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Abstract: The cone penetrometer test (CPT) has been widely used in geotechnical investigations.
However, how to use the limited CPT data to reasonably predict the soil parameters of the unsampled
regions remains a challenge. In the present study, we adopted the Kriging method to obtain the
CPT data of an unsampled location in Adelaide, South Australia, based on the collected CPT data
from six soundings around this location. Interpolation results showed that the trend of the estimated
parameters is consistent with the trend of parameters of the surrounding points. From the Kriging
interpolation result, we further carried out axial bearing capacity calculation of a precast concrete
pile using the CPT-based direct method to verify the reliability of the method. The calculated
bearing capacity of the pile is 99.6 kN which is very close to the true value of 102.8 kN. Our results
demonstrated the effectiveness of the Kriging method in considering the soil spatial variability and
predicting soil parameters, which is quite suitable for the application in engineering practice.

Keywords: CPT; Kriging interpolation method; spatial variability; pile axial bearing capacity

1. Introduction

The cone penetration test (CPT) has been widely used as a quick and reliable soil
exploration test that provides subsurface soil properties [1]. As the electric cone penetrom-
eter (Figure 1) advances into the soil with a constant speed, parameters such as the cone
tip resistance (qc) and the sleeve friction ( fs) are simultaneously measured by the load
cells on the penetrometer. Compared with other in situ tests, CPT can provide continuous
parameter profiles that can yield much more detailed information [2]. As the two major
measured parameters qc and fs vary significantly with the change of the soil layers, CPT
shows advantages in geotechnical investigations to classify soil strata, and several methods
have been proposed to classify soils upon CPT data [3–5]. Moreover, CPT can also be used
to estimate the strength and deformation characteristics of soils, such as the undrained
shear strength of soil Su [6]. Generally speaking, CPT is only conducted at necessary
locations to obtain the required soil properties, for example, around the underground
structure to be constructed. Considering the spatial variability of the soil, the CPT data
obtained from adjacent soundings could be quite different, which makes it difficult to
estimate the soil properties at the unsampled locations. Therefore, for large areas, how to
reasonably estimate the soil properties of the entire area through limited CPT data is of
great importance.

Soil properties are regionalized variables; that is, within a soil layer or rock mass, sam-
ples that are close to each other indicate a stronger correlation than distant ones [7]. Because
CPT parameters directly depend on the soil properties, they are also autocorrelated. In
statistics, there are two ways to consider the correlation of the data sequence with distance:
one is random field theory, and the other is geostatistics. Random field theory is often used
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to analyze time series. Although it has been successfully applied in analyzing soil spatial
variability by different researchers [8,9], it is mostly applied to one-dimensional situations.

Figure 1. Cone penetrometer of CPT.

Geostatistics often refers to the Kriging method, which has been widely used in the
field of geographic science. Different from random field theory, the Kriging method can
be applied to multi-dimensional analysis since it is an algorithm for spatial modeling and
regression interpolation [10]. It has been used by many researchers to analyze the autocor-
relation of geotechnical parameters and achieved promising results [11,12]. However, there
are only a few case studies on adopting the Kriging method to predict the soil parameters
at the unsampled locations, and the data used in previous studies is often scarce, which is
not enough to prove the accuracy and effectiveness of the Kriging method. Currently, there
have been several studies using Markov chain and machine learning methods combined
with CPT test to predict the soil parameters at the unsampled locations [13,14]; however,
they need to meet some strong prerequisites. For example, the Markov chain method is
suitable when the unsampled location and the sampled CPT boreholes are located on the
same horizontal line, while the machine learning method needs to obtain the soil layer
information in advance and perform extensive training to obtain a better prediction result,
which is difficult to be applied into practical engineering. In this study, we used CPT pa-
rameters with small sampling intervals as the research objects to assess the performance of
the Kriging method in predicting spatial soil parameters, thus avoiding data insufficiency
due to excessive sample spacing. The study was further supplemented by axial bearing
capacity calculation, which we used to examine the reliability of the interpolation results
and the applicability of the Kriging method in solving practical engineering problems.

2. Materials and Method

The CPT data is provided by the ISSMSG TC304 Student Contest Committee. As
shown in Figure 2, there are six numbered CPT sampled boreholes randomly distributed
on this 50 × 40 m field represented by the black points. The typical drilling depth is 5 m
below the mud surface, and the measurement spacing is 5 mm (i.e., a total of 1000 qc and
fs would be obtained for each borehole). Figure 3 shows the profiles of qc and fs values
with depth at 6 sampled positions. A precast concrete pile was driven at an unsampled
location shown by the red point numbered F5. In order to figure out the soil properties
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and evaluate the ultimate bearing capacity of this pile foundation, the Kriging method
is adopted to interpret the qc and fs at the pile location based upon the available CPT
data. However, the raw CPT data needs preprocessing before it can be used in the Kriging
interpolation program.

Figure 2. The locations of the sampled CPT boreholes and the pile.

Figure 3. The qc and f s profiles of the six CPT soundings.

CPT Data Preprocessing

The first step is to remove outliers from the data. Outliers refer to those abnormal
points whose values are obviously different from the surrounding sampled points, which is
mainly caused by measurement errors or procedural errors such as rod adding [7]. Outliers
do not reflect the actual CPT characteristics of the sampled points but affect the estimation
accuracy, so they need to be removed first. This process is accomplished by a Gaussian filter,
which replaces the value of the abnormal point with the weighted average of 20 samples
around the point. The example of outliers and the smoothed curve is shown in Figure 4.
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Figure 4. Outlier of raw CPT data.

The second step is to shift the fs data to the right place. Schmertmann [15] emphasized
that incorrect analysis will be made unless a depth correction, or shift, is applied to the fs
measurements. This correction is required since the cone tip resistance, and sleeve friction
load cells are physically separated by a given distance as shown in Figure 1, and hence
measurements of qc do not refer to the same soil as that at which measurements of fs
are taken. Schmertmann [15] recommended that this shift distance should be equal to
the distance between the base of the cone and the mid-height of the sleeve, which, for
standard electric cone penetrometers, is approximately 75 mm. Campanella et al. [16]
argued that the shift distance, also termed the “friction-bearing offset”, is 100 mm and is
dependent on the type of soil being penetrated. Actually, when the cone penetrometer
is advanced into the subsoil, it will cause a zone of soil to fail and deform plastically, as
shown in Figure 5. The qc and fs are not point values but spatially averaged values of the
failure zone [17], and the shift distance would be different for different cases. Jaksa [7]
recommended cross-correlation function (CCF) to determine the shift distance because of
its superiority in demonstrating the cross-correlation between qc and fs.

Figure 5. Plastic failure zone caused by the cone penetrometer.
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In this study, we adopted the CCF to determine the final shift distance. Taking the qc
and fs data of borehole F7 as an example, the CCF analysis result is shown in Figure 6. It
can be seen clearly from Figure 6 that the maximum cross-correlation coefficient occurs
at a spacing of 115 mm, which implies that the optimal shift distance is 115 mm, which
is higher than the actual physical spacing of 75 mm. The same process is applied to the
other five boreholes, and the final shift distance results are shown in Table 1. Based on the
result listed in Table 1, the fs data of the 6 boreholes will be shifted upward, resulting in a
decrease in the maximum available drilling depth of each borehole. The smallest depth
is borehole I5, of which the available depth of fs is reduced to 4775 mm so that in the
interpolation part, the maximum interpolation depth is adjusted to 4775 mm. Meanwhile,
in order to solve the problem of missing data at some depth in some boreholes, we use
linear interpolation to fill in the missing values, and the details are shown in Appendix A.

Figure 6. CCF of borehole F7.

Table 1. Shift distance of the six boreholes by CCF.

Number E3 G4 I5 D6 F7 J8

Shift distance (mm) 0 90 230 0 115 130

After the above preprocessing steps, we divided the soil into a total of 956 sections
from the ground down every 5 mm until the depth of 4775 mm, then on each section, we
estimated the CPT parameter at the unsampled location using the Kriging method.

3. Kriging Interpolation
3.1. Set Up Semivariogram

The core theory of the Kriging method is the semivariogram, which is established to
reflect the relationship between distance d and semivariance γd between two sampled points.
Generally speaking, the semivariogram is an increasing function. The larger the semivariance,
the smaller the spatial dependence and mutual influence between the two sample points.
According to the different forms of the semivariogram, different models are selected for
fitting. Figure 7 shows some commonly used semivariogram models in the literature,
such as the spherical model, exponential model, and Gaussian model. Soulié [18] used
semivariogram to analyze the spatial variability of CPT data performed in alluvial deposits
of sand and gravel in the Mississippi River flood plain, and the results showed that the
spherical model was more proper for fitting the actual curve compared with other models.
In addition, previous studies also demonstrated that the spherical model can fit well to the
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semivariogram of various soils [19]. So in this study, we also chose a spherical model to fit
the semivariogram.

Figure 7. Commonly used semivariogram models.

The semivariogram is defined as follows:

γd =
1
2

Var[Zx − Zx+d] (1)

where: Zx is the variable at location, x;
Zx+d is the variable at location, x + d;
d is the distance between the sample pairs;
Var[x] refers to the variance of x.
Equation (1) implies that the nature of the semivariogram function is half the variance

of Zx and Zx+d, sample pairs separated by d, and for a certain semivariogram, the variance
is dependent only on d. This hypothesis, however, is hard to be satisfied for soil, for
example, Zx1, Zx2, and Zx3 are samples at different depths in the same CPT borehole, and
the distance from x2 to x1 and x3 is the same. The hypothesis means that x2 should have the
same effect on the other two points, but if x2 and x1 are in the same layer and x3 is in another
layer, then x2 will obviously have different effects on the other two points. Although the
hypothesis is difficult to meet, the Kriging interpolation is still a reasonable estimation
method under the condition that the information of the soil layer at the estimation point
is unknown.

The variables used to plot the semivariogram should satisfy the following equation:

E[Zx − Zx+d] = 0 ∀x, d (2)

where E[x] refers to the expectation of x.
As shown in the above equation, all the variables within the study area should have

the same expectations, which are always called stationary variables. Figure 8 shows the qc
profiles of borehole E3, and it is clear from Figure 8 that CPT data are not stationary but
with a specific trend. In order to satisfy Equation (2), ordinary least squares regression is
performed to estimate the trend. After that, the trend component will be removed from the
original CPT data so that the residuals would be stationary, and the semivariogram could
be established upon it. The process is shown in Figure 8.
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Figure 8. Example of the CPT data detrend.

Considering Equation (2), Equation (1) can be simplified as:

γd =
1
2

E
[
(Zx+d − Zx)

2
]

(3)

In practice, the semivariogram must be estimated from the available discrete data, i.e.,
the theoretical expectations could be estimated by sample mean:

γ∗d =
1

2N

N

∑
i=1

[
(Zi+d − Zi)

2
]

(4)

where N is the number of point pairs that are separated by distance d.

3.2. Build Weight Matrix

After the determination of the semivariogram based on existing data, it is feasible to
estimate the CPT parameters at the unsampled location. Specifically, the Kriging method
assigns different weights to the sampled CPT parameters at different locations, then
linearly combines these parameters with their weights to obtain the estimation as shown by
Equations (5) and (6). Where e indexes the unsampled location, i indexes the ith sampled
location, Z is the CPT parameter (i.e., qc or fs), λ is the corresponding weight, and n is
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the number of samples. The weight λi could be obtained by solving marix presented in
Equations (7) and (8).

Ze = λ1Z1 + λ2Z2 + λ3Z3 + . . . . . . + λnZn (5)

n

∑
i=1

λ1 = 1 (6)

Kλ = D → λ = K−1D (7)

K =


γ11 γ12 . . . γ1n 1
γ21 γ22 . . . γ2n 1
· · · · · · · · · · · · 1
γn1 γn2 . . . γnn 1
1 1 1 1 0

, λ =


λ1
λ2
· · ·
λn
µ

, D =


γ1e
γ2e
· · ·
γne
1

 (8)

where µ is Lagrange constant and γij is the value of semivariogram corresponding to
distance between ith and jth location. The Kriging method is unbiased implying that the
expectation of the estimator obtained from the above equations is equal to the actual value
(i.e., the average of the estimation errors will be zero). The final qc and fs profiles of the
target location F5 obtained by the Kriging method are shown in Figure 9, accompanied by
data from the other six sampled boreholes. The detailed program implementation using
MATLAB is shown in Appendix A.

Figure 9. The 2D and 3D Kriging interpolation results of the unsampled location F5: (a) 2D; (b) 3D.
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4. Bearing Capacity Calculation

In order to examine the reliability of the Kriging interpolation results and its applica-
bility to solve practical engineering problems, we use the interpolated CPT data of F5 to
calculate the bearing capacity of a driven procast pile. The length and diameter of the pile
are 4.5 and 0.3 m, respectively.

Based on previous studies, researchers held the point that the cone penetrometer can
be considered as a mini-pile foundation, whereby the measured tip resistance (qc) and
sleeve resistance ( fs) correspond to the pile end bearing (qb) and the component of side
friction ( fp). So far, many CPT-based axial bearing capacity calculation methods of pile
foundation have been proposed [20]. Cai et al. [21] evaluated and graded 10 CPT-based
methods by comparing the measured capacity from static load tests with the estimated
result from different pile capacity prediction methods, and the results showed that the
CPT-based methods had reliability and the Laboratoire Central des Ponts et Chausees
method (LCPC, Bustamante and Gianeselli) [22] is one of the most accurate prediction
methods. Another research conducted by Abu-Farsakh and Titi [1] obtained the same
result that the LCPC method was relatively better when applied to predict the ultimate
bearing capacity of square precast prestressed concrete (PPC) piles driven into Louisiana
soils. Moreover, Jaksa [7] also recommended LCPC methods as the best prediction method
for the soil in Adelaide.

For the LCPC method, the unit tip bearing capacity of the pile (qb) is predicted from
the following equation:

qb = kbqeq (9)

where kb = 0.45 for driven precast piles in clay or silt with qc values ranging from 1 to 5 MPa,
qeq is equivalent average cone tip resistance from 1.5 D above the pile tip to 1.5 D below
the pile tip as shown in Figure 10.

Figure 10. Calculation of the equivalent average tip resistance for the LCPC method.

Firstly, the average value q′ca in the upper and lower 1.5 D range is determined. Then
the values higher than 1.3 q′ca or lower than 0.7 q′ca are eliminated. After that, the qeq could
be obtained by averaging the remained qc values over the same zone. In this study, due to
data insufficiency and stability of qc values around the pile tip, as shown in Figure 9, qeq
is determined by averaging the qc values from 1.5 D above the pile tip to the last available
value, and the result of qb is 1.089 MPa. Now the end bearing capacity can be determined as:

Qb = qb Ab (10)
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where: Ab is the end area of the pile, and the calculation result is 77 kN.
The pile unit skin friction is estimated by:

fp =
qc

ks
(11)

where ks is the skin friction coefficient ranging from 30 to 150 and equals 40 for driven
procast piles in moderately compact clay (qc range: 1 MPa–5 MPa). Bustamante and
Gianeselli [22] also imposed different upper limits for fp depending on pile and soil
typology as well as installation methods. In this case, the upper limit is 35 kPa. According
to Equation (11), the qc data is first transformed to fp, and the data over 35 kPa is replaced
with 35 kPa, then the data is used to calculate the total pile skin friction by Equation (12).

Qs =
n

∑
i=1

fpi Asi (12)

where Asi is the side area of the ith layer, and the Qs is calculated to be 148 kN. Finally,
Bustamante and Gianeselli [20] suggested that the allowable design load of the pile is
defined by the following equation:

Qu =
Qb
3

+
Qs

2
(13)

Through Equation (13), the final allowable design load is 99.6 kN. Jaksa [7] calculated
the axial bearing capacity of the pile under the same condition through a 3D finite element
model, of which the soil parameters came from the laboratory test on soil samples of the
study area. The result given by Jaksa [7] is 102.8 kN, which is very close to our result.

5. Discussion

The Kriging method treats soil parameters as regionalized variables and considers
the mutual influence by assigning different weights according to the semivariogram. In
this study, we use the Kriging method combined with CPT data to make a reasonable
estimation of the soil parameters at unsampled locations. Since CPT data is continuous
and sufficient, our method can estimate parameters of locations within a certain scope and
overcome the data insufficiency problem caused by relatively large sample spacings of
the previous studies. As shown in Figure 9, line F5 roughly reflects a similar trend as the
other six sampled lines, with a fluctuation between depth 700–2000 mm for both qc and
fs, and the data tends to keep stable under 2.5 m. The bearing capacity analysis further
proved the effectiveness of the Kriging method.However, there are also some limitations
for this study: The Kriging method relies on semivariograms, which need to be figured out
on parameters at sampled locations. However, the number of available CPT soundings is
limited, leading to instability of the result. For each cross-section, we only used six known
qc and fs to set up the experimental semivariogram, which could not be quite accurate.
More CPT tests are required for a better estimation. Due to the shift of fs, the maximum
interpolation depth is 4775 mm, which cannot meet the requirement of calculating depth
of the LCPC methods, so the calculation may have errors. What is more, the LCPC method
poses an upper limit for fs, which may cause underestimation of the total bearing capacity,
and the influence distance above and below the pile tip used in qb calculation is different
for different methods [20]. Cai et al. [21] suggested that the influence distance given by the
original method may be improper, and further study is needed to revise it depending on
the soil type.

6. Conclusions

In summary, our research demonstrates the feasibility of using the Kriging method to
consider the spatial variability of soil and provides a reliable estimation of soil parameters.
Kriging methods can be combined with in situ tests and further applied into both geotech-
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nical investigation and the analysis of the underground structures such as piles, bringing
new directions and broad prospects in solving practical engineering problems.
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Appendix A

Linear interpolation program code using MATLAB

depth = [0 : 5 : 4775] %% from the ground down every 5 mm until the depth of 4775mm
qce3 = interp1(E3(:, 1), E3(:, 2), depth) %% E3() stands for the prepocessed CPT data of borehole E3
fse3 = interp1(E3(:, 1), E3(:, 3), depth)

The same process is applied to the other five numbered boreholes to divide the soil
into slices.

Kriging method program code
This paper uses the DACE toolbox developed based on MATLAB to complete the

Kriging interpolation estimation of CPT data. Lophaven et al. (2002) established this
toolbox to easily estimate the values of unsampled variables based on sampled data. This
toolbox consists of two main functions for building the Kriging interpolation model and
using the model to estimate the values of unsampled variables. The program code is
as follows:

[dmodel, perf] = dacefit (S, Y, regr, corr, theta(), lob, upb) (A1)

y = predictor (x, dmodel) (A2)

The description of each item in codes (A1) and (A2) is listed in Table A1. The code (A1)
is used to build the model, which is used by the code (A2) to predict the result. As stated
before, regpoly2 was used as a regression model to remove the quadratic trend of qc and fs,
and corrspherical, that is, the spherical model was adopted to fit the semivariogram.

http://140.112.12.21/issmge/tc304.htm?=6
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Table A1. Description of code (8).

Name Description Options

S Location of sampled CPT borehole
Y Value of sampled CPT borehole

regr Regression model * regpoly0, regpoly2 and regpoly3

corr Correlation model * correxp, correpg, corrgauss, corrlin,
corrspherical and corrspline

theta0 Initial guess of correlation parameter defaut
lob Lower limit of correlation parameter defaut
upb Upper limit of correlation parameter defaut

dmodel DACE model
per f

x
Information about the optimization

location of unsampled point
* Note: regpoly0, regpoly2, and regpoly3 mean zero-order polynomial, first polynomial, and second-order poly-
nomial; correxp, correpg, corrgauss, corrlin, corrspherical, and corrspline mean exponential model, generalized
exponential model, Gaussian model, linear model, spherical model, and cubic spline model.
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