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Abstract: For maximizing friction forces of robotic legs on an unknown/unpredictable substrate, we
introduced the granular media friction pad, consisting of a thin elastic membrane encasing loosely
filled granular material. On coming into contact with a substrate, the fluid-like granular material
flows around the substrate asperities and achieves large contact areas with the substrate. Upon
applying load, the granular material undergoes the jamming transition, rigidifies and becomes
solid-like. High friction forces are generated by mechanical interlocking on rough substrates, internal
friction of the granular media and by the enhanced contact area caused by the deformation of the
membrane. This system can adapt to a large variety of dry substrate topologies. To further increase its
performance on moist or wet substrates, we adapted the granular media friction pad by structuring
the outside of the membrane with a 3D hexagonal pattern. This results in a significant increase in
friction under lubricated conditions, thus greatly increasing the universal applicability of the granular
media friction pad for a multitude of environments.

Keywords: friction; lubrication; jamming; granular media; structured silicone membrane; hexagon
pattern; biomimetics; bioinspired surfaces; anti-slip systems; contact mechanics; recycling; robotics

1. Introduction

Generating large friction forces on unknown substrate geometries requires high adapt-
ability when approaching the substrate, combined with high energy dissipation when
applying transversal load. This is why we recently proposed the granular media friction
pad (GMFP) as a potential universal solution for friction enhancement on a wide range of
substrates [1].

The GMFP consists of a thin elastic membrane encasing granular material, such
as sand, metal powder, plant seeds, etc. When applying load to the GMFP, the granular
medium undergoes the jamming transition [2,3]. The result of this is fluid-like behavior [4,5]
of the GMFP, when unloaded or approaching the substrate topography (see Figure 1a), and
solid-like behavior, when pressed against the substrate (see Figure 1b). Friction forces are
generated by the mechanical interlocking of the now solid-like granular material and the
substrate asperities, as well as by high internal friction of the granular media [6–11]. When
taking away the normal load and pushing the GMFP onto the substrate, the granular filling
becomes fluid-like again, enabling easy removal from the substrate without requiring high
pull-off forces. In addition to this, the thin elastic encasing membrane holding the loosely
filled granular material can create large contact areas with the substrate, contributing
to the total resulting friction force by adhesion-mediated friction [12–14] and by elastic
deformation of the soft membrane. In contrast to previous systems employing the jamming
transition to create friction or holding forces [4,15–20], no active control mechanism (such
as the application of a vacuum to control the jamming transition) is needed.

While the GMFP can adapt to a large variety of substrate topologies and form around
contaminating particles embracing them [21], this type of structure would probably fail on
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wet substrates due to its extremely smooth membrane [22–24] and the resulting hydrody-
namic lubrication when sliding over a substrate.

Figure 1. Granular media friction pad (GMFP). (a) Fluid-like behavior when coming into contact
with a substrate [1], (b) solid-like behavior upon applying normal load (jamming transition),
(c) exemplary friction curve showing the four phases of a pulling curve at a normal load Fn = 19.36 N:
(A) initial shearing of jammed granular media, (B) stretching of the membrane in addition to granular
media shearing, (C) maximum static friction force and onset of global dynamic friction, (D) dynamic
sliding of the entire membrane.

In nature, numerous animals live in moist or wet environments, but are still able to
get a stable grip for secure attachment and locomotion [25]. For a large variety of these
animals, a convergent solution appeared in the course of biological evolution to achieve
this: microstructuring their attachment pad surface [26,27] with mostly hexagonal arrays
of channels, as seen, e.g., in a large diversity of frogs [25,26,28], in bush crickets [27,29],
stick and leaf insects [30], and salamanders [31,32]. The microstructure not only helps in
spreading secretory fluid over the whole attachment pad for adhesion enhancement, but
also to remove surplus fluids and enable intimate contact with the substrate [25,33,34] when
gripping but also while sliding. This principle has been adapted in several biomimetic
studies both for similar dimensions [22,26,27,32,35] as well as for much larger structures,
such as those in the tire industry [27,36–38].

While microstructuring of a surface is highly effective for draining fluids and to enable
high friction forces on smooth substrates, a second principle can be observed in nature
in conforming to wet (or rough) substrates to enhance contact area for friction [39]: The
microstructured attachment pads feature a complex superstructure inside, which results
in extremely soft attachment pads. This can be done actively [40–42] or passively by
design [25,29,33,39,43,44].

In this study, we combine the structuring of the membrane with extreme softness and
adaptability by enhancing the membrane surface with a hexagon pattern. An increase
in friction on wet substrates is expected, while maintaining fluid-like behavior when ap-
proaching a rough or contaminated substrate to maximize the contact area. We investigate
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the friction performance of smooth and hexagonally patterned GMFP on a flat substrate
when dry, and also when completely immersed in mineral oil.

2. Materials and Methods

The granular media friction pad (GMFP) was composed of loose granular mate-
rial that was encased by a thin, elastic membrane. The membrane was put flat on a
lightweight, 3D-printed sample holder and clamped down using an adjusting washer
(40 mm × 50 mm × 1 mm). Then, the granular material (1.7 ground coffee, Gold 100%
Arabica, Markus Kaffee GmbH & Co., KG, Weyhe, Germany, see [1] for more details) was
pushed behind the membrane through the lockable hole of the sample holder.

Two different types of GMFP were investigated: one with a smooth membrane (see
Figure 2a), and one with a hexagon-patterned membrane (see Figure 2b). The membranes,
consisting of Dragon SkinTM 30 (Smooth-On, Inc., Macungie, PA 18062, USA) with a
Young’s Modulus of 0.53 ± 0.02 MPa, were cast by pouring the uncured resin between
two plastic foils, which were fixated on glass plates and separated by 1 mm spacers. This
resulted in a 1 mm thick silicone membrane. For the hexagon membrane, a hexagon grid
with 2.19 mm circumcircle, 0.4 mm groove width and 0.6 mm groove depth was 3D-printed
from PLA using an Original Prusa i3 Mk3 (Prusa Research s.r.o., Prague, Czech Republic).
The grid was glued onto one of the plastic foils, before molding the membrane in the
same way as the smooth membrane, so that the tops of the resulting hexagonal pillars
had the same surface properties as the smooth membrane. There are three reasons for
the selection of the hexagonal pattern: (1) As mentioned above, many biological systems
use this evolutionarily optimized pattern for the purpose of grip enhancement on wet
substrates [22,25,26,36–39]. (2) This pattern has been previously shown to enhance friction
on substrates wetted by water [23,27,36–38]. (3) This pattern is relatively easy to design
and adapt to curved substrates.

Figure 2. GMFP and experimental setup. (a) Photograph of a GMFP with a smooth mem-
brane, (b) photograph of a GMFP with a hexagonally patterned membrane; the membrane is cut
open, showing the GMFP’s ground coffee filling, (c) schematic representation (left) and photograph
(right) of the experimental setup.
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The GMFP fixed to the sample holder could slide freely on four vertical linear rods
using low-friction linear bearings (see Figure 2c). The substrate, the flat side of wire mesh
plywood (100 mm × 100 mm), was pulled horizontally below the GMFP at 1 mm/s for
50 mm using a linear testing machine (Xforce HP 500 N, ZwickiLine, Zwick Roell, Ulm,
Germany) that measured the pulling force. To obtain the sliding friction force, the pulling
force was averaged for 10 s, 35 s after sliding started (see grey area in Figure 1c). To increase
the normal load, Fn, additional weights could be placed on top of the GMFP. The coefficient
of friction, µ, was obtained as µ = Ffr/Fn.

To examine the effect of membrane structuring on the friction performance of the
GMFP under dry and lubricated conditions, both the smooth and the hexagon-patterned
GMFP were produced 12 times and tested subsequently on a dry substrate and on an oily
substrate. For the latter, mineral oil (Mineral oil 330779, Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany) was poured onto the substrate with a depth of at least 3 mm to
fully submerge the contact area between the GMFP and substrate. For each sample and
substrate combination, friction measurements were conducted at four different normal
loads ranging from the sample weight itself (1 N) up to a maximum normal load of 19.36 N.

3. Results

The friction performance of the GMFP with smooth and hexagon-structured mem-
branes on a dry substrate and submerged in mineral oil is illustrated in boxplots showing
the average pulling force (see Figure 3a) and the resulting friction coefficient, µ (see
Figure 3b). The average friction coefficients of all sample and substrate combinations
for the four applied normal loads are shown in Table 1. For all normal loads, the differ-
ent GMFP membranes, as well as the contamination of the substrate, led to a significant
difference in the friction coefficients (Kruskal–Wallis rank sum test, Holm FWER method).

Figure 3. Friction performance of the smooth and hexagon GMFP on dry and oily substrate.
(a) Measured friction force, (b) resulting friction coefficient. The boxes display the median and
25 and 75 percentiles with the whiskers indicating the most extreme data points.
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Table 1. Average friction coefficients with standard deviation of the smooth and hexagon GMFP on
dry substrate and when completely submerged under mineral oil for all normal loads.

Fn [N]
Smooth Hexagon

Dry Oil Dry Oil

1.00 7.9 ± 1.5 0.2 ± 0.1 2.7 ± 0.4 1.4 ± 0.3

4.92 4.8 ± 0.4 0.1 ± 0.1 1.7 ± 0.1 0.9 ± 0.2

10.81 3.3 ± 0.2 0.1 ± 0.1 1.5 ± 0.1 0.8 ± 0.2

19.36 2.5 ± 0.1 0.1 ± 0.1 1.4 ± 0.1 0.7 ± 0.2

3.1. Dry Substrate

On the dry substrate, the GMFP with a smooth membrane performs much better than
the hexagon-patterned sample. The smooth GMFP achieves extremely high friction forces
at a low normal load, with the highest friction coefficient being µ = 7.9 ± 1.5 at the lowest
normal load of 1 N. At the highest normal load of 19.36 N, the sample (4 cm diameter)
achieves friction forces up to 52 N.

Hexagonal structuring leads to a significant reduction in friction forces on the dry
substrate. The friction coefficient is still between µ = 1.4 and µ = 2.7 for all loading
conditions examined, but generated friction forces are only about half of those of the
smooth membrane.

3.2. Oiled Substrate

While the smooth GMFP performs better on the dry substrate than the hexagon GMFP,
the opposite is the case once it is submerged in mineral oil. Here, the smooth GMFP is
only able to create a maximum of 3 N friction force under any loading condition, with the
friction coefficient, µ, ranging from 0.1 to 0.2. In contrast, the hexagonal-patterned GMFP
still achieves high friction forces with a friction coefficient (µ) of 0.7–1.4.

4. Discussion

On the dry substrate, the better friction performance of the smooth GMFP results
from the larger contact area [12,13,45] in contrast to the grooved pattern of the hexagon
membrane. It is known that soft, smooth rubber on a smooth glass surface can reach a
frictional coefficient of µ = 2.8 [46]. The observed experimental result, where the coefficient
of friction decreases with an increasing normal load (Figure 3b), can be explained by the
relatively stronger contribution of adhesion at lower loads. This is not surprising for
relatively smooth and soft contact pairs and was previously observed in [47].

In addition, the deformation of the hexagon pillars during sliding could reduce the
occurring friction forces by decreasing contact area even further [22,47–49]. However, for
structured and microstructured surfaces, a reduction in uncontrolled stick-slip friction is
expected due to a distribution of the crack propagation to the individual hexagonal pillars,
which could result in higher peeling forces [27].

Submerged in oil, the picture is inverted: The lubrication never breaks down for
the smooth membrane, resulting in extremely low friction coefficients. For the hexagon
GMFP, however, breakdowns of the lubrication film and high friction forces occur. The
drainage channels between the hexagonal pillars have to be large enough for draining the
lubricant, depending on the viscosity of the lubricating fluid [25,27], the cross-section of
the channels [25,27], and the sliding velocity [32,41], while still maintaining a pillar size
sufficient for large contact areas. In the case of the GMFP, the deformation of the thin
elastic membrane under normal load and also from stretching during sliding results in
different channel geometries (depending on substrate, loading condition and occurring
friction forces). The bending of the hexagonal pillars [22,48,49], which reduces the contact
area during sliding, has to be considered as well. The effect of the friction enhancement
of micropatterned surfaces in oil is potentially even stronger in water [27], because oil



Appl. Sci. 2021, 11, 11287 6 of 8

has much higher wetting properties on all the surfaces and has much higher viscosity
than water.

In this study, the number of sliding cycles was relatively low. After running in, the
coefficient of friction might change due to the changes of the surface structure through
abrasive wear. Our experimental design was selected to avoid the influence of wear on the
results of our tests. In the future, tests with a high number of cycles would be desirable to
study frictional behavior of both types of surface structure after running in (in the presence
of wear).

For a further optimization of friction forces, the sliding direction of the hexagon GMFP
could be considered. In our experiment, all hexagonal GMFPs were tested in the same
orientation, i.e., with the side of the hexagons facing the sliding direction. In [26], an
increase of up to 20% in friction force was observed when sliding with the hexagon tips
forward. Even higher geometry-dependent anisotropies were observed for elongated pillar
shapes due to drainage flow and a change in tangential contact stiffness [27,35]. This effect
could be especially beneficial for an adapted hexagonal GMFP, when the sliding direction
is predictable, or when friction anisotropy is desired.
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