
applied  
sciences

Article

Fiducial Lower Confidence Limit of Reliability for a Power
Distribution System

Xia Cai 1, Liang Yan 2,*, Yan Li 1 and Yutong Wu 1

����������
�������

Citation: Cai, X.; Yan, L.; Li, Y.; Wu,

Y. Fiducial Lower Confidence Limit of

Reliability for a Power Distribution

System. Appl. Sci. 2021, 11, 11317.

https://doi.org/10.3390/

app112311317

Academic Editors: Cheng-Wei Fei,

Zhixin Zhan, Behrooz Keshtegar and

Yunwen Feng

Received: 13 October 2021

Accepted: 25 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China;
caixia@hebust.edu.cn (X.C.); liyan@hebust.edu.cn (Y.L.); hbkjwuyutong@163.com (Y.W.)

2 School of Mathematics and Statistics, Hebei University of Economics and Business,
Shijiazhuang 050061, China

* Correspondence: yanliang@heuet.edu.cn

Abstract: Reliability performance, especially the lower confidence limit of reliability, plays an im-
portant role in system risk and safety assessment. A good estimator of the lower confidence limit
of system reliability can help engineers to make the right decisions. Based on the lifetime of the
key component in a typical satellite intelligent power distribution system, the generalized fiducial
method is adopted to estimate the lower confidence limit of the system reliability in this paper. First,
the generalized pivotal quantity and the lower confidence limit of reliability for the key component
are derived for the lifetimes of the exponential-type and Weibull-type components. Simulations
show that the sample median is more appropriate than the sample mean when the lower confidence
limit of reliability is estimated. Moreover, the lower confidence limit of reliability is obtained for the
typical satellite intelligent power distribution system through the pseudo-lifetime data of the metallic
oxide semiconductor field effect transistor. The lower confidence limit of reliability for this power
distribution system at 15 years is 0.998, which meets the factory’s reliability requirement. Finally,
through the comparison, a hot standby subsystem can be substituted with a cold standby subsystem
to increase the lower confidence limit of the system reliability.

Keywords: reliability assessment; lower confidence limit; power distribution system; fiducial method;
Monte Carlo simulation

1. Introduction

A power distribution system (PDS) is a power network system consisting of a variety
of power distribution equipment (or components), and it carries electricity from the trans-
mission system to individual consumers. The basic function of a PDS is to supply customers
with electrical energy as reliably as possible [1]. The reliability and maintainability of a
PDS have attracted some scholars’ interests. For example, the authors of [2] discussed the
protection devices for the aircraft power distribution system. The authors in [3] evaluated
the reliability of a PDS subjected to hurricanes. A framework for the optimal maintenance
of a PDS subjected to non-stationary hurricane hazard and decay is presented in [4]. The
authors of [5] reviewed the technological perspective of cyber secure smart inverters used
in PDS. The authors of [6] analyzed the reliability of a 20-KV electric PDS, while those in [7]
and [8] calculated the reliability of two Nigeria PDSs, one of which was aging. The authors
in [9] evaluated an Indian PDS and gave some suggestions to minimize the outages which
can improve reliability. The authors of [10] presented an inverse reliability evaluation
where some components’ reliability parameters were unknown in a specific PDS.

In general, there is a key subsystem named the solid state power controller (SSPC)
in a PDS. The SSPC is a system protection device which provides protections for the
electric installations from short circuits and overloads [11]. Based on the importance
of SSPC, several researchers studied the structure and applications of the SSPC. The
authors of [12] summarized the advantages of an SSPC, such as high reliability, small
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size and accessible remote control. The authors in [13] presented an optimizing scheme
for behavioral modeling of an SSPC, while those in [14] proposed some models for some
special SSPCs. The authors in [15] analyzed the reliability of a kind of SSPC from an
engineering standpoint, and those in [16] proposed two fault detection methods with the
analysis of only the half cycle data.

Due to the characteristics of a long lifetime and high reliability, it is particularly
important to analyze the reliability of the PDS and SSPC. Technically, the reliability is
often defined as the probability that a system will perform its intended function under
operating conditions for a specified period of time [17]. In system reliability assessment,
the estimator of reliability is a major concern. The authors of [18] estimated the reliability
of the multicomponent stress–strength based on a two-parameter exponentiated Weibull
distribution. The authors in [19] compared different least squares methods for reliability
of the Weibull distribution based on the right censored data, and those in [20] and [21]
analyzed the reliability of Weibull distribution with zero-failure data and very little failure
data, respectively. However, a point estimator makes little sense if the variance of the
estimator is too high. Consequently, it is necessary to give the lower confidence limit
(LCL) of reliability [22]. How to get the LCL of system reliability through the lifetimes of
components is an important issue. Many scholars have conducted a lot of research on this.
An effective reliability confidence bound for a multi-state system with binary-capacitated
components is suggested in [23]. This is only applied for a series or parallel system. In
addition, the authors of [24] considered the LCL of reliability under a nonparametric
assumption, but the parametric method is often more accurate than the nonparametric
method when the distribution type is known. The authors in [25] provided the maximum
likelihood estimate (MLE) and a more accurate lower confidence limit for the SoS reliability,
but the MLE method is more appropriate for a large sample size. Based on the small
sample size, the authors of [26] applied the WCF approach to analyze the reliability of a
special complicated system based on accelerated degradation data, but the WCF method is
complicated for mathematical formula derivation. Based on records data, the authors of [27]
calculated the interval estimation of quantiles and reliability in a two-parameter exponential
distribution. In practice, some electronic components, such as the key components of a
PDS, have a long lifetime and high reliability [28,29]. The sample size of these lifetime data
is usually very small. To overcome the shortcoming of a large sample, some references
adopted the Bayesian method to estimate the LCL of reliability. For example, the authors
of [30] and [31] used the Bayesian method to study the reliability for binomial systems,
while those in [32] used Bayesian networks to present developments for traditional series
and parallel systems. The authors in [33] and [34] applied the Bayesian approach to analyze
the reliability of the degradation data. Although the Bayesian approach is suitable for a
small sample of lifetime data, the selection of the prior distribution is difficult.

To avoid the difficulty of choosing a proper prior distribution, the fiducial method
is adopted to estimate the LCL of reliability for a PDS in this paper. The fiducial method
considers the parameter as a random variable whose distribution is decided by the observa-
tion instead of the prior distribution. The authors of [35] developed the fiducial method by
defining a functional model, and those in [36] proved that the LCL derived by the fiducial
method is the same as the LCL obtained by the traditional method under some conditions.
Recently, some optimal inferences [37] and generalizations of the fiducial method [38] have
been developed based on [38–40], giving the generalized fiducial inference for generalized
exponential and Lomax distribution.

It can be seen that the generalized fiducial method is an effective method to estimate
the reliability of a long-life product. Based on the high reliability of the PDS, this paper
estimates the LCLs of the reliability of the PDS by using the generalized fiducial method.
For a typical satellite intelligent PDS, the lifetime distribution of the key components in
the satellite intelligent PDS are assumed to follow an exponential distribution and Weibull
distribution according to the experience of the engineers. In this situation, two algorithm
procedures are presented to estimate the LCL of the reliability for an exponential-type
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component and a Weibull-type component. Then, the LCLs of reliability for the satellite
intelligent PDS are established by the relationship between the key components and the
system. Compared with the Bayesian method, the generalized fiducial method of this
paper is more flexible to avoid the selection of the prior distribution.

2. Materials and Methods
2.1. Power Distribution System Reliability Model

In the design of the satellite intelligent PDS, the Beijing Satellites Casting Factory
divided the PDS into three subsystems according to different functions of the components.
These three subsystems were the direct current to direct current power supply (DC/DC),
solid state power controller (SSPC) and telemetry and telecontrol unit (TM/TC). The
DC/DC is responsible for converting the bus bar voltage into the voltage which is required
by the analog circuit and digital circuit in the system. The SSPC can play a protective role,
including limiting the current protection and short circuit protection and collecting current
voltage. The TM/TC can not only save current voltage data but also check the various
SSPCs and monitor the historical data.

In order to improve the reliability of the PDS, standby systems are often adopted
in system design. There are two traditional types of standby redundancy: hot standby
and cold standby. In hot standby redundancy, components which are in standby mode
operate in synchrony with the main unit and are ready to take over at any time, while
in cold standby redundancy, components in standby mode are unpowered and thus do
not operate until needed to replace a faulty main unit [41,42]. In the satellite intelligent
PDS, the hot standby systems are used for the DC/DC and SSPC, and the cold standby
systems are used for the TM/TC. These three subsystems are in arranged in a series way.
The reliability block diagram of this PDS is shown in Figure 1.

Figure 1. The reliability block diagram of a typical PDS.

Here, the SSPC is composed of six components, which are a metallic oxide semicon-
ductor field effect transistor (MOSFET), short circuit protector, voltage detector, current
detector, sense resistor and drive circuit. These components are connected in a series
structure. The reliability block diagram of the SSPC is shown in Figure 2.

Figure 2. The reliability block diagram of the SSPC.

In this paper, we focus on the reliability estimation for the SSPC and PDS. The SSPC is
a key subsystem in a PDS, and thus the reliability of the SSPC plays an important role in
reliability assessment of the PDS. In the SSPC, the MOSFET is generally the most critical
component, which is a switching device [43]. The failure of the MOSFET may lead to a short
circuit with a significant increase in temperature. This failure is not acceptable for the SSPC
or PDS. Therefore, the reliability of the SSPC needs to be estimated by analyzing the lifetime
of the MOSFET, which can further evaluate the reliability of a PDS. Due to the different
lifetime distributions for different components in the typical satellite intelligent PDS, some
assumptions are given from the experience of engineers as follows for convenience:
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Assumption 1. A PDS has independent components, and the switching mechanism from the main
subsystem to the standby subsystem is considered to be completely reliable.

Assumption 2. In an SSPC, the lifetime of the MOSFET follows a Weibull distribution, and the
lifetimes of the others follow exponential distributions with different failure rates.

Assumption 3. The failure rates of the voltage detector, current detector, sense resistor and drive
circuit are known from experience, but the short circuit protector’s is unknown.

Assumption 4. The lifetimes of the DC/DC and TM/TC follow exponential distributions with
known failure rates.

Based on these assumptions, in the following subsections, the fiducial method was
adopted to derive the LCLs of reliability for a single component: an SSPC and a PDS.

2.2. Fiducial LCL of Reliability for an Exponential-Type Component

In this subsection, we discuss the LCL of reliability based on a typical component
whose lifetime follows the exponential distribution commonly used in a PDS.

Except for the MOSFET, the lifetimes of the other components in an SSPC were
assumed to be exponentially distributed. Thus, we derived the LCL of reliability for an
exponential-type component first.

Let T be a random variable which follows an exponential distribution with an un-
known parameter λ. The cumulative distribution function of T is

F(t) = 1− e−λt, t > 0. (1)

Suppose T1, T2, · · · , Tn is a random sample from the population T, where n is the
sample size. Then, the total test time Tsum = T1 + T2 + · · · + Tn follows a Gamma distribution
with parameters n and λ. Therefore, 2λTsum follows an χ2 distribution with 2n degrees of
freedom. Then, parameter λ can be represented as

λ =
E

2Tsum
, E ∼ χ2(2n), (2)

where E is the pivotal quantity which follows a completely known distribution.
We can derive the estimator and the confidence interval (CI) of parameter λ by solving

the expectation and the quantile of χ2 distribution, respectively, or by generating a random
number. The CI for λ with the confidence level is given by[

χ2
α/2(2n)/2Tsum, χ2

1−α/2(2n)/2Tsum

]
, (3)

where χ2
α/2(2n) is the α/2 quantile of a Chi-square distribution with 2n degrees of freedom.

Equation (3) is the same as the result of the traditional method.
However, the quantity of interest is the reliability, which is a function of parameter λ.

The reliability of the component whose lifetime follows an exponential distribution at time
t can be expressed as

R(t) = exp
{
− t

2Tsum
E
}

, E ∼ χ2(2n). (4)

Then, the LCL of reliability with the confidence level 1 − α is

RL(t) = exp
{
− t

2Tsum
χ2

1−α(2n)
}

. (5)

The fiducial algorithm for the CI of parameter λ and the LCL of reliability based on
an exponential distribution is shown in Algorithm 1.
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Algorithm 1. Fiducial algorithm procedure for exponential distribution.

Input: x: the lifetime of the exponential-type component;
1−α: the confidence level;
t: time;
M: the sample size of simulated pivotal quantity;
rep: the number of simulation trials.

Output: The CI of parameter λ and the LCL of reliability.
for i← 1 to rep do

for j← 1 to M do
λij ← a random number follows χ2(2n), in which n is the sample size of x.
Rij (t)← exp{−λijt}.

end
Sort (λi1, λi2, . . . , λiM) from small to large: (λi (1), λi (2), . . . , λi (M)).
Sort (Ri1 (t), Ri2 (t), . . . , RiM (t)) from small to large: (Ri (1) (t), Ri (2) (t), . . . , Ri (M)(t)).
The ith LCL of reliability is RLi (t)←Ri (M(1−α)) (t).
The ith CI of parameter λ is λCIi ← (λi (Mα/2), λi (M(1−α/2))).

end
The LCL of reliability is RL (t)←mean of (RL1(t), RL2(t), . . . , RLrep(t)).
The CI of parameter λ is (λL, λU)←mean of (λCI1, λCI2, . . . , λCI,rep).

Next, we use a simulated example to show how to derive the LCL of reliability for an
exponential-type component.

Example 1. In the satellite intelligent PDS, the failure rate of the voltage detector, current detector
and sense resistor are approximately 0.2 × 10−9, 0.5 × 10−9 and 0.4 × 10−9, respectively. The
simulated lifetime data are listed in Table 1. In practice, these data are usually obtained by an
accelerated lifetime test.

Table 1. Simulated lifetime datasets of the voltage detector, current detector and sense resistor.

Components Datasets (h)

Voltage Detector 749,318,825, 249,122,143, 3,041,561,966, 1,290,709,269, 9,207,672,141,
346,452,730, 898,416,864, 1,921,665,561, 832,302,119, 22,978,273,342

Current Detector 2,976,355,068, 1,614,412,014, 1,596,199,429, 4,385,031,242, 343,767,602,
1,394,727,033, 1,699,963,564, 1,395,646,527, 4,092,186,674, 303,092,873

Sense Resistor 3,249,590,569, 2,144,799,183, 4,865,614,194, 1,061,070,057, 2,052,784,459,
946,101,390, 5,840,861,755, 3,188,572,801, 955,939,901, 260,937,877

For the voltage detector, current detector and sense resistor, the simulated pivotal
quantity, whose sample size was 2000, was generated by Monte Carlo simulation. Simula-
tions were conducted in statistical software R. Through Equations (2) and (3), the estimators
and the CIs of parameter λ were obtained after generating 2000 random numbers which
followed χ2 distribution with 20 degrees of freedom. However, the estimate changed
if another 2000 Chi-square random numbers were generated. To avoid this change, the
estimates were averaged by 1000 simulation trials. The results are listed in Table 2.

Table 2. Estimators and CIs of the parameters for the exponential-type components.

Components Estimators Confidence Intervals

Voltage Detector 0.241× 10−9 (0.215× 10−9, 0.252× 10−9)
Current Detector 0.505× 10−9 (0.450× 10−9, 0.529× 10−9)

Sense Resistor 0.407× 10−9 (0.362× 10−9, 0.426× 10−9)

In Table 2, the estimators of the parameters for the voltage detector, current detector
and sense resistor lifetime distributions were 0.241 × 10−9, 0.505 × 10−9, and 0.407 × 10−9,
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respectively. It is shown that the fiducial estimators were close to the true value. In the same
way, with Equations (4) and (5), the estimators and the LCLs of reliability at t0 = 87,600 h
(10 years) with a confidence level 0.8 are listed in Table 3.

Table 3. Estimators and LCLs of reliability for the exponential-type components (t0 = 87,600 h).

Components Estimators Lower Confidence Limits

Voltage Detector 0.9999789 0.9999736

Current Detector 0.9999558 0.9999446

Sense Resistor 0.9999644 0.9999553

From Table 3, we find that the estimator and the LCL of reliability for the voltage
detector were 0.9999789 and 0.9999736 at 10 years, respectively. These two numbers were
both very close to one since the failure rate was very small. In fact, if t0 is taken as
8.76 × 107 h, the reliability is approximately 0.97, which is still very high. The analyses
of the current detector and sense resistor were similar. We could treat them as “non-
failed” components.

2.3. Fiducial LCL of Reliability for a Weibull-Type Component

In this subsection, we use the fiducial method to derive the LCL of reliability for a
Weibull-type component.

Let T1, T2, · · · , Tn be a random sample from the Weibull distribution. The cumulative
distribution function of the Weibull distribution is

FT(t) = 1− exp
{
−(t/η)m}, t > 0, (6)

where η > 0 and m > 0 are called the scale parameter and shape parameter, respectively. It
is difficult to derive the estimators of η and m directly.

In general, Tj is transformed to Xj by Xj = ln Tj, and then Xj follows an extreme value
distribution with σ = 1/m and µ = ln η, j = 1, 2, · · · , n. The common cumulative distribution
function of Xj, j = 1, 2, · · · , n is

FXj(xj) = 1− exp
{
−e

xj−µ

σ

}
. (7)

Let the following be true:

Wj =
Xj − µ

σ
= m

(
ln Tj − ln η

)
, j = 1, 2, · · · , n. (8)

Then, Wj follows a common standard extreme value distribution which is completely
known, and the distribution of their function is also completely known. Thus, we treat the
function of Wj as the pivotal quantity.

Denote the following:

X =
1
n

n

∑
i=1

Xi, S2 =
1
n

n

∑
i=1

(Xi − X)
2, W =

1
n

n

∑
i=1

Wi, V2 =
1
n

n

∑
i=1

(Wi −W)
2. (9)

These statistics have relations as follows:

µ = X− W
V

S, σ =
S
V

, η = exp

{
X− W

V
S

}
, m =

V
S

. (10)
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Then, parameters η and m can be expressed as

η = exp
{

X− E1

E2
S
}

, m =
E2

S
, (11)

where E1 and E2 are pivotal quantities which have the same distributions as W and V,
respectively. However, it is difficult to derive the explicit formula of the probability density
for these two distributions. Instead, the random numbers which follow a standard extreme
value distribution are easily generated by Monte Carlo simulation. Then, we treated the
sample mean and the sample standard deviation as E1 and E2. The simulated values of
parameters η and m were derived by Equation (11). By repeating this sampling method,
we could get many pairs of η and m. By averaging the sample, the estimators of the
parameters were derived. The CIs were obtained by finding the sample quantiles of the
simulated parameters.

Here, the quantity of interest is the reliability, which can be expressed as

R(t) = exp
{
−(t/η)m} = exp

−
(

t exp
{

E1

E2
S− X

}) E2
S

. (12)

Then, the estimator and the LCL of reliability with a confidence level could be derived.
The fiducial algorithm for the CIs of parameters η and m and the LCL of reliability

based on a Weibull distribution is shown in Algorithm 2.

Algorithm 2. Fiducial algorithm procedure for Weibull distribution.

Input: tw: the lifetime of the Weibull-type component;
1−α: the confidence level;
t: time;
M: the sample size of simulated pivotal quantity;
rep: the number of simulation trials.

Output: The CIs of parameters η and m and the LCL of reliability.
n← sample size of tw.
x←logarithm of tw.
xbar←mean of x.
s← standard deviation of x.
for i← 1 to rep do

for j← 1 to M do
for k← 1 to n do

wijk ← a random number which follows standard extreme value distribution.
end
wbarij ←mean of (wij1, wij2, . . . , wijn).
vij ← standard deviation of (wij1, wij2, . . . , wijn).
ηij ← exp(xbar − wbarij/vij*s).
mij ← vij/s.
R ij (t)← exp(−(tij/η)mij)

end
Sort (ηi1, ηi2, . . . , ηiM) from small to large: (ηi (1), ηi (2), . . . , ηi (M)).
Sort (mi1, mi2, . . . , miM) from small to large: (mi (1), mi (2), . . . , mi (M)).
Sort (Ri1 (t), Ri2 (t), . . . , RiM (t)) from small to large: (Ri (1) (t), Ri (2) (t), . . . , Ri (M)(t)).
The ith LCL of reliability is RLi (t)←Ri (M(1-α))(t).
The ith CI of parameter η is ηCIi← (ηi (Mα/2),ηi (M(1−α/2))).
The ith CI of parameter m is mCIi← (mi (Mα/2),mi (M(1−α/2))).

end
The LCL of reliability is RL (t)←mean of (RL1(t), RL2(t), . . . , RLrep(t)).
The CI of parameter η is (ηL,ηU)←mean of (ηCI1,ηCI2, . . . , ηCI,rep).
The CI of parameter m is (mL,mU)←mean of (mCI1,mCI2, . . . , mCI,rep).



Appl. Sci. 2021, 11, 11317 8 of 16

Next, we also used a simulated example to show how to derive the LCL of reliability
for a Weibull-type component.

Example 2. Consider a MOSFET in an SSPC whose lifetime is assumed to be Weibull-distributed
with the scale parameter η = 950,000 and the shape parameter m = 5. The simulated and logarithmic
transformed data are listed in Table 4.

Table 4. Simulated lifetime dataset of the MOSFET.

MOSFET Datasets (h)

Original Data 1,168,880.9, 1,048,819.6, 1,094,062.7, 995,454.8, 951,788.8,
923,084.9,427,006.4, 812,771.7, 619,423.7, 862,760.0

Logarithmic
Transformed Data

13.97156, 13.86318, 13.90541, 13.81095, 13.76610,
13.73548, 12.96455, 13.60821, 13.33654, 13.66789

The simulated pivotal dataset, whose sample size was 2000, was generated by Monte
Carlo simulation. The estimates were averaged by 1000 simulation trials. The estimators
and CIs of the parameters are shown in Figure 3.

Figure 3. Estimators and CIs of the parameters for the MOSFET.

From Figure 3, the estimators of η and m were 990,335.1 and 4.04566, respectively. It
is shown that the fiducial estimators of the parameters were close to the true value. The
estimator and the LCL of reliability at t0 = 131,400 h (15 years) with a confidence level of
0.8 are shown in Figure 4.

Figure 4. Estimator and LCL of reliability for the MOSFET (t0 = 131,400 h).
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From Figure 4, we found that the estimator and the LCL of reliability at 15 years were
0.9995892 and 0.9975223, respectively. Here, we used the median to estimate the reliability
instead of the mean. In fact, the LCL was sometimes larger than the mean, because the
reliability was close to 1 at 15 years. In the Monte Carlo simulations, several simulated
values may have been much smaller than the others, and these small values could be
treated as the outliers. The outliers made the mean smaller than the LCL. In this case, the
median was better than the mean. In other words, the sample median was more robust
than the sample mean. Therefore, we used the sample median and the sample mean to
estimate the reliability in the subsequent analysis.

2.4. LCL Analysis of Reliability for a Typical PDS

In Section 2.2 and Section 2.3, the pivotal quantities were derived for the lifetime of
an exponential-type component and a Weibull-type component. In this subsection, we
analyze the LCL of reliability for a typical satellite intelligent PDS. The structure of this
PDS is shown in Figure 1. The SSPC is a key subsystem in this PDS. Thus, we analyzed the
LCL of reliability for the SSPC first.

The lifetime of the MOSFET was assumed to be Weibull-distributed with unknown
parameters η and m, and the lifetime of the short circuit protector was assumed to be
exponentially distributed with an unknown failure rate λS2. The lifetimes of the voltage
detector, current detector, sense resistor and drive circuit in the SSPC were assumed to be
exponentially distributed with known failure rates λS3, λS4, λS5 and λS6, respectively.

Let RS(t) be the reliability of the SSPC at time t. RS1(t), RS2(t), RS3(t), RS4(t), RS5(t)
and RS6(t) represent the reliability of the MOSFET, short circuit protector, voltage detector,
current detector, sense resistor and drive circuit, respectively. Thus, RS(t) can be expressed
as follows:

RS(t) = RS1(t)RS2(t)RS3(t)RS4(t)RS5(t)RS6(t)
= exp

{
−(t/η)m − λS2t− λS3t− λS4t− λS5t− λS6t

}
= exp

{
−
(

t exp
{

E1
E2

S− X
}) E2

S − t
2T E−

6
∑

i=3
λSit

}
, ...

(13)

where X and S are the logarithm mean and the logarithm standard deviation of the sample
lifetime for the MOSFET, respectively. E, E1 and E2 are independent random variables.
E follows an χ2 distribution with 2n2 (n2 is the sample size of the short circuit protector)
degrees of freedom. E1 and E2 have the same distribution as the sample mean and standard
deviation of W1, · · · , Wn1 (W1, · · · , Wn1 follow the standard extreme value distribution,
and n1 is the sample size of the MOSFET). By simulating χ2 random numbers and standard
extreme value random numbers, the simulations of the pivotal quantities E, E1 and E2 were
derived. Then, the simulated RS(t) was computed by Equation (13). The estimator and the
LCL of RS(t) for a single SSPC were taken as the sample mean (or sample median) and the
sample quantile of the simulations.

In order to improve the reliability of an SSPC, a standby system is usually adopted,
especially a hot standby system, which is in parallel with the main subsystem. The main
subsystem and the standby subsystem were independent and identically distributed. The
structure of the SSPC is shown in Figure 5.

Similar to Equation (13), let RSS(t) represent the reliability of the SSPC subsystem,
which is shown in Figure 5. RSS(t) is a function of E, E1 and E2:

RSS(t)= 1− [1− RS(t)]
2

= 1−
[

1− exp

{
−
(

t exp
{

E1
E2

S− X
}) E2

S − t
2T E−

6
∑

i=3
λSit

}]2

.
(14)
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Figure 5. The reliability block diagram of the SSPC.

Then, we analyzed the LCL of reliability for a satellite intelligent PDS, which is shown
in Figure 1. The cold standby subsystem was adopted for the TM/TC, whose lifetime
was assumed to be exponentially distributed with a failure rate λT = 338.58 × 10−9. This
constant could be used directly when the reliability was calculated. Then the reliability of
the TM/TC subsystem with one cold standby subsystem at time t can be expressed as

RTT(t) = e−λT t0(1 + λTt). (15)

For the DC/DC, a hot standby system was adopted. The lifetime of the DC/DC was
assumed to follow an exponential distribution with a failure rate λD = 96.3 × 10−9. The
reliability of this subsystem with a hot standby subsystem at time t is

RDD(t) = 1−
(

1− e−λDt
)2

. (16)

In general, there are a DC/DC, TM/TC and at least one SSPC in an intelligent PDS.
First, one SSPC was considered for simplicity. Therefore, the reliability of the PDS with one
SSPC subsystem at time t is

R(t) = RDD(t)RTT(t)RSS(t)
=
[
1−

(
1− e−λDt)2

]
e−λT t(1 + λTt)

·

1−
[

1− exp

{
−
(

t exp
{

E1
E2

S− X
}) E2

S − t
2T E−

6
∑

i=3
λSit

}]2
.

(17)

The reliability of the entire PDS with N SSPC subsystems at time t is

RN(t) = RDD(t)RTT(t)[RSS(t)]
N

=
[
1−

(
1− e−λDt)2

]
e−λT t(1 + λTt)

·

1−
[

1− exp

{
−
(

t exp
{

E1
E2

S− X
}) E2

S − t
2T E−

6
∑

i=3
λSit

}]2


N

.

(18)

In this subsection, the LCLs of reliability for the SSPC and PDS were formulized. The
detailed calculation process is given in the next section.
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3. Results

This section uses the datasets of the MOSFET and short circuit protector, which are
the key components in a typical satellite intelligent PDS made by the Beijing Satellites
Casting Factory, to illustrate the proposed method. The lifetimes of the MOSFET came
from the accelerated lifetime test, and the lifetimes of the short circuit protector came from
the simulated data. The datasets of the MOSFET and short circuit protector are shown in
Table 5. The failure rates of the voltage detector, current detector, sense resistor and drive
circuit were 0.2 × 10−9, 0.5 × 10−9, 0.4 × 10−9 and 0.6 × 10−9, respectively, which were
known from experience.

Table 5. Datasets of the MOSFET and short circuit protector.

Components Datasets (h)

MOSFET 913,440.6, 919,580.9, 415,447.5, 754,872.8, 592,204.5,
1,101,658.4, 993,999.6, 1,006,450.1, 570,526.9, 993,583.7

Short Circuit Protector 5,871,090,193, 5,989,641,035, 1,108,022,425, 182,198,277,
191,327,415, 1,037,844,580, 23,220,248,016, 2,069,706,535

From Equation (13), the simulated reliability with 2000 repetitions was obtained. The
estimates were averaged by 1000 simulation trials. The estimator of reliability at 131,400 h
(15 years) was taken as the sample mean or the sample median of simulations. Then, we
ranked the reliability values in order from small to large. The LCL of reliability at 15 years
was the reliability of the ordered simulations. The results are shown in Table 6.

Table 6. Estimators and LCL of reliability for the SSPC (t0 = 131,400 h).

Reliability Estimator (Mean) Estimator (Median) Lower Confidence Limit

R(t0) 0.9960092 0.9989452 0.9952635

From Table 6, we found that the mean of simulated reliability was 0.9960092, which
was close to the LCL (0.9952635). Therefore, it was more appropriate to take the median
(0.9989452) as the estimator of reliability. It is illustrated that the LCL of reliability at
15 years with a confidence level of 0.8 was 0.9952635.

Figure 6 gives a plot of the estimator and the LCL of reliability for the SSPC. The
real line represents the estimator of reliability for the SSPC. We took the median of the
simulated sample as the estimator instead of the mean. The dashed line represents the LCL
of reliability for the SSPC.

Figure 6. Curves of the estimator and the LCL of reliability for the SSPC.
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From Figure 6, we can see the rate of decline was slow when t ranged from 131,400 h
(15 years) to 350,400 h (40 years). The LCLs of reliability for the SSPC at 15 years and
40 years with a confidence level of 0.8 were 0.995 and 0.930, respectively. Both the estimator
and the LCL of reliability for the SSPC were very high, which could meet the factory’s
requirement for reliability.

Next, the reliability for the SSPC with hot standby equipment was calculated. The
structure is shown in Figure 5. The estimators and the LCL of reliability for the SSPC
with hot standby equipment could also be obtained by Monte Carlo simulation from
Equation (14). The results are shown in Table 7.

Table 7. Estimators and LCL of reliability for an SSPC with hot standby equipment (t0 = 131,400 h).

Reliability Estimator (Mean) Estimator (Median) Lower Confidence Limit

R(t0) 0.9998993 0.9999989 0.9999775

Table 7 illustrates that the estimator and the LCL of reliability at 15 years were
0.9999989 and 0.9999775, respectively. When comparing Table 6 with Table 7, it is shown
that the reliability and the LCL were improved when the hot standby systems were adopted.
In fact, if the cold or warm standby systems were adopted, the reliability was also im-
proved similarly.

Next, the reliability of the whole PDS with at least one SSPC was calculated. The
estimators and the LCL of the whole PDS reliability with one SSPC subsystem were
obtained by Equation (17) and are shown in Table 8.

Table 8. Estimators and LCL of reliability for the PDS with one SSPC (t0 = 131,400 h).

Reliability Estimator (Mean) Estimator (Median) Lower Confidence Limit

R(t0) 0.9987806 0.9988801 0.9988588

From Table 8, it is shown that the estimators and the LCL of reliability were 0.9988801
and 0.9988588, respectively. In the same way, we could calculate the LCL of reliability for a
PDS with more than one SSPC. For example, Table 9 calculates the estimators and the LCL
of PDS reliability at 15 years with 20 SSPCs.

Table 9. Estimators and LCL of reliability for a PDS with 20 SSPCs (t0 = 131,400 h).

Reliability Estimator (Mean) Estimator (Median) Lower Confidence Limit

R(t0) 0.9970009 0.998859 0.9984319

Figure 7 gives two curves of the estimator and the LCL of reliability for the PDS.
The real line and dashed line represent the estimator and the LCL of reliability for the
PDS, respectively.

As shown in Figure 7, the rate of decline was slow when t ranged from 131,400 h
(15 years) to 350,400 h (40 years). The LCL of reliability for the PDS at 15 years and 40 years
with a confidence level of 0.8 were 0.998 and 0.899, respectively. Compared with Figure 6,
the decline rate of reliability for the PDS was faster than that for the SSPC when t ranged
from 350,400 h (40 years) to 788,400 h (90 years). The reason for this was that there were 20
SSPCs in the PDS. When the reliability of the SSPC was reduced, the reliability of the PDS
decreased faster.

According to the factory’s requirement, the LCL of the reliability for this typical
satellite intelligent PDS at 15 years should be greater than 0.980 with a confidence level of
0.8. From Table 9, the LCL of reliability at 15 years was 0.998, which was greater than 0.980
(i.e., the reliability met the factory’s requirement).



Appl. Sci. 2021, 11, 11317 13 of 16

Figure 7. Curves of the estimator and the LCL of reliability for a typical PDS.

4. Discussion

Cold standby systems, hot standby systems and k-out-of-n systems are the most
commonly used redundancy systems in reliability. Specifically, the hot standby system is a
particular case of a k-out-of-n system where k = 1 and n = 2. For comparison, the authors
of [25] derived the LCL of reliability for a k-out-of-n system. In this paper, a reliability
model was developed for a typical satellite intelligent PDS, which used hot standby systems
(one-out-of-two systems) in the DC/DC and SSPC subsystems. Experienced engineers
recommend using a cold standby TM/TC as a redundancy of the main TM/TC. According
to the results obtained in Section 3, the LCL of reliability for this typical satellite intelligent
PDS was 0.998. When the TM/TC cold standby subsystem was replaced by a hot standby
subsystem, the reliability of the TM/TC subsystem could be calculated from Equation (16)
instead of Equation (15) such that

RTT(t) = 1−
(

1− e−λT t
)2

. (19)

The reliability of the entire satellite intelligent PDS with 20 SSPC subsystems at time
t was

R20(t) = RDD(t)RTT(t)[RSS(t)]
20

=
[
1−

(
1− e−λDt)2

][
1−

(
1− e−λT t)2

]
·

1−
[

1− exp

{
−
(

t exp
{

E1
E2

S− X
}) E2

S − t
2T E−

6
∑

i=3
λSit

}]2


20

.

(20)

By using the generalized fiducial method, the LCL of the reliability would fall to 0.997,
which was less than 0.998.

It is widely known that the reliability of a cold standby system is always higher than
that of a hot standby system. After calculation and analysis, the same conclusion applies
the LCL of the reliability. It is suggested that engineers can substitute a cold standby
subsystem for a hot standby subsystem (one-out-of-two system), which can increase the
LCL of the reliability for the whole system.

5. Conclusions

In this paper, the LCL of the reliability for a typical satellite intelligent PDS was
obtained by using the generalized fiducial method. First, the LCL of the reliability for
an exponential-type component and a Weibull-type component were provided by two
algorithm procedures. The simulation results showed that the sample median was more
appropriate than the sample mean when the LCL of the reliability was estimated. In
addition, the LCL of the reliability for a typical satellite intelligent PDS was formulated
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based on the structure of the complicated system. The results showed that the LCL of the
reliability for the typical satellite intelligent PDS at 15 years was 0.998, which was greater
than 0.980. The obtained reliability of the system met the factory’s requirement. Finally, the
LCLs of the reliability for a cold standby system and a hot standby system were calculated.
Analysis showed that a cold standby system outperformed a hot standby system when we
were interested in the LCL of the system reliability. The research results of this paper will
provide a theoretical basis to make the right decisions for reliability engineers.

6. Future Works

Some questions warrant further study. The first question is whether the generalized
fiducial method of the reliability can be used not only for the reliability of the components
but also for some other reliability characteristic quantities which are functions of the sample
and pivotal quantities, such as the availability and failure rate of the component. The
next question concerns the reliability structure of the typical satellite intelligent PDS. The
evaluation method proposed in this paper can be also applied to the LCLs of some other
complicated reliability structures of a PDS. Finally, because the PDS has the characteristics
of a long lifetime and high reliability, the validation experiment is very difficult. How to
conduct the validation experiment is our future work.
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