and the dependence of the background where the analytical line of the
analyte is located on the presence of influencing elements in the plasma. For simplicity,
we have taken this relationship to be linear depending on the intensity of the influencing
elements Ik. In modern optical emission spectrometers, when there are interferences of the
lines of elements that affect the intensity of the line of the analyte, the real relationship is
apparently close to linear.

On the contrary, the relationship between the intensity of the plasma background
and the intensities of the lines of the influencing elements (which are determined by their
concentrations) is more complex. We will assume that this relationship can be expanded
in a Taylor series at Ik = 0; thus, (2) takes into account the first term of this series. Strictly
speaking, it is possible that the coefficient of a linear Taylor series in the Ik term is zero, and
this series begins with Ik

2.
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If there are no line interferences and the background of the analytical line of analyte
does not depend on the concentration of the influencing elements in the plasma, dik ≡ 0
and Φi(Ii, Ik) should be written in (2).

It is quite obvious that the identity holds:

Φi

(
Ii +

m+V−1

∑
k=m

dik Ik, Im, . . . , Im+V−1

)
Ik=0,k=m...m+V−1

≡ Fi(Ii). (3)

That is, Fi(Ii) represents the dependence of the concentration of the i-th element on
the intensity of its analytical line if there are no effects caused by third elements. Let us
suppose that these effects are additive and consider first the case of one influencing element
with number k (m ≤ k ≤ m + V − 1):

Ci = Φi(Ii + dik Ik, Ik). (4)

Note that, as a rule, the function Fi(Ii) is represented in AES as a polynomial of degree
N0 ≤ 4.

Let us expand the function (4) of two variables Φi(Yik, Ik), where Yik = Ii + dik Ik, in a
double Taylor series at a point Ik = 0; Yik = Ii. By expanding Φi(Yik, Ik) at a constant value
Yik, we have:

Φi(Yik, Ik) =
∞

∑
l=0

1
l!

∂lΦi(Yik, Ik)

∂Ik
l

Ik=0
Ik

l . (5)

Now let us consider the function ψlik =
∂lΦi(Yik ,Ik)

∂Ik
l Ik=0

and expand it in a Taylor series

at Yik = Ii. Then we get:

ψlik =
∞

∑
n=0

1
n!

∂nψlik(x)
∂xn x=Ii

(Yik − Ii)
n. (6)

Taking (6) into account, after changing the order of summation, (5) takes the following
form:

Φi(Yik, Ik) =
∞

∑
n=0

∞

∑
l=0

1
n!

1
l!

∂n+lΦi(Ii, Ik)

∂Ii
n∂Ik

l
Ik=0

(Yik − Ii)
n Ik

l . (7)

Let us consider an arbitrary term ψn(Yik, Ik) in the outer sum (7):

ψn(Yik, Ik) =
(Yik − Ii)

n

n!
∂n

∂Ii
n

{
Fi(Ii) +

∞

∑
l=1

1
l!

∂lΦi(Ii, Ik)

∂Ik
l

Ik=0
Ik

l

}
. (8)

Let Fi(Ii) be a polynomial of degree N0. Suppose that for any concentration of influ-
encing elements, the dependence of Φi(Yik, Ik) on Yik is also described by a polynomial of
degree N0. This means that the following holds:

Φi(Ii, Ik) =
N0

∑
r=0

ar
(ik)(Ik)Ii

r, (9)

where ar
(ik)(Ik) are functions of the intensity of Ik, and ar

(ik)(0) = al . Note that the real
form of the functions ar

(ik)(Ik) are shaped by the dependence between the rate constants of
the processes occurring when the atoms of the analyte are emitted from the sample into
the plasma, as well as by the conditions in the plasma that determine how line emission is
generated and transferred. Suppose these functions can be expanded in Taylor series at



Appl. Sci. 2021, 11, 11237 5 of 17

Ik = 0. As we are discussing the concentrations of the analyte and the influencing elements,
which are relatively small, we will expand it into Ik and limit by M0, that is:

ar
(ik)(Ik) =

M0

∑
q=0

1
q!

Aq
(ikr) Ik

q, (10)

where Ar
(ikl) are constants; M0 is a yet undefined integer. Using (9) and (10), and taking

into account Yik − Ii = dik Ik, we can rewrite (8) in the following form:

ψn(Yik, Ik) =
(dik Ik)

n

n!
∂n

∂Ii
n

{
Fi(Ii) +

N0

∑
r=0

M0

∑
l=1

Al
(ikr) Ik

l Ii
r

l!

}
, (11)

and (7) can be rewritten as follows:

Φi(Yik, Ik) =
N0

∑
n=0

(dik Ik)
n

{
1
n!

∂nFi(Ii)

∂Ii
n +

N0

∑
r=n

M0

∑
l=1

Al
(ikr) Ik

l

l!
Ii

r−n

(n− r)!

}
. (12)

Remember that (7) is valid for an arbitrary dependence of Φi(Yik, Ik) on the arguments
Yik, Ik, and (12) is valid when (9) and (10) are satisfied.

In what follows, all formulas assume that Fi(Ii) is a polynomial of N0 degree and
relations (9) and (10) are satisfied. Then the analog of formula (A4) (the linear algorithm
for taking into account the effects caused by third elements) for the influencing element
under the number k = m + s and the analyte under the number i has the form:

φs
i (Ii, Ik) = Φi(Yik, Ik)− Fi(Ii) =

N0

∑
n=1

dik
n

{
Ik

n

n!
∂nFi(Ii)

∂Ii
n +

N0

∑
r=n

M0

∑
l=1

Al
(ikr) Ik

l+n

l!
Ii

r−n

(r− n)!

}
+

M0

∑
l=1

Al
(ik0) Ik

l

l!
. (13)

Thus, in the situation being discussed, the analogue of (A4) contains M0·(N0 + 1) + 1
constants:

dik, A1
(ik0), . . . AM0

(ik0); A1
(ik1), . . . AM0

(ik1); . . . ; A1
(ikN0), . . . , AM0

(ikN0). (14)

To find them, it is necessary, as in the linear case, to minimize a functional similar to
that defined by (A5). Let us first introduce some corrections to (A5). When applying these
results to specific methods for determining the elemental composition of substances (for
example, to AES methods), the concentrations of the analyte can be of the third or fourth
order of magnitude. In this case, the terms of the sum in (A5) that are related to the lower
values of the concentrations will make almost no contribution to the functional Si being
minimized. Therefore, we introduce a modified functional Si

k:

Si
k =

M

∑
j=1

[
Ci

(j) −Φi

(
Yik

(j), Ik
(j)
)]2

Ci
(j)2

1
Wij

, (15)

It represents the sum of squares of the relative deviation of the calculated concentra-
tions from their nominal values. In contrast to Si, which represents the sum of squares
of absolute deviations taking into account the statistical weights of points, the biggest
contribution of Si

k is made by the points with the maximum systematic relative error
regardless of the absolute value of the concentration of the analyte at a given point, which,
in our opinion, is methodologically correct. The system of equations for minimizing the
functional Si

k are:
∂Si

k

∂Al
(ikr)

= 0; l = 1, . . . N0; r = 1 . . . M0 (16)
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∂Si
k

∂dik
= 0

takes the form of:

M

∑
j=1

[
Φi

(
Yik

(j), Ik
(j)
)
− Ci

(j)
]

Ci
(j)2

Ik
(j) l

l!Wij
; l = 1, . . . M0 (17)

M

∑
j=1

[
Φi

(
Yik

(j), Ik
(j)
)
− Ci

(j)
]

Ci
(j)2

r

∑
n=1

dik
n Ik

(j) l+n

l!
Ii
(j)r−n

(r− n)!
; l = 1, . . . M0; r = 1, . . . N0

M

∑
j=1

[
Φi

(
Yik

(j), Ik
(j)
)
− Ci

(j)
]

Ci
(j)2Wij

N0

∑
n=1

1
(n− 1)!

∂nFi(Ii)

∂Ii
n

Ii=Ii
(j)

dik
n−1 Ik

(j)n
,

and consists, as mentioned above, of M0·(N0 + 1) + 1 nonlinear algebraic equations. In
this case, the following is satisfied:

Φi

(
Yik

(j), Ik
(j)
)
− Ci

(j) = φs
i

(
Ii
(j), Ik

(j)
)
+ Fi

(
Ii
(j)
)
− Ci

(j), (18)

φs
i

(
Ii
(j), Ik

(j)
)

is defined by (13). Recall that the indices i, k, j refer to the analyte, the
influencing element, and the number of the reference standard, respectively.

The constants dik, Al
(ikr) found from (17) give the solution to the problem posed.

Note that at N0 > 0 t, this system is nonlinear due to the presence of dik. In this case,
only its numerical solution is possible.

To conclude this section, let us formulate considerations for choosing M0. Recall that
this is the degree of the term with the highest intensity of the influencing element in the
expansion of the parameters ar

(ik)(Ik) in powers Ik (see (10)). This series is assumed to
converge. In the case of a sequence with constant signs Al

(ikr), this means that these
coefficients will decrease with an increase in l as o

(
1
l

)
, where:

o(x)
x x→0

→ 0.

Recall that growth in M0 means an increase in the number of parameters to be de-
termined. With a fixed number of reference standards, this means that for one coefficient
being determined, there are fewer and fewer experimental points, i.e., less physically
significant information. If random error is zero when measuring Ii, Ik, Ci, the maximum
number of parameters can be quite large (and equal to the number of reference standards).
In reality, the relative error in measuring the relative intensities in AES experiments on
metals and alloys ranges from several tenths of a percent to 50%, depending on the con-
centration. Numerous calculations show that with an increase in the relative error for a
fixed number of parameters, their uncertainty increases. If we generate intensity arrays
using a random number generator with a certain variance, and, by solving (17), find the
parameters dik, Al

(ikr), the spread in the values of the same parameter grows with an
increase in this variance. In order for the maximum relative error to not exceed 5%, it is
sufficient that the number of parameters L0 and the number of samples M are connected
by an empirical relationship:

K
(∣∣∣∣∆Ii

Ii

∣∣∣∣)·(1 + L0) ≤ M, (19)



Appl. Sci. 2021, 11, 11237 7 of 17

where
∣∣∣∆Ii,k

Ii,k

∣∣∣ is the maximum relative error in measuring the intensities Ii, Ik. Here, the
following is satisfied:

K(0.05) ≈ 6; K(0) =
1

1 + 1
L0

.

It is easy to show that the average values of the parameters found by means of (17) are
obtained by using the average intensity values from the results of parallel measurements.

Let us discuss in more detail some of the differences between the universal approach
and the traditional (empirical) one, which is presented in the first section of the article.
When using the empirical approach, the function φs

i (Ii, Ik) is linear in intensity Ik and
product Ii·Ik. Using the universal approach, the maximum degrees of Ik and Ii, on which
this function depends, depend on N0 and M0 discussed above. The maximum degree of
intensity Ik is N0 + M0, therefore, cannot be less than 2, and Ii is equal to N0. Therefore,
for N0 = 3 and M0 = 2 we get the degree of Ik equal to 5 and the degree of Ii equal to 3,
respectively. This is a fundamental difference between the two approaches. In addition, in
the empirical approach, there are two constants (for any degree of the polynomial Fi(Ii)),
which need to be found from the condition for minimizing the functional (A5). In the
universal approach, the number of constants to be determined from system (17) depends
on the degree of the polynomial Fi(Ii) and is equal to M0·(N0 + 1) + 1. Thus, the minimum
number of constants in this case is attained at N0 = M0 = 1 and is equal to three. In
practice, when analyzing the elemental composition of substances by means of atomic
emission spectroscopy, it is usually (with the exception of analysis using a discharge with
inductively coupled plasma in argon) the case that N0 ≥ 2, consequently, at M0 = 1 we
have at least four constants. In this case, one should expect better results of factoring
in interelement effects with an increase in M0 if there is a corresponding increase in the
number of reference standards.

Finally, let us pay attention to the difference between the functionals being minimized
in the empirical and universal approaches (formulas (A1) and (15), respectively). As
noted, the difference lies in the fact that the former is the sum of the absolute squares
overall reference standards, and the latter is the sum of relative deviations of the calculated
concentrations of the analyte from nominal ones that take into account the statistical weights
of the points Wij (see (A1)). Thus, with a decrease in the concentration being analyzed
in the standards, their contribution to the functional (A1) decreases (which enhances the
effect of the growing statistical weight with a decrease in concentration due to an increase
in the random relative measurement error). Consequently, the points with the minimum
concentrations of the analyte have little effect on the values of the constants in (A4). On
the contrary, the contribution to the functional (17) of points with different concentrations
of the analyte does not depend on the value of this concentration, which means that all
points with the same relative error have the same effect on the constants being determined
(see (14)).

3. Discussion

The proposed theory can be verified using a simulation problem, testing its applicabil-
ity to analyzing steels, and comparing the results with those produced by the empirical
theory. Let us consider how the proposed universal approach can be applied to AES
experiments in which the results of determining the concentration of a certain element are
affected by the presence of other elements. We verified the proposed method by using a
simulation problem, software, and test results produced by commercially available optical
emission spectrometers.

We will start by discussing the results of solving the simulation problem. Appendix B
gives a detailed description of the algorithm. It was assumed that there are three elements
affecting the results of measuring the concentration of the analyte. It was also assumed
that the relationship between the effects produced by these elements and the intensities
of their analytical lines could be described as a Gaussian function (see Appendix B). The
problem consisted in finding whether it is possible to compensate for these effects with the
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help of the proposed algorithm if there are significant systematic errors (with maximum
values approaching 100%) caused by these effects.

Figure 1 shows the results of simulating the process of measuring the relative concen-
tration of the i-th element in a set of 37 reference standards depending on the intensity I j

i ,
as well as the model function Fi(Ii) = Fim(Ii), which is defined by (A12). The simulation
parameters are given in the figure caption. It can be seen that in this simulation, the effects
caused by the three elements are manifested at different intensities, that is, when different
standards are used. The effects are significant and reach a value of 100% in relation to the
concentration.
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(see Appendix B), and the intensity I j
i ; 1—Cie; 2—Fim; simulation parameters: a1 = 1; a2 = 0.1a1;

a3 = 0.01a1; I0
m1 = 7; Im2 = −1.5·I0

m1; Im3 = 2·I0
m1; b1 = 0.5a1; b2 = 0.5a2; ∆x = 0.05.

Next, we tested the algorithm described above for N0 = 3; M0 = 1 and tried to
describe the complex effects introduced in the simulation by means of (12). The results
are presented in Figures 2 and 3. Figure 2 show the data on the relationship between the
estimated concentration Cic and the observed one Cie. Figure 3 demonstrate their values
Di иFdi and the relative differences Cic and Cie when factoring in the effects and without
doing it, respectively. It can be seen that Cic and Cie are so close that Di turns out to be of
the order of the variance of Cie, which is 5% in this example. At the same time, Fdi reaches
200% (at low concentrations).

Next, we tested the proposed algorithm using analytical techniques realized in a
commercially available optic emission spectrometer. As an example, we determined Cu and
Al concentrations in steels. We used SPAS-02 and SPAS-05 optical emission spectrometers
and sets of state standard reference samples of steels: UG0k–UG9k (low-alloy and medium-
alloy steels); RG10–RG18 (high-speed steels); LG57, LG32–LG36, LG60–LG65 (high-alloy
steels). The function Fi(Ii) for the analytical line of Cu was found as a third-degree
polynomial using the UG0k–UG9k set (see Figure 4).
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Cu I 219.958 nm and Al I 394.401 nm analytical lines were used with Fe I 219.604 nm
and Fe I 389.566 nm comparison lines, respectively. To determine the arrays of intensities
and the corresponding mean square root errors necessary to implement the above-described
algorithm accounting for the effect of the third elements, the spectra of each of the standards
were taken three times. After the measurements were completed, the specified arrays were
uploaded from the service libraries of the spectrometer software.

A low-voltage spark in an argon atmosphere was used in the SPAS-5 spectrometer.
The exposure was roughly 4 s at a sparking time of 7 s. The CCD signal accumulation time
was 16 ms, and the number of frames was 200. Spectrum excitation source parameters:
voltage on the discharge interval at discharge pulse start at a sparking and exposure of
400 V and pulse frequency of 400 Hz. Ar purge speed is 7 L/min.

Figure 5 shows the relationship Cc
(
Cp
)
, where Cc, Cp are the measured and nominal

concentrations of copper in UG0k–UG9k, respectively. When interelement interferences
were taken into account, the effects produced by Ni, W, Cr, and V were analyzed as high-
speed steels. High W and V concentrations and high-alloy steels are rich in Ni and Cr.
The figure demonstrates that the proposed universal theory significantly reduces the error
in determining Cu content in steel. The root-mean-square deviation of the measured
concentration from the nominal one decreases by a factor of 2.41 (from 14.1 to 5.8%). For
a set of low-alloy and medium-alloy steels (where no third-element effects are observed),
i.e., at Cc(Ii) = Fi(Ii), the root-mean-square deviation is equal to 5.6%, i.e., the results are
almost equal.

This shows that in the case under consideration, the proposed theory adequately takes
into account the effects caused by third elements. It should be noted that when these effects
are described by means of the empirical theory, the root-mean-square deviation of the
measured concentration from the nominal one is 11%, which is almost twice as much as
the result produced by the universal theory.

It is interesting to note that the range of Cu concentrations for which the relationship
Cc(Ii) = Fi(Ii) was plotted (0.0993 to 0.25%) does not exceed one order of magnitude, while
the results of analyzing the effects produced by third elements in the determination of
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Cu content (0.007 to 8%, as can be seen from Figure 4) cover more than three orders of
magnitude. The range of the concentrations of influencing elements varies from hundredths
to tens of a percent, covering more than two orders of magnitude.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17 
 

С(𝐼) = 𝐹(𝐼), the root-mean-square deviation is equal to 5.6%, i.e., the results are almost 
equal. 

 
Figure 5. The results of applying the proposed universal theory for factoring in third-element effects (Ni, W, Cr, V) to 
determining Cu concentration in steels; 1—𝐶 (nominal Cu concentration in the sample); 2—𝐶 (calculation of Cu concen-
tration without taking into account the effects); 3—𝐶ଵ (concentration calculated using the linear theory; see Appendix A); 
4—𝐶ଶ (concentration calculated using the proposed universal theory). 

This shows that in the case under consideration, the proposed theory adequately 
takes into account the effects caused by third elements. It should be noted that when these 
effects are described by means of the empirical theory, the root-mean-square deviation of 
the measured concentration from the nominal one is 11%, which is almost twice as much 
as the result produced by the universal theory. 

It is interesting to note that the range of Cu concentrations for which the relationship 𝐶(𝐼) = 𝐹(𝐼) was plotted (0.0993 to 0.25%) does not exceed one order of magnitude, 
while the results of analyzing the effects produced by third elements in the determination 
of Cu content (0.007 to 8%, as can be seen from Figure 4) cover more than three orders of 
magnitude. The range of the concentrations of influencing elements varies from hun-
dredths to tens of a percent, covering more than two orders of magnitude. 

Figure 6 shows data similar to those presented in Figure 5 for Al as an impurity in 
the same sets of steels. By applying the proposed universal theory, it becomes possible to 
reduce the root-mean-square relative deviation by a factor of 2.9 (from 25.5 to 8.8%). The 
use of the empirical method results in a twofold decrease in this value to 12.5%. In the 
absence of third-element effects when using the UG0k–UG9k set, the value is equal to 
4.2%. As can be seen, the difference between the results produced by both theories is not 
as great as in the case of Cu as an impurity. Apparently, this can be explained by the fact 
that for a number of reasons (uneven distribution over the sample, etc.), Al content in 
steels is determined with large random errors.Therefore, while the random error at a Cu 
concentration of about 0.01% is approximately 5%, the same concentration of Al will gen-
erate a random error of roughly 10%. It is for this reason that the deviation of Al concen-
tration from nominal values in the corresponding standard steels is also roughly 10% (for 
example, in the UG3k sample, the concentration is 0.015% with an error of 0.0015%). Thus, 

Figure 5. The results of applying the proposed universal theory for factoring in third-element effects
(Ni, W, Cr, V) to determining Cu concentration in steels; 1—Cp (nominal Cu concentration in the
sample); 2—Cc (calculation of Cu concentration without taking into account the effects); 3—C1

c
(concentration calculated using the linear theory; see Appendix A); 4—C2

c (concentration calculated
using the proposed universal theory).

Figure 6 shows data similar to those presented in Figure 5 for Al as an impurity in
the same sets of steels. By applying the proposed universal theory, it becomes possible to
reduce the root-mean-square relative deviation by a factor of 2.9 (from 25.5 to 8.8%). The use
of the empirical method results in a twofold decrease in this value to 12.5%. In the absence
of third-element effects when using the UG0k–UG9k set, the value is equal to 4.2%. As can
be seen, the difference between the results produced by both theories is not as great as in the
case of Cu as an impurity. Apparently, this can be explained by the fact that for a number
of reasons (uneven distribution over the sample, etc.), Al content in steels is determined
with large random errors.Therefore, while the random error at a Cu concentration of about
0.01% is approximately 5%, the same concentration of Al will generate a random error
of roughly 10%. It is for this reason that the deviation of Al concentration from nominal
values in the corresponding standard steels is also roughly 10% (for example, in the UG3k
sample, the concentration is 0.015% with an error of 0.0015%). Thus, the root-mean-square
relative deviation of Cc from Cp for Al obtained when applying the universal theory is due,
for the most part, to a random error in the process of concentration measurement rather
than to unaccounted effects caused by third elements.
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4. Conclusions

In conclusion, we will once again formulate the key physical ideas that shaped the
foundation for the proposed theory:

1. Third-element effects are additive. This assumption is justified by the fact that we
considered a case of samples with small amounts of impurities, which makes it
possible to neglect so-called effects superimposed on other effects.

2. The main causes of third-element effects on the results of determining impurity con-
tent in the sample are: (1) changes in the conditions for the emission of impurity atoms
from the sample to the plasma zone and the dependence of the plasma parameters
(in particular, the excitation temperature) on the concentrations of the third elements
in the sample; (2) changes in the registered signal of the analyte due to spectral line
interferences and the dependence of the background plasma radiation on the concen-
trations of the third elements in the sample. This makes it possible to represent the
relationship between the measured impurity concentration and the intensities of the
analytical lines in the form of (4).

3. As a rule, the concentrations of impurities are small, which makes it possible to use
expansions in series of the type (10).

4. When there are third-element effects, the relationship between the concentration of
the analyte and the intensity of its analytical line can be represented as a polynomial
of some degree N0 that coincides with the degree of the corresponding polynomial
in the absence of third-element effects. When they are present, the coefficients of
this polynomial depend on the intensities of the analytical lines Ik of the influencing
elements and, at Ik = 0, are equal to the corresponding coefficients in the absence of
third-element effects.

As a result of the study, a new theory on the influence of third elements on the results of
AES experiments has been developed and tested. As the proposed algorithm implies using
only data arrays on the intensities of analytical lines of both the analyte and influencing
elements, it makes it possible to avoid the use of successive approximation methods
that slow down the operation of the spectrometer. However, the use of such methods is
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necessary when the algorithm accounting for the effects caused by third elements uses data
on the concentrations of elements.
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Appendix A

As before, we will assume that we have N analytes and M measurements of their
concentrations in state standard reference samples or quality control samples, and the
relationship between the concentration of the i-th element and the intensity of its analytical
line in the absence of third-element effects can be described by (3).

As detailed above, programs for processing data from emission spectrometers usually
represent the function Fi(Ii) as a polynomial of some degree, which is determined by an
analytical method. If Ci

(j) is the nominal value of the concentration of the i-th element in
the j-th reference standard, then the coefficients in the polynomial (1) are found by the least
squares method (LSM) from minimizing the functional:

Si =
M

∑
j=1

[
Ci

(j) − Fi

(
Ii
(j)
)]2
· 1
Wij

; Wij =

√√√√(∆Ii
(j)

Ii
(j)

)2

+

(
∆Ci

(j)

Ci
(j)

)2

, (A1)

where Wij is the statistical weight when measuring the analytical line of the i-th element
according to the results of analyzing the j-th reference standard; ∆Ii

(j), ∆Ci
(j) are absolute

errors in measuring the intensity Ii
(j) and the reference value of the concentration Ci

(j). If
(3) is a polynomial in the K-order variable Ii

(j) with coefficients a1, . . . , aK, the following is
fulfilled:

∂Si
∂ak

= 0;
∂2Si
∂ak

2 > 0; k = 1, . . . , K; Fi(Ii) ≡ Fi(Ii, a1, . . . , aK). (A2)

Thus, to find the function Fi(Ii), it is necessary to use a set of reference standards in
which there are no third-element effects, for example, standards of one type of alloys with
small (to a certain extent) concentrations of impurity elements.

The description of the relationship between the concentration of the i-th element and
the intensities of the analytical lines of other elements has the form:

ϕi = Ci − Fi(Ii) ≡ ϕi(Ii, Im, . . . , Im+V−1). (A3)

m, V, s were defined earlier. We will approximate the dependence of the function ϕi
on the intensity Im+s by a linear dependence in the form:

ϕs
i (Im+s, Ii) = bm+s Im+s + dm+s Ii Im+s, (A4)
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where the first term takes into account the so-called additive effect, while the second one
represents the multiplicative effect. In this case, we will assume that the effects produced
by different elements are summed additively.

As a rule, in programs for factoring in third-element effects on the results of AES
experiments, the multiplicative term includes the concentration Ci. rather than the intensity
Ii. This makes it necessary to solve systems of equations for the relative concentrations of
the elements in the sample by successive approximation methods. When using (A4), it can
be avoided, and the relative concentration of each element can be found independently of
the others.

We will solve the problem sequentially. We will start with s = 0 and find the coeffi-
cients bm, dm by minimizing the functional

Si0 =
M

∑
j=1

[
ϕij − φ0

i (Im)
]2
· 1
Wij

=
M

∑
j=1

[
ϕij − Im

(j)
(

bm + dm Ii
(j)
)]2
· 1
Wij

. (A5)

Thus, at step 0, the function approximating the array Ci that takes into account the
effect produced by element number m on determining the concentration of element number
i will be equal to

F0
i = Fi(Ii, a1, . . . , aK) + φ0

i (Im, Ii). (A6)

Then, using the retrieved values of the coefficients, bm, dm we assume that s = 1 and
introduce the value

ϕ1
i = Ci − Fi(Ii)− φ0

i (Im, Ii) = Ci − Fi(Ii)− Im(bm + dm Ii), (A7)

which we approximate by the function

φ1
i (Im+1, Ii) = Im+1(bm+1 + dm+1 Ii). (A8)

Next, we minimize the functional

Si1 =
M

∑
j=1

[
ϕ1

ij − φ1
i (Im, Ii)

]2
· 1
Wij

=
M

∑
j=1

[
ϕ1

ij − Im+1
(j)
(

bm+1 + dm+1 Ii
(j)
)]2
· 1
Wij

(A9)

and find the coefficients bm+1, dm+1, etc. Thus, at s-step, the function that approximates the
array Ci and takes into account the effects caused by elements numbered from m to m + s
will have the following form:

Fs
i = Fi(Ii, a1, . . . , aK) +

s

∑
q=0

φ
q
i
(

Im+q, Ii
)
= Fi(Ii, a1, . . . , aK) +

s

∑
q=0

Im+q
(
bm+q + dm+q Ii

)
. (A10)

Minimizing the functional Sis at the s-th step results in:

bm+s =
(As

22 f s
1−As

12 f s
2)

As
11 As

22−As
12 As

21
; dm+s =

(As
11 f s

2−As
21 f s

1)
As

11 As
22−As

12 As
21

;

As
11 =

M
∑

j=1

Im+s
(j)2

Wij
; As

12 = As
21 =

M
∑

j=1

Im+s
(j)2

Ii
(j)

Wij
; As

22 =
M
∑

j=1

Im+s
(j)2

Ii
(j)2

Wij
;

f s
1 =

M
∑

j=1

ϕs
ij Im+s

(j)

Wij
; f s

2 =
M
∑

j=1

ϕs
ij Im+s

(j) Ii
(j)

Wij
;

ϕs
ij = Cij − Fi

(
Iij
)
−

s
∑

q=0
Im+q

(j)
(

bm+q + dm+q Ii
(j)
)

.

(A11)

It is formula (A11) that gives the solution to the problem.
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Appendix B

To test the proposed methodology for factoring in interelement interferences, let
us consider the following simulation problem. As the function Ci = Fi(Ii) (where the
concentration is expressed as a percentage) for the i-th element, we will take a simulation
function Fim(Ii) in the form of a polynomial of the third degree:

Fim(Ii) = a1 Ii + a2 I2
i + a3 I3

i , (A12)

where a1, a2, a3 are some constants. As an array of average intensities that does not take
into account the effects in the reference standard with number j, we will take:

I j
i =

j
3

; j = 0 . . . 36. (A13)

That is, M = 37. We will adopt the number of influencing elements equal to 3. We will
assume that in this numerical experiment, the effects of the three elements are described by
Gaussian functions with different half-widths and amplitudes:

Im1 = I0
m1exp[0.5(Ii − 10)2]; Im2 = I0

m2exp[0.7(Ii − 20)2]; Im3 = I0
m3exp[0.3(Ii − 30)2];

I0
m1 = 7; Im2 = −1.5·I0

m1; Im3 = 2·I0
m1.

(A14)
The total effect of the three elements can be represented in the following form:

fm = b1 Im + b2 Im Ii; Im = Im1 + Im2 + Im3, (A15)

where b1, b2 are constants.
In addition, to simulate the measurement error, we introduce a random function

X(M, ∆x, j) with a normal distribution and a mean value of zero (where ∆x is the variance
of the normal distribution), which determines the relative deviation as a result of a random
error in determining the concentration of an element in the reference standard with number
j. Thus, during each simulation of measuring the concentration of the i-th element, a set
M = 37 (the number of standards) of values of this function is generated for different js
(different reference standards) with a given variance and a zero mean value.

Thus, in this model of the effects produced by three elements, for a reference standard
with number j, the measured relative concentration Cie

(
I j
i

)
, expressed as a fraction, has

the following form:

Cie

(
I j
i

)
= 0.01·

[
Fi

(
I j
i

)
+ fm

(
I j
i

)][
1 +

X(M, ∆x, j)

(1 + j)0.2

]
, (A16)

where the factor 1
(1+j)0.2 simulates the decrease in the root-mean-square deviation of the

measurement with an increase in concentration.
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