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Abstract: The Electric Energy Consumption Prediction (EECP) is a complex and important process
in an intelligent energy management system and its importance has been increasing rapidly due to
technological developments and human population growth. A reliable and accurate model for EECP
is considered a key factor for an appropriate energy management policy. In recent periods, many
artificial intelligence-based models have been developed to perform different simulation functions,
engineering techniques, and optimal energy forecasting in order to predict future energy demands on
the basis of historical data. In this article, a new metaheuristic based on a Long Short-Term Memory
(LSTM) network model is proposed for an effective EECP. After collecting data sequences from the
Individual Household Electric Power Consumption (IHEPC) dataset and Appliances Load Prediction
(AEP) dataset, data refinement is accomplished using min-max and standard transformation methods.
Then, the LSTM network with Butterfly Optimization Algorithm (BOA) is developed for EECP. In
this article, the BOA is used to select optimal hyperparametric values which precisely describe the
EEC patterns and discover the time series dynamics in the energy domain. This extensive experiment
conducted on the IHEPC and AEP datasets shows that the proposed model obtains a minimum error
rate relative to the existing models.

Keywords: butterfly optimization algorithm; electric energy consumption prediction; long short-term
memory network; time series analysis; transformation methods

1. Introduction

In recent decades, the demand for electricity has been rising on a global scale due to
the massive growth of electronic markets [1], the development of electrical vehicles [2],
the use of heavy machinery equipment (e.g., line excavators, pile boring machines) [3],
technological advancements, and rapid population growth [4,5]. As a result, accurate elec-
tric load forecasting has greater importance in the field of power system planning [6]. An
underestimation reduces the reliability of the power system, while overestimation wastes
energy resources and effectively enhances operational costs [7]. Therefore, a precise electric
load forecasting system is necessary for power systems, the electrical load series being
affected by several influencing factors [8]. Currently, several electrical load forecasting
models are being developed. The models fall into two categories: multi-factor forecasting
models and time series forecasting models [9]. The time series forecasting models are
quicker and easier in EECP compared to the multi-factor forecasting models. Numerous
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non-objective factors and electric load series are affected in practical applications, and it is
difficult to control these with multi-factor forecasting models [10–12]. Hence, the multi-
factor forecasting models simply evaluate the relations between forecasting variables and
influencing factors [13–15]. In this research, a novel metaheuristic based on an LSTM model
is developed to generate a more effective EECP. The main contributions are specified below:

• Input data sequences are collected from IHEPC and AEP datasets, and data refinement
is accomplished using min-max along with standard transformation methods in order
to eliminate redundant, missing, and outlier variables.

• Next, the EECP is generated using the proposed metaheuristic based on the LSTM
model. The proposed model superiorly handles the irregular tendencies of energy
consumption relative to other deep learning models and conventional LSTM networks.

• The effectiveness of the proposed metaheuristic based on the LSTM model is evaluated
in terms of mean squared error (MSE), root MSE (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE) on both IHEPC and AEP datasets.

This article is structured as follows. Previous existing research studies on the topic
of EECP are reviewed in Section 2. The mathematical explanations of the proposed meta-
heuristic based on the LSTM model and a quantitative study including experimental results
are specified in Sections 3 and 4, respectively. Finally, the conclusion of this work is stated
in Section 5.

2. Related Works

In this section, previous works in the area are reviewed in order to justify the con-
tribution of the proposal and the selection of strategies considered for comparison in the
experimental section.

Le et al. [16] combined a Bidirectional Long Short-Term Memory (Bi-LSTM) network
and a Convolutional Neural Network (CNN) to forecast household EEC. Firstly, the CNN
was employed to extract the discriminative feature values from the IHEPC dataset and
then the Bi-LSTM network was used to make predictions. Ishaq et al. [17] introduced a
new ensemble-based deep learning model to forecast and predict energy consumption
and demands. Initially, data pre-processing was performed using transformation, nor-
malization, and cleaning techniques, and then the pre-processed data were fed into the
ensemble model, the CNN and Bi-LSTM network extracting discriminative feature values.
In this work, an active learning concept was created on the basis of the moving window to
improve and ensure the prediction performance of the presented model. In the resulting
phase, the effectiveness of the presented model was tested on a Korean commercial build-
ing dataset in light of MAPE, RMSE, MAE, and MSE values. Lin et al. [18] integrated an
Extreme Learning Machine (ELM) and Variational Mode Decomposition (VMD) techniques
for electrical load forecasting. Firstly, the VMD technique was employed to transform the
collected electric load series into components with dissimilar frequencies, which helps to
eliminate fluctuation properties and enhances the overall accuracy of prediction. Finally,
EEC forecasting was carried out utilizing ELM with a differential evolution algorithm.

Xu et al. [19] combined a Deep Belief Network (DBN) and linear regression techniques
to predict time series data. In this study, the linear regression technique captures the
non-linear and linear behaviors of the time series data. Initially, the linear regression
technique was used to obtain the residuals between input and predicted data, and then
the residuals were fed into the DBN for the final forecasting. In the time series forecasting,
the DBN significantly extracts the features between self-organization properties and layers.
Maldonado et al. [20] applied Support Vector Regression (SVR) to the time series data for
electric load forecasting. The SVR technique successfully modelled the nonlinear relation
between the target variables and the exogenous covariates. Wan et al. [21] developed a new
multivariate temporal convolutional network for time series prediction that has been ex-
tensively used in applications such as transportation, finance, aerology, and power/energy.
In the time series data forecasting, the presented convolution network superiorly enhanced
the results of EECP. Further, this study concentrates on the trade-off between prediction
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accuracy and implementation complexity. Bouktif et al. [22] combined a genetic algorithm
and a Particle Swarm Optimization (PSO) algorithm to select optimal hyperparameters in
LSTM for an effective EECP.

Qiu et al. [23] introduced an oblique random forest classifier for time series forecasting.
In the developed classification technique, every node of the decision tree was replaced by
the optimal feature-based orthogonal classifier. Additionally, the least square classification
technique was used to perform feature partition. The efficiency of the oblique random
forest classifier was investigated using five electricity load time series datasets and eight
general time series datasets. Further, Kuo and Huang [24] presented a new deep learning
network for short term energy load forecasting. The obtained results showed that the deep-
energy model was robust and had a strong generalization ability in data series forecasting.
Similarly, Qiu et al. [25] combined DBN and empirical mode decomposition for electricity
load demand forecasting. Initially, the acquired data series were decomposed into several
Intrinsic Mode Functions (IMFs). Further, the DBN was applied to model each of the
extracted IMFs for accurate prediction. Pham et al. [26] implemented a random forest
classifier to forecast household short-term energy consumption. The effectiveness of the
random forest classifier was tested on five one-year datasets. The evaluation outcome
showed that the presented random forest classifier obtained better predictive accuracy by
means of MAE.

Galicia et al. [27] introduced an ensemble classifier by combining random forest, gra-
dient boosted trees and decision trees to forecast big data time series. The evaluation
results showed that the developed ensemble classifier performed well in time series data
prediction compared to other models and individual ensemble models. Khairalla et al. [28]
presented a new stacking multi-learning ensemble model for forecasting time series data.
The presented model includes three main techniques—SVR, linear regression, and a back-
propagation neural network—and the presented ensemble model comprises four major
steps: integration, pruning, generation, and ensemble prediction tasks. Jallal et al. [29]
introduced a hybrid model that integrates a firefly algorithm and an Adaptive Neuro
Fuzzy Inference System (ANFIS) classifier for EECP, though the improved search space
diversification in the presented model enhances its predictive accuracy. Bandara et al. [30]
introduced a new LSTM Multi-Seasonal Net (LSTM-MSNet) for time series forecasting
with multiple seasonal patterns. The evaluation outcome showed that the presented LSTM-
MSNet model achieved better computational time and prediction accuracy compared to
existing systems. Abbasimehr and Paki [31] combined multi-head attention and LSTM
networks to predict the time series data precisely. Sajjad et al. [32] initially used min-max
and standard transformation techniques to eliminate outlier, redundant, and null values
from the IHEPC and AEP datasets. Then, EECP was accomplished using CNN with a Gated
Recurrent Units (GRUs) model. The experimental evaluation showed that the presented
model obtained a significant performance in EECP by means of MAE, RMSE, and MSE.

Khan et al. [33] combined a Bi-LSTM network and dilated CNN to predict power
consumption in local energy systems. As can be seen in the resulting phase, the presented
model effectively predicts multiple step power consumption that includes monthly, weekly,
daily, and hourly outputs. Khan et al. [34] has integrated multilayer bi-directional GRU and
CNNs for household electricity consumption prediction. The effectiveness of the presented
model was evaluated in terms of MAE, RMSE, and MSE on the IHEPC and AEP datasets.

Nowadays, artificial intelligence techniques are applied more in the application of
EECP because of its reliability and high performance results. The artificial intelligence-
based techniques, such as CNN, GRU, multi head attentions, ANFIS, and the ensemble
schemes, are extensively applied for energy forecasting and time series issues. The GRU
technique obtained a better outcome in EECP related to conventional techniques, but it
is ineffective in handling long-term time series data sequences, and it is also historically
dependent. In addition, the aforementioned techniques failed in long-term consequence
forecasting and includes vanishing gradient issues [35]. To overcome the above stated
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concerns, a new metaheuristic based on the LSTM network is proposed in this article to
predict and handle the short-term and long-term dependencies in energy forecasting.

3. Proposal

The proposed metaheuristics based on the LSTM network includes three major phases
in EECP, namely, data collection (AEP and IHEPC datasets), data refinement (min-max
transformation and standard transformation methods) and consumption prediction (using
metaheuristics based on the LSTM network). The flow-diagram of the proposed model is
specified in Figure 1.
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3.1. Dataset Description

In the household EECP application, the effectiveness of the proposed metaheuristics-
based LSTM network is validated with AEP and IHEPC datasets. The AEP dataset contains
29 parameters related to appliances’ energy consumption, lights, and weather information
(pressure, temperature, dew point, humidity, and wind speed), which are statistically
depicted in Table 1. The AEP dataset includes data for four and half months of a residential
house at a ten-minute resolution. In the AEP dataset, the data are recorded from the outdoor
and indoor environments using a wireless sensor network, the outdoor data being acquired
from a near-by airport [36]. The residential house contains one outdoor temperature sensor,
nine indoor temperature sensors, and nine humidity sensors; one sensor is placed in the
outdoor environment and seven humidity sensors are placed in the indoor environment.
The humidity, outdoor pressure, temperature, dew point, and visibility are recorded at the
near-by airport. The statistical information about the AEP dataset is depicted in Table 1.
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Table 1. Statistical information about the AEP dataset.

Attributes Information Units

Dew point Outside dew point recorded from Chievres
Weather Station (CWS) C

Visibility Outside visibility recorded from CWS Km
Wind speed Outside wind speed recorded from CWS m/s

Rho Outside humidity recorded from CWS %
Pressure Outside pressure recorded from CWS Mm Hg

To Outside temperature recorded from CWS C
RH1 Humidity of parents’ room %
T1 Temperature of parents’ room C

RH2 Humidity of teenager’s room %
T2 Temperature of teenager’s room C

RH3 Humidity of ironing room %
T3 Temperature of ironing room C

RH4 Outside humidity of building %
T4 Outside temperature of building C

RH5 Humidity of bathroom %
T5 Temperature of bathroom C

RH6 Humidity of office room %
T6 Temperature of office room C

RH7 Humidity of laundry room %
T7 Temperature of laundry room C

RH8 Humidity of living room %
T8 Temperature of living room C

RH9 Humidity of kitchen %
T9 Temperature of kitchen C

Light Total energy consumption by lights Watt-hour (Wh)
Appliances Total energy consumption by appliances Wh

In addition, the IHEPC dataset comprises of 2,075,259 instances, which are recorded
from a residential house in France for five years (From December 2006 to November
2010) [37]. The IHEPC dataset includes nine attributes like voltage, minute, global intensity,
month, global active power, year, global reactive power, day and hour. Three more variables
are acquired from energy sensors: sub metering 1, 2, and 3 with proper meaning. The
statistical information about IHEPC dataset is represented Table 2. The data samples of
AEP and IHEPC datasets are graphically presented in the Figure 2.

Table 2. Statistical information about IHEPC dataset.

Attributes Information

Sub metering 1 Energy utilized in kitchen (Wh)
Sub metering 2 Energy utilized in laundry room (Wh)
Sub metering 3 Energy utilized by water heater (Wh)

Date dd/mm/yyyy
Time hh:mm:ss

Voltage Minute averaged voltage of household (volt)
Global reactive voltage Minute averaged global reactive voltage of household (kilowatt (kW))
Global active voltage Minute averaged global active voltage of household (kW)

Global intensity Minute averaged global intensity of household (ampere)
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3.2. Data Refinement

After the acquisition of data from the AEP and IHEPC datasets, data refinement
is performed to eliminate missing and outlier variables and to normalize the acquired
data. In the AEP dataset, a standard transformation technique is employed for converting
the acquired data into a particular range. In the AEP dataset, the feature vectors range
lies between 0 and 800, and by using the standard transformation technique the feature
vectors range is transformed into −4 and −6. The mathematical expression of the standard
transformation technique is defined in Equation (1):

Tstandard = (X−U)/S (1)

where S indicates standard deviation, X denotes actual acquired data, and U represents
the mean. In addition, the IHEPC dataset comprises redundant, outlier, and null values,
so a min-max scalar is applied to eliminate non-significant values and to bring the feature
vectors into a particular range of values. In the IHEPC dataset, the feature vectors range
lies between 0 to 250, and by using the min-max transformation technique, the feature
vectors range is transformed into −2 and −3. The mathematical expression of the min-max
transformation technique is defined in Equation (2):

Tmin−max =
X− Xmin

Xmax − Xmin
(2)

where Xmax and Xmin indicates maximum and minimum values of the IHEPC dataset. A
total of 2890 and 25,980 missing values are eliminated in the AEP and IHEPC datasets
utilizing the pre-processing techniques. The refined data samples of AEP dataset and
IHEPC dataset are presented in Figure 3.
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3.3. Energy Consumption Prediction

After refining the acquired data, the EECP is accomplished using the metaheuristics-
based LSTM network. The LSTM network is an extension of a Recurrent Neural Network
(RNN). The RNN has numerous problems, such as short-term memory and vanishing
gradient issues, when it processes large data sequences [38]. In addition, the RNN is
inappropriate for larger data sequences because it removes the important information
from the input data. In the RNN model, the gradient updates the weights during back
propagation, where sometimes it reduced highly and the initial layers get low gradient and
stops further learning. To tackle these issues, the LSTM network was developed by Hochre-
iter [39]. The LSTM network overcomes the issues of RNNs by replacing hidden layers
with memory cells for modelling long-term dependencies. The LSTM network includes
dissimilar gates, such as a forget gate, input gate, and output gate, along with activation
functions for learning time-based relations. The LSTM network and the individual LSTM
unit are graphically depicted in Figures 4 and 5.
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The mathematical expressions of the input gate int, forget gate ft, cell ct, and output
gate out are defined in Equations (3)–(6):

int = σ(Winhht−1 + Winaat + bin) (3)

ft = σ(W f hht−1 + W f aat + b f ) (4)

ct = ft � ct−1 + int � tan h(Wchht−1 + Wcaat + bc) (5)

out = σ(Wouhht−1 + Wouaat + bou) (6)

where t represents different time steps, at = A[t, .] ∈ RF represents temporal quasi-
periodic feature vectors, tanh (.) denotes a hyperbolic tangent function, σ(.) states a
sigmoid function, and W and b work coefficients. The output of the LSTM unit ht−1
is mathematically specified in Equation (7), and it is graphically presented in Figure 5:

ht = out � tanh(ct) (7)

The cell state {ct|t = 1, 2, ..T|} learns the necessary information from at on the basis
of the dependency relationship during the training and testing mechanism. Finally, the
extracted feature vectors are specified by the last LSTM unit output hT . The hyperparamet-
ric values selected using BOA for the LSTM network are listed as follows: the number of
sequences are 2 and 3, the sequence length is from 7 to 12, the minimum batch size is 20, the
learning rate is 0.001, the number of the LSTM unit is 55, the maximum epoch is 120, and
the gradient threshold value is 1. The BOA is a popular metaheuristic algorithm, which
mimics the butterfly’s behavior in foraging and mating. Biologically, butterflies are well
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adapted for foraging, possessing sense receptors that allow them to detect the presence of
food. The sense receptors are known as chemoreceptors and are dispersed over several of
the butterfly’s body parts, such as the antennae, palps, legs, etc. In the BOA, the butterfly
is assumed as a search agent to perform optimization and the sensing process depends on
three parameters such as sensory modality, power exponent and stimulus intensity. If the
butterfly is incapable of sensing the fragrance, then it moves randomly in the local search
space [40].

Whereas, the sensory modality is in the form of light, sound, temperature, pressure,
smell, etc. and it is processed by the stimulus. In the BOA, the magnitude of the physical
stimulus is denoted as M and it is associated with the fitness of butterfly with greater
fragrance value in the local search space. In the BOA, the searching phenomenon depends
on two important issues: formulation of fragrance q and variations of physical stimulus M.
For simplicity purpose, the stimulus intensity M is related with encoded-objective-function.
Hence, q is relative and is sensed by other butterflies in the local search space. In the BOA,
the fragrance is considered as a function of the stimulus, which is mathematically defined
in Equation (8):

qi = zld (8)

where z denotes the sensory modality, l the perceived magnitude of fragrance, M the
stimulus intensity and d indicates the power exponent. The BOA consists of two essential
phases: a local and a global search phase. In the global search phase, the butterfly identifies
the fitness solution that is determined in Equation (9):

xt+1
i = xt

i +
(
levy (λ)× g∗ − xt

i
)
× qi (9)

where xt
i indicates the vector xi of the ith butterfly, t represents iteration, g∗ the present

best solution, qi states fragrance of the butterfly and levy (λ) denotes a random number
that ranges between 0 and 1. The general formula for calculating the local search phase is
given in Equation (10):

xt+1
i = xt

i +
(
levy (λ)× xt

k − xt
i
)
× qi (10)

where xt
k and xt

i are the kth/ith butterflies from the solution. If xt
k and xt

i belongs to the
same flight, Equation (10) performs a local random walk. The flowchart of the BOA is
depicted in Figure 6.

In this scenario, the iteration phase is continued until the stopping criteria is not
matched. The pseudocode of the BOA is represented as follows (Algorithm 1):
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Algorithm 1 Pseudocode of BOA

Objective function q(x), xi (i = 1, 2, . . . .n)
Initialize butterfly population
In the initial population, best solution is identified
Determine the probability of switch P
While stopping criteria is not encountered do
For every butterfly do
Draw rand
Find butterfly fragrance utilizing Equation (8)
If rand < P then
Accomplish global search utilizing Equation (9)
Else
Accomplish local search utilizing Equation (10)
End if
Calculate the new solutions
Update the best solutions
End for
Identify the present better solution
End while
Output: Better solution is obtained
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4. Experimental Results

In the EECP application, the proposed metaheuristic based on the LSTM network
is simulated using a Python software environment on a computer with 64 GB random
access memory, a TITAN graphics processing unit with Intel core i7 processor and Ubuntu
operating system. The effectiveness of the proposed metaheuristic based on the LSTM
network in EECP is validated by comparing its performance with benchmark models,
such as a Bi-LSTM with CNN [16], an ensemble-based deep learning model [17], a CNN
with GRU model [32], a Bi-LSTM with dilated CNN [33], and multilayer bi-directional
GRU with CNN [34] on the AEP and IHEPC datasets. In this research, the experiment is
conducted using four performance measures, MAPE, MAE, RMSE, and MSE, for time series
data prediction. The MAPE is used to estimate the prediction accuracy of the proposed
metaheuristic based on the LSTM network. The MAPE performance measure represents
accuracy in percentage, as stated in Equation (11):

MAPE =
1
n

n

∑
1
|y− ŷ

y
| (11)

The MAE is used to estimate the average magnitude of the error between actual and
predicted values by ignoring their direction. The MSE is used to determine the mean
disparity between actual and predicted values. The mathematical expressions of MAE
and MSE are stated in the Equations (12) and (13). Correspondingly, the RMSE is used to
find the dissimilarity between the actual and predicted values, and then the mean of the
square errors is computed. Lastly, the square root of the mean values is calculated, where
the mathematical expression of RMSE is stated in Equation (14):

MAE =
1
n

n

∑
1
|y− ŷ| (12)

MSE =
1
n

n

∑
1
(y− ŷ)2 (13)

RMSE =

√
1
n

n

∑
1
(y− ŷ)2 (14)

where n represents the number of instances, y the actual value and ŷ the prediction value.

4.1. Quantitative Study on AEP Dataset

In this scenario, an extensive experiment is conducted on the AEP dataset to evaluate
and validate the proposed metaheuristic based on the LSTM network’s effectiveness and
robustness for real-world issues. The refined AEP dataset is split into a 20:80% ratio for
the proposed model’s testing and training. The proposed metaheuristic based on the
LSTM network utilizes 20% of data during testing and 80% of data during training. As
seen in Table 3, the proposed metaheuristic based on the LSTM network obtained results
closely related to the native properties of energy and the actual consumed energy level.
By inspecting Table 3, the proposed model achieved effective results compared to other
existing models, such as linear regression, CNN, SVR, the LSTM network and the Bi-LSTM
network in light of MAPE, MAE, RMSE and MSE. Hence, the irregular tendencies of energy
consumption are easily and effectively handled by the proposed metaheuristic based on the
LSTM network. Hence, the proposed model attained a minimum MAPE of 0.09, an MAE of
0.07, an RMSE of 0.13, and an MSE of 0.05. In addition to this, the proposed model reduces
prediction time by almost 30% compared to other models for the AEP dataset. A graphical
presentation of the experimental models for the AEP dataset is depicted in Figure 7.
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Table 3. Performance of the experimental models on the AEP dataset.

Models MAPE MAE RMSE MSE Predicting Time (s)

Linear regression 1.54 1.99 2.12 1.24 38
CNN 0.34 0.40 1.02 0.49 29
SVR 0.72 0.88 1.92 0.82 49

LSTM network 0.28 0.17 0.92 0.29 21
Bi-LSTM network 0.24 0.13 0.78 0.14 18

Metaheuristic based on the LSTM network 0.09 0.07 0.13 0.05 12
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In Table 4, the hyperparameter selection in the LSTM network is carried out with
dissimilar optimization techniques, such as BOA, Grey Wolf Optimizer (GWO), Particle
Swarm Optimizer (PSO), Genetic Algorithm (GA), Ant Colony Optimizer (ACO), and
Artificial Bee Colony (ABC), and the performance validation is done using four metrics,
namely, MAPE, MAE, RMSE, and MSE on the AEP dataset. As evident from Table 4, the
combination of the LSTM network with BOA obtained an MAPE of 0.09, an MAE of 0.07,
an RMSE of 0.13, and an MSE of 0.05, which are minimal compared to other optimization
techniques. Due to naive selection of the hyperparametric values and the noisy electric data,
the LSTM network obtained unacceptable forecasting results. An optimal LSTM network
configuration is therefore needed to discover the time series dynamics in the energy domain
and to describe the electric consumption pattern precisely. In this article, a metaheuristic-
based BOA is applied to identify the optimal hyperparametric values of the LSTM network
in the EEC domain. The BOA effectively learns the hyper parameters of the LSTM network
to forecast energy consumption. Graphical presentation of dissimilar hyperparameter
optimizers in the LSTM network on the AEP dataset is depicted in Figure 8.

Table 4. Performance of the dissimilar hyperparameter optimizers in the LSTM network on the
AEP dataset.

LSTM Network

Optimizers MAPE MAE RMSE MSE Predicting Time (s)

GWO 0.23 0.18 0.56 0.15 30
PSO 0.19 0.09 0.31 0.11 43
GA 0.26 0.13 0.82 0.19 64

ACO 0.22 0.17 0.44 0.13 29
ABC 0.12 0.11 0.37 0.08 25
BOA 0.09 0.07 0.13 0.05 12
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4.2. Quantitative Study on IHEPC Dataset

Table 5 represents the extensive experiment conducted on the IHEPC dataset to
evaluate the efficiency of the proposed metaheuristic based on the LSTM network by means
of MAPE, MAE, RMSE, and MSE. The proposed metaheuristic based on the LSTM network
obtained a minimum MAPE of 0.05, an MAE of 0.04, an RMSE of 0.16, and an MSE of
0.04, which are effective compared to other experimental models, such as linear regression,
CNN, SVR, the LSTM network, and the Bi-LSTM network on the IHEPC database. In
addition, the prediction time of metaheuristic based on LSTM network is 25% minimum
compared to other experimental models. In this research, the metaheuristic based on the
LSTM network superiorly handles the complex time series patterns and moderates the error
value at every interval related to the other experimental models. Graphical presentation of
the experimental models for the IHEPC dataset is depicted in Figure 9.

Table 5. Performance of the experimental models on IHEPC dataset.

Models MAPE MAE RMSE MSE Predicting Time (s)

Linear regression 0.82 0.62 0.90 0.23 34
CNN 0.13 0.14 0.29 0.17 22
SVR 0.47 0.26 0.82 0.38 29

LSTM network 0.11 0.12 0.31 0.19 19
Bi-LSTM network 0.09 0.12 0.19 0.11 18.20

Metaheuristic based on the
LSTM network 0.05 0.04 0.16 0.04 13

The LSTM network with BOA achieved better results in energy forecasting compared
to other optimizers in light of MAPE, MAE, RMSE, and MSE. As seen in Table 6, the
BOA reduced the error value in energy forecasting by almost 20–50%, and the prediction
time by 25% compared to other hyperparameter optimizers in the LSTM network for
the IHEPC dataset. The experimental result shows that the metaheuristic-based BOA
model obtained a successful solution, and it effectively reduces computational complexity
in determining the optimal parameters in the context of EECP. Graphical presentation
of dissimilar hyperparameter optimizers in the LSTM network on the IHEPC dataset is
depicted in Figure 10. Additionally, the fitness comparison of different optimizers by
varying the iteration number is graphically presented in Figure 11.
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Table 6. Performance of the dissimilar hyperparameter optimizers in the LSTM network on the
IHEPC dataset.

LSTM Network

Optimizers MAPE MAE RMSE MSE Predicting Time (s)

GWO 0.12 0.23 0.29 0.11 18
PSO 0.18 0.12 0.23 0.17 18.20
GA 0.09 0.07 0.20 0.07 17

ACO 0.12 0.21 0.20 0.11 16
ABC 0.14 0.17 0.18 0.12 14
BOA 0.05 0.04 0.16 0.04 13
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The prediction performance of the metaheuristic-based BOA model for the AEP and
IHEPC datasets are graphically presented in Figures 12 and 13. Through an examination
of these graphs, the proposed metaheuristic-based BOA model was shown to generate
effective prediction results in the EECP domain.
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4.3. Comparative Study

In this scenario, the comparative investigation of the metaheuristic-based LSTM
network and the existing models is detailed in Table 7 and Figure 14. T. Le et al. [16]
integrated a Bi-LSTM network and a CNN for household EECP. Initially, the discriminative
feature values were extracted from the IHEPC dataset using a CNN model, then the EECP
was accomplished with the Bi-LSTM network. Extensive experimentation showed that the
presented Bi-LSTM and the CNN model obtained an MAPE of 21.28, an MAE of 0.18, an
RMSE of 0.22, and an MSE of 0.05 for the IHEPC dataset. M. Ishaq et al. [17] implemented
an ensemble-based deep learning model to predict household energy consumption. In the
resulting phase, the presented model performance was tested on the IHEPC dataset by
means of MAPE, RMSE, MAE, and MSE. The presented ensemble-based deep learning
model obtained an MAPE of 0.78, an MAE of 0.31, an RMSE of 0.35, and an MSE of 0.21
on the IHEPC dataset. M. Sajjad et al. [32] combined CNN with GRUs for an effective
household EECP. Experimental evaluations showed that the presented model attained
MAE values of 0.33 and 0.24, RMSE values of 0.47 and 0.31, and MSE values of 0.22 and
0.09 for both the IHEPC and AEP datasets.

Table 7. Statistical comparison of the proposed model with the existing models for the AEP and
IHEPC datasets.

Models Dataset MAPE MAE RMSE MSE

Bi-LSTM with CNN [16] IHEPC 21.28 0.18 0.22 0.05
Ensemble-based deep learning model [17] IHEPC 0.78 0.31 0.35 0.21

CNN with GRU model [32]
IHEPC - 0.33 0.47 0.22

AEP - 0.24 0.31 0.09
Bi-LSTM with dilated CNN [33] IHEPC 0.86 0.66 0.74 0.54

Multilayer bidirectional GRU with CNN [34] IHEPC - 0.29 0.42 0.18
AEP - 0.23 0.29 0.10

Metaheuristic based on the LSTM network
IHEPC 0.05 0.04 0.16 0.04

AEP 0.09 0.07 0.13 0.05
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Similarly, N. Khan et al. [33] integrated a Bi-LSTM network with a dilated CNN
for predicting power consumption in the local energy system. Experimental evaluation
showed that the presented model achieved an MAPE of 0.86, an MAE of 0.66, an RMSE of
0.74, and an MSE of 0.54 on the IHEPC dataset. Z.A. Khan et al. [34] combined a multilayer
bidirectional GRU with a CNN for household electricity consumption prediction. The
experimental investigation showed that the presented model achieved MAE values of 0.29
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and 0.23, RMSE values of 0.42 and 0.29, and MSE values of 0.18 and 0.10 for the IHEPC
and AEP datasets. As compared to the prior models, the metaheuristic based on the LSTM
network achieved a good performance in EECP and also obtained a minimum error value
for the IHEPC and AEP datasets. Hence, the obtained experimental results show that the
metaheuristic based on the LSTM network significantly handles long and short time series
data sequences to achieve better EECP with low computational complexity.

5. Conclusions

In this article, a new metaheuristic based on the LSTM model is proposed for effective
household EECP. The metaheuristic based on the LSTM model comprises three modules,
namely, data collection, data refinement, and consumption prediction. After collecting the
data sequences from the IHEPC and AEP datasets, standard and min-max transformation
methods are used for eliminating the missing, redundant, and outlier variables, and for
normalizing the acquired data sequences. The refined data are fed into the metaheuristic-
based LSTM model to extract hybrid discriminative features for EECP. In the LSTM network,
the BOA selects the optimal hyperparameters, which improves the classifier’s running time,
and reduces system complexity. The effectiveness of the proposed model was tested on
the IHEPC and AEP datasets in terms of MAPE, MAE, RMSE, and MSE, and the obtained
results were compared with existing models, such as a Bi-LSTM with CNN, ensemble-
based deep learning model, a CNN with a GRU model, a multilayer bidirectional GRU
with a CNN, and a Bi-LSTM with a dilated CNN. As seen in the comparative analysis,
the proposed metaheuristic based on the LSTM model obtained an MAPE of 0.05 and
0.09, an MAE of 0.04 and 0.07, an RMSE of 0.16 and 0.13, and an MSE of 0.04 and 0.05
for the IHEPC and AEP datasets, and these results were better than those generated by
the comparative models. As a future extension of the present work, many non-linear
exogenous data structures, such as monetary factors and climatic changes, will be explored
in order to investigate power consumption.
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Abbreviations

ABC Artificial Bee Colony
ACO Ant Colony Optimizer
AEP Appliances Load Prediction
ANFIS Adaptive Neuro Fuzzy Inference System
Bi-LSTM Bidirectional Long Short-Term Memory network
BOA Butterfly Optimization Algorithm
CNN Convolutional Neural Network
CWS Chievres Weather Station
DBN Deep Belief Network
EECP Electric Energy Consumption Prediction
ELM Extreme Learning Machine
GA Genetic Algorithm
GRUs Gated Recurrent Units
GWO Grey Wolf Optimizer
IHEPC Individual Household Electric Power Consumption
IMFs Intrinsic Mode Functions
kW kilowatt
LSTM Long Short-Term Memory network
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
PSO Particle Swarm Optimization
RMSE Root Mean Square Error
SVR Support Vector Regression
VMD Variational Mode Decomposition
Wh Watt hour
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