Potential Use of Cold Plasma Discharges for Frequency Reconfigurability in a Sievenpiper Mushroom Metasurface
Abstract
:1. Introduction
2. Cold Plasma Characteristics
3. Metasurface Design
4. Plasma Discharge Integration
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Engheta, N.; Ziolkowski, R. Metamaterials: Physics and Engineering Explorations, 1st ed.; Wiley, John and Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Tamayo-Domínguez, A.; Fernández-González, J.M.; Sierra-Castañer, M. 3D-Printed Modified Butler Matrix Based on Gap Waveguide at W-Band for Monopulse Radar. IEEE Trans. Microw. Theory Tech. 2020, 68, 926–938. [Google Scholar] [CrossRef]
- Afifi, I.; Sebak, A.R. Wideband 4 × 4 Butler Matrix in the Printed Ridge Gap Waveguide Technology for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2020, 68, 7670–7675. [Google Scholar] [CrossRef]
- Pucci, E.; Rajo-Iglesias, E.; Kildal, P.S. New Microstrip Gap Waveguide on Mushroom-Type EBG for Packaging of Microwave Components. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 129–131. [Google Scholar] [CrossRef] [Green Version]
- Brazalez, A.A.; Zaman, A.U.; Kildal, P.S. Improved Microstrip Filters Using PMC Packaging by Lid of Nails. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Zetterstrom, O.; Hamarneh, R.; Quevedo-Teruel, O. Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented With Glide-Symmetric Substrate-Integrated Holes. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 698–702. [Google Scholar] [CrossRef]
- Poyanco, J.M.; Zetterstrom, O.; Castillo-Tapia, P.; Fonseca, N.J.; Pizarro, F.; Quevedo-Teruel, O. Two-Dimensional Glide-Symmetric Dielectric Structures for Planar Graded-Index Lens Antennas. IEEE Antennas Wirel. Propag. Lett. 2021. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Miao, J.; Mattsson, M.; Algaba-Brazalez, A.; Johansson, M.; Manholm, L. Glide-Symmetric Fully Metallic Luneburg Lens for 5G Communications at Ka-Band. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1588–1592. [Google Scholar] [CrossRef]
- Zaman, A.U.; Alexanderson, M.; Vukusic, T.; Kildal, P.S. Gap Waveguide PMC Packaging for Improved Isolation of Circuit Components in High-Frequency Microwave Modules. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Monasterio, D.; Castro, N.; Pizarro, J.; Pizarro, F.; Mena, F.P. A Mode-Suppressing Metasurface for Large-Width MMICs Suitable for Tightly-Packaged Millimeter and Submillimeter Heterodyne Receivers. IEEE Trans. Terahertz Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Memeletzoglou, N.; Rajo-Iglesias, E. Holey Metasurface Prism for the Reduction of the Dispersion of Gap Waveguide Leaky-Wave Antennas. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2582–2586. [Google Scholar] [CrossRef]
- Sanchez-Cabello, C.; Herran, L.F.; Rajo-Iglesias, E. Ka-Band Diplexer for 5G mmWave Applications in Inverted Microstrip Gap Waveguide Technology. Electronics 2020, 9, 2094. [Google Scholar] [CrossRef]
- Stuardo, P.; Pizarro, F.; Rajo-Iglesias, E. 3D-Printed Sievenpiper Metasurface Using Conductive Filaments. Materials 2020, 13, 2614. [Google Scholar] [CrossRef] [PubMed]
- Bariah, L.; Mohjazi, L.; Muhaidat, S.; Sofotasios, P.C.; Kurt, G.K.; Yanikomeroglu, H.; Dobre, O.A. A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks. IEEE Access 2020, 8, 174792–174820. [Google Scholar] [CrossRef]
- Quevedo-Teruel, O.; Chen, H.; Díaz-Rubio, A.; Gok, G.; Grbic, A.; Minatti, G.; Martini, E.; Maci, S.; Eleftheriades, G.V.; Chen, M.; et al. Roadmap on metasurfaces. J. Opt. 2019, 21, 073002. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Schaffner, J.; Song, H.; Loo, R.; Tangonan, G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 2003, 51, 2713–2722. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Wakatsuchi, H.; Rushton, J.J.; Sievenpiper, D.F. Switchable nonlinear metasurfaces for absorbing high power surface waves. Appl. Phys. Lett. 2016, 108, 041903. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Chen, X.; Long, J.; Quarfoth, R.; Sievenpiper, D. Self-focusing of electromagnetic surface waves on a nonlinear impedance surface. Appl. Phys. Lett. 2015, 106, 211102. [Google Scholar] [CrossRef]
- Couch, A.; Grbic, A. A phase-tunable, liquid crystal-based metasurface. In Proceedings of the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Chania, Greece, 19–22 September 2016; pp. 94–96. [Google Scholar] [CrossRef]
- Cure, D.; Weller, T.M.; Price, T.; Miranda, F.A.; Van Keuls, F.W. Low-Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors. IEEE Trans. Antennas Propag. 2014, 62, 1185–1193. [Google Scholar] [CrossRef]
- Vidmar, R. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 1990, 18, 733–741. [Google Scholar] [CrossRef]
- Melazzi, D.; Lancellotti, V.; Capobianco, A.D. Analytical and Numerical Study of a Gaseous Plasma Dipole in the UHF Frequency Band. IEEE Trans. Antennas Propag. 2017, 65, 7091–7101. [Google Scholar] [CrossRef]
- Sadeghikia, F. Analysis of Plasma Monopole Antenna Using Numerical Method and an Equivalent Circuit. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1711–1714. [Google Scholar] [CrossRef]
- Anderson, T. Plasma Antennas, 2nd ed.; Artech House: Norwood, MA, USA, 2020. [Google Scholar]
- Cross, L.W.; Almalkawi, M.J.; Devabhaktuni, V.K. Theory and Demonstration of Narrowband Bent Hairpin Filters Integrated With AC-Coupled Plasma Limiter Elements. IEEE Trans. Electromagn. Compat. 2013, 55, 1100–1106. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin, Germany, 1991. [Google Scholar]
- Sokoloff, J.; Pascal, O.; Callegari, T.; Pascaud, R.; Pizarro, F.; Liard, L.; Lo, J.; Kallel, A. Non-thermal plasma potentialities for microwave device reconfigurability. C. R. Phys. 2014, 15, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Pascaud, R.; Pizarro, F.; Callegari, T.; Liard, L.; Pigaglio, O.; Pascal, O. Low insertion loss microplasma-based limiter integrated into a microstrip bandpass filter. Electron. Lett. 2015, 51, 1090–1092. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, F.; Pascaud, R.; Pascal, O.; Callegari, T.; Liard, L. Evaluation of microplasma discharges as active components for reconfigurable antennas. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 117–119. [Google Scholar] [CrossRef] [Green Version]
- Jusoh, M.T.; Lafond, O.; Colombel, F.; Himdi, M. Performance and Radiation Patterns of a Reconfigurable Plasma Corner-Reflector Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1137–1140. [Google Scholar] [CrossRef] [Green Version]
- Sadeghikia, F.; Dorbin, M.R.; Horestani, A.K.; Noghani, M.T.; Ja’afar, H. Tunable Inverted-F Antenna Using Plasma Technologies. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 702–706. [Google Scholar] [CrossRef]
- Kamboj, G.K.; Yadav, R.P.; Kaler, R.S. Development of Reconfigurable Plasma Column Antenna. IEEE Trans. Plasma Sci. 2021, 49, 656–662. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Zhang, L.; Broas, R.; Alexopolous, N.; Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef] [Green Version]
- Arkhipenko, V.I.; Callegari, T.; Simonchik, L.V.; Sokoloff, J.; Usachonak, M.S. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide. J. Appl. Phys. 2014, 116, 123302. [Google Scholar] [CrossRef]
- Memeletzoglou, N.; Sanchez-Cabello, C.; Pizarro-Torres, F.; Rajo-Iglesias, E. Analysis of Periodic Structures Made of Pins Inside a Parallel Plate Waveguide. Symmetry 2019, 11, 582. [Google Scholar] [CrossRef] [Green Version]
- ANSYS. Available online: https://www.ansys.com (accessed on 9 October 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro, F.; Stuardo, P.; Olivares, R.; Rajo-Iglesias, E. Potential Use of Cold Plasma Discharges for Frequency Reconfigurability in a Sievenpiper Mushroom Metasurface. Appl. Sci. 2021, 11, 11342. https://doi.org/10.3390/app112311342
Pizarro F, Stuardo P, Olivares R, Rajo-Iglesias E. Potential Use of Cold Plasma Discharges for Frequency Reconfigurability in a Sievenpiper Mushroom Metasurface. Applied Sciences. 2021; 11(23):11342. https://doi.org/10.3390/app112311342
Chicago/Turabian StylePizarro, Francisco, Pablo Stuardo, Ricardo Olivares, and Eva Rajo-Iglesias. 2021. "Potential Use of Cold Plasma Discharges for Frequency Reconfigurability in a Sievenpiper Mushroom Metasurface" Applied Sciences 11, no. 23: 11342. https://doi.org/10.3390/app112311342
APA StylePizarro, F., Stuardo, P., Olivares, R., & Rajo-Iglesias, E. (2021). Potential Use of Cold Plasma Discharges for Frequency Reconfigurability in a Sievenpiper Mushroom Metasurface. Applied Sciences, 11(23), 11342. https://doi.org/10.3390/app112311342