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Abstract: The focus of this paper is the effect of thickness stretching on the static and dynamic
behaviors of functionally graded graphene reinforced composite (FG-GRC) plates. The bending
and free vibration behaviors of FG-GRC plates under simply supported conditions are studied
based on two plate theories, with or without taking into account the thickness stretching effect,
respectively, and the effect of thickness stretching on FG-GRC plates is analyzed by comparing
the calculated results of the two types of plate theories. The properties of composite materials are
estimated by the modified Halpin-Tsai model and rule of mixture, Hamilton’s principle is used to
construct its governing equation, and the Navier solution method is used to find the closed solution.
The numerical results show that the effect of thickness stretching depends mainly on the transverse
anisotropy of the FG-GRC plates, and the FG-GRC plates are most significantly affected by the
thickness stretching when the graphene nanoplatelets (GPLs) are asymmetrically distributed, and the
effect of thickness stretching tends to increase as the total number of layers and the weight fraction of
GPLs increase.

Keywords: thickness stretching; graphene nanoplatelet; functionally graded materials; bending;
free vibration

1. Introduction

The concept of functionally graded materials has been proposed by Japanese materials
scientists since 1984 [1], among which traditional metal-ceramic functionally graded mate-
rials have been widely used in aerospace engineering. Owing to their excellent thermal
insulation and high strength, functionally graded materials can be used to make high-
performance parts in spacecraft [2,3]. This paper deals with a new class of functionally
gradient materials, which enhance the mechanical properties by adding reinforcement to
the matrix materials.

Graphene nanoplatelets (GPLs) have attracted a significant amount of attention from
researchers since their discovery by Novoselov et al. in 2004 [4]. Owing to the high
Young’s modulus and high strength of GPLs, we can obtain composites with excellent
mechanical properties by incorporating GPLs into the matrix materials. Since GPLs have a
larger specific surface area than carbon nanotubes (about three times greater than carbon
nanotubes), the mechanical properties of GPLs-reinforced composites are considerably
improved over the previously studied carbon nanotubes reinforced composites [5]. The
excellent performance of GPLs-reinforced composites gives them a very broad range of
application scenarios in aerospace, civil engineering, biomedical, etc. Therefore, it is
important to study the mechanical behaviors of functionally graded graphene reinforced
composites (FG-GRC).

Some researchers have chosen classical plate theory [6] (Kirchhoff theory) for the
analysis of FG-GRC. Yang et al. [7] investigated the critical buckling load of spinning
FG-GRC cylindrical shells by using classical plate theory. Gao et al. [8] studied the FG-GRC
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porous plates using classical plate theory and solved the nonlinear free vibration of the
plates using the differential quadrature method. Li et al. [9] investigated the nonlinear
vibration of FG-GRC sandwich porous plates based on classical plate theory.

Classical plate theory neglects the effects of shear and normal deformation and is only
applicable to thin FG-GRC sheet/shell, so more researchers have adopted first-order shear
deformation plate theory (FSDPT) [10] and third-order shear deformation plate theory
(TSDPT) [11]. Song et al. [12] analyzed the free and forced vibrations of FG-GRC plates
employing FSDPT. Garcia-Macias et al. [13] calculated the bending and free vibration of
FG-GRC plates based on FSDPT using the finite element method, and also calculated
the mechanical behaviors of carbon nanotube reinforced plates for comparison purposes.
Mohammod et al. [14] performed a free vibration analysis of FG-GRC curved nanobeams
on Pasternak foundation based on the displacement field described by FSDPT. Guo et al.
calculated nonlinear bending [15] and free vibration [16] of an FG-GRC quadrilateral plate
based on FSDPT, using the element-free IMLS-Ritz method. Reddy et al. [17] used FSDPT
and finite element method to analyze the free vibration characteristics of FG-GRC plates
under various boundary conditions.

Due to the assumption of a constant transverse shear strain in the transverse section,
the FSDPT must be shear-corrected, and this correction factor is not only related to the
materials and geometric parameters, but also to the loads as well as to the boundary
conditions. Since the shear correction factor is difficult to determine, TSDPT becomes the
favored choice of many researchers. The advantage of TSDPT is that it does not need to
consider the shear correction factor, and the calculation result of TSDPT is also closer to
the 3D solution than FSDPT. Shen et al. [18] established geometric nonlinear equations
of motion with von Kármán strain form based on higher-order shear deformation plate
theory to study the significant amplitude vibration in FG-GRC plates under an elastic
foundation and thermal environment. Kiani [19] used Reddy-based TSDPT to obtain
the total strain energy and performed thermal post-buckling analysis on FG-GRC plates.
Gholami et al. [20] investigated the geometrically nonlinear harmonically excited vibration
of FG-GRC rectangular plates under different edge conditions using TSDPT. Li et al. [21]
studied the bending, buckling and free vibration of FG-GRC plates using isogeometric
analysis based on FSDPT and TSDPT.

In addition to FSDPT and TSDPT, there are some articles that use other plate theories.
Thai et al. [22] investigated the bending, buckling and free vibration behaviors of FG-
GRC plates based on refined shear deformation plate theory. Gholami and Ansari [23]
performed a large-deflection geometric nonlinear analysis of FG-GRC plates based on
sinusoidal shear deformation plate theory. Based on sinusoidal shear deformation plate
theory, Arefi et al. [24] reported the effect of small-scale effects on the natural frequencies
of FG-GRC nanoplates on elastic foundations.

All the plate theories mentioned in the above review do not take into account the
effect of thickness stretching, which can lead to large errors when we calculate moderately
thick and thick plates. To compensate for the disadvantages of those theories, many
researchers have proposed plate theories that take into account the effect of thickness
stretching. For example, Zenkour [25] proposed a quasi-3D higher-order shear deformation
plate theory based on sinusoidal functions of in-plane and transverse displacements, while
the quasi-3D theory [26] is based on the parabolic function of transverse displacement and
the cubic function of in-plane displacement. Both of the above two plate theories contain
six unknown quantities in the displacement field. There are also three high-order shear
deformation plate theories with nine unknowns proposed by Neves [27–29].

Senthilnathan et al. [30] simplified the TSDPT by dividing the transverse displacement
into bending and shear components so that the number of unknowns was reduced by one
compared to the TSDPT. They applied this assumption to the analysis of the isotropic plates
and proposed a refined plate theory (RPT). This hypothesis of dividing the displacement
into a bending part and a shear part was first proposed by Huffington [31]. Shimp [32]
published a detailed analysis of homogeneous plates based on RPT in 2002 and proposed
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two extended theories based on RPT. Mechab [33] first extended RPT to the analysis of
functionally graded materials. Since then, a large number of documents [34–40] have
analyzed and studied the mechanical behaviors of functionally graded materials based on
RPT, which showed the good applicability of RPT in the mechanical analysis of functionally
graded materials.

The calculation result of RPT is very close to TSDPT [30], and because it reduces one
degree of freedom, the calculation process is greatly simplified. However, RPT does not
consider the effect of thickness stretching, so its shortcomings are the same as TSDPT. In
order to make up for the shortcomings of RPT, Thai [41] proposes an improved refined
plate theory (IRPT) that takes into account the effect of thickness stretching. IRPT corrects
the disadvantage of RPT in the calculation of moderately thick and thick plates by adding
a thickness stretching effect term in the displacement field. The calculation results [41]
in functionally graded materials show that the IRPT that takes into account the effect of
thickness stretching is more accurate than the RPT that does not consider the effect of
thickness stretching. Compared with the previously mentioned plate theories that consider
the effect of thickness stretching, IRPT contains the least number of unknowns [41].

The importance of the effect of thickness stretching for the analysis of the mechanical
behaviors of metal-ceramic functionally graded plates was emphasized by Carrera et al. [42].
Usually, the effect of thickness stretching can be disregarded for thin isotropic plates, but
due to the specificity of the structure of the functionally graded materials, ignoring the
effect of thickness stretching in the analysis of mechanical behaviors may lead to inaccurate
calculation results [42]. For moderately thick and thick plates, neglecting the effect of
thickness stretching produces non-negligible errors, which is evident in both multilayered
composite plates and metal-ceramic functionally graded plates.

To the authors’ knowledge, few researchers have further studied the effect of thickness
stretching on the mechanical behaviors of FG-GRC plates in detail. In the present paper,
attention is focused on the effect of thickness stretching on the static and dynamic behaviors
of FG-GRC plates. The novelty of this paper is reflected in the fact that the importance of
the thickness stretching effect is investigated by comparing the numerical results based
on two plate theories, with or without taking into account the thickness stretching effect,
respectively. In this paper, RPT and IRPT are used to study the bending and free vibration
behaviors of FG-GRC plates. The properties of composite materials are estimated by the
modified Halpin-Tsai model and rule of mixture. Hamilton’s principle is used to construct
its governing equation, and the Navier solution method is used to find the closed solution.
The effects of thickness stretching, distribution modes of GPLs, and some parameters,
such as the total number of layers NL, and weight fraction fG of GPLs on frequencies and
deflections of the FG-GRC rectangular simply supported plates are discussed in detail.

2. Effective Material Properties

Consider an FG-GRC plate with length a, width b, and thickness h (Figure 1) using
the cartesian coordinate system x, y, z, with plane z = 0, coinciding with the midplane of
the plate. NL is the total number of layers of FG-GRC plates, and it is worth noting that
this paper is only for FG-GRC plates with an even number of layers. GPLs are used as
fillers and four distribution patterns proposed by Song et al. [12,43] are used in this paper.
In Figure 2, taking the plate with NL = 6 as an example, a schematic diagram of the four
distribution modes of GPLs is given [12,43].
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Figure 1. Mode of a functionally graded graphene reinforced composite (FG-GRC) plate.
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Figure 2. Different distribution modes of graphene nanoplatelets (GPLs).

In the UD mode, the GPLs content is uniformly distributed. In the FG-O mode, the
GPLs content decrease from the middle surface to the surface of the plate. In the FG-X
mode, the distribution is opposite to in the FG-O mode, and the GPLs content decreases
from the surface to the middle surface of the plate. In the FG-A mode, the GPLs content
increases from the upper surface to the lower surface.

The effective Young’s modulus of the kth layer of the FG-GRC plates, E(k)
c , can be

calculated based on the Halpin-Tsai micromechanics model [44] and Voigt-Reuss model [45],
as follows:

E(k)
c =

3
8
×

1 + ξLηLV(k)
G

1− ηLV(k)
G

× EM +
5
8
×

1 + ξWηWV(k)
G

1− ηWV(k)
G

× EM (1)

where

ηL =
(EG/EM)− 1
(EG/EM) + ξL

, ηW =
(EG/EM)− 1
(EG/EM) + ξW

(2)

k = 1, 2, . . . , NL, and EG, EM represent Young’s modulus of GPLs and polymer matrix,
respectively. ξL and ξW are the parameters associated with the geometry and size of the
GPLs, defined as

ξW = 2
(

wG

hG

)
, ξL = 2

(
lG
hG

)
(3)

with lG, wG, and hG being the average length, width, and thickness of the GPLs. In addition,
the volume fraction V(k)

G of GPLs in the kth layer is defined as follows:

V(k)
G =

f (k)G

f (k)G + (ρG/ρM)
(

1− f (k)G

) (4)

where f (k)G is GPLs weight fraction of the kth layer, ρM and ρG denote the mass densities of
the polymer matrix and GPLs, respectively.

According to the rule of mixture, the effective density and Poisson’s ratio of the kth
layer of the FG-GRC plates are defined as follows:

ρ
(k)
c = ρGV(k)

G + ρM

(
1−V(k)

G

)
, ν

(k)
c = νGV(k)

G + νM

(
1−V(k)

G

)
(5)
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νG and νM are Poisson’s ratios of GPLs and polymer matrix, respectively. Assuming NL as
an even number, the GPLs weight fraction of the kth layer for the four distribution modes
is as follows [43]:

f (k)G =


fG UD
4 fG

(
NL+1

2 −
∣∣∣k− NL+1

2

∣∣∣)/(2 + NL) FG−O

4 fG

(
1
2 +

∣∣∣k− NL+1
2

∣∣∣)/(2 + NL) FG− X
2k fG/(NL + 1) FG−A

(6)

in which fG is the total weight fraction of GPLs in the FG-GRC plates.

3. The Plate Theories (RPT and IRPT)

Consider the rectangular plate shown in Figure 1, using the assumptions shown below:

(1) In-plane displacement and transverse displacement consists of bending and shear
components.

(2) The bending component of the in-plane displacement is assumed to be analogous to
the displacement that is given by classical plate theory.

(3) The shear part of the in-plane displacement causes a parabolic change in the shear
strain, thereby generating shear stress through the thickness of the plate so that the
shear stress on the top and bottom surfaces disappears.

Based on the above three assumptions, the displacement field of RPT is defined as
follows [32,41]:

u1(x, y, z, t) = u(x, y, t)− z ∂wb
∂x − f (z) ∂ws

∂x
u2(x, y, z, t) = v(x, y, t)− z ∂wb

∂y − f (z) ∂ws
∂y

u3(x, y, z, t) = wb(x, y, t) + ws(x, y, t)
(7)

where f (z) = −z/4 + 5z3/3h2; (u1, u2, u3) are the displacements along the (x, y, z) axis
direction, respectively. u and v represent the displacements of a point on the middle
surface of the plate along the x-axis and y-axis; wb is the bending part of the transverse
displacement; and ws is the shear part of the transverse displacement. h indicates the
thickness of the plate.

Considering the effect of thickness stretching based on RPT, we can obtain the dis-
placement field of IRPT as follows [41]:

u1(x, y, z, t) = u(x, y, t)− z ∂wb
∂x − f (z) ∂ws

∂x
u2(x, y, z, t) = v(x, y, t)− z ∂wb

∂y − f (z) ∂ws
∂y

u3(x, y, z, t) = wb(x, y, t) + ws(x, y, t) + g(z)wz(x, y, t)
(8)

where g(z) = 1− f ′(z). wz is the unknown displacement function with respect to the effect
of thickness stretching.

The linear relationship between strain and displacement is as follows:

εx =
∂u
∂x
− z

∂2wb
∂x2 − f (z)

∂2ws

∂x2 (9)

εy =
∂v
∂y
− z

∂2wb
∂y2 − f (z)

∂2ws

∂y2 (10)

εz = g′(z)wz (11)

γxy =
∂u
∂y

+
∂v
∂x
− 2z

∂2wb
∂x∂y

− 2 f (z)
∂2ws

∂x∂y
(12)

γxz = g(z)
(

∂ws

∂x
+

∂wz

∂x

)
(13)



Appl. Sci. 2021, 11, 11362 6 of 17

γyz = g(z)
(

∂ws

∂y
+

∂wz

∂y

)
(14)

If the effect of thickness stretching is neglected, Equation (11) becomes εz = 0.
The relationship between strain and stress is as follows:



σxx
σyy
σzz
τxy
τxz
τyz



(k)

=



C(k)
11 C(k)

12 C(k)
13 0 0 0

C(k)
21 C(k)

22 C(k)
23 0 0 0

C(k)
31 C(k)

32 C(k)
33 0 0 0

0 0 0 C(k)
66 0 0

0 0 0 0 C(k)
55 0

0 0 0 0 0 C(k)
44





εxx
εyy
εzz
γxy
γxz
γyz



(k)

(15)

where C(k)
ij is the three-dimensional elastic constant as follows:

C(k)
11 = C(k)

22 = C(k)
33 =

(
1− ν

(k)
c

)
E(k)

c(
1− 2ν

(k)
c

)(
1 + ν

(k)
c

) (16)

C(k)
12 = C(k)

13 = C(k)
23 =

ν
(k)
c E(k)

c(
1− 2ν

(k)
c

)(
1 + ν

(k)
c

) (17)

C(k)
44 = C(k)

55 = C(k)
66 =

E(k)
c

2
(

1 + ν
(k)
c

) (18)

If the thickness stretching effect is neglected, the stress–strain relationship is shown below.


σxx
σyy
τxy
τxz
τyz



(k)

=
E(k)

c

1−
[
ν
(k)
c

]2



1 ν
(k)
c 0 0 0

ν
(k)
c 1 0 0 0

0 0 1−ν
(k)
c

2 0 0

0 0 0 1−ν
(k)
c

2 0

0 0 0 0 1−ν
(k)
c

2




εxx
εyy
γxy
γxz
γyz



(k)

(19)

The virtual strain energy of the system is as follows:

δU =
∫

Ω

NL

∑
k=1

∫ zk+1

zk

(
σ
(k)
xx δε

(k)
xx + σ

(k)
yy δε

(k)
yy + σ

(k)
zz δε

(k)
zz + τ

(k)
xy δγ

(k)
xy + τ

(k)
xz δγ

(k)
xz + τ

(k)
yz δγ

(k)
yz

)
dzdxdy (20)

The variation in work carried out by the external forces q is as follows:

δV = −
∫

Ω

NL

∑
k=1

∫ zk+1

zk

q(δwb + δws + g(z)δwz)dzdxdy (21)

where q represents the external load in the transverse direction.
The virtual kinetic energy of the system is as follows:

δK =
∫

Ω

NL

∑
k=1

∫ zk+1

zk

ρ
(k)
c (

.
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w)dzdxdy (22)

In this paper, the dot-superscript convention denotes the differential with respect to
the time variable.

If the effect of thickness stretching is ignored, then:
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δU =
∫

Ω

NL

∑
k=1

∫ zk+1

zk

(
σ
(k)
xx δε

(k)
xx + σ

(k)
yy δε

(k)
yy + τ

(k)
xy δγ

(k)
xy + τ

(k)
xz δγ

(k)
xz + τ

(k)
yz δγ

(k)
yz

)
dzdxdy (23)

δV = −
∫

Ω

NL

∑
k=1

∫ zk+1

zk

q(δwb + δws)dzdxdy (24)

δK =
∫

Ω

NL

∑
k=1

∫ zk+1

zk

ρ
(k)
c (

.
uδ

.
u +

.
vδ

.
v +

.
wδ

.
w)dzdxdy (25)

Hamilton’s principle is as follows:∫ T

0
δ(U + V − K)dt = 0 (26)

Substituting the expressions from Equations (20)–(22) into Equation (26), we obtain
the governing equations under IRPT as follows:

A11
∂2u
∂x2 + A66

∂2u
∂y2 + (A12 + A66)

∂2v
∂x∂y − B11

∂3wb
∂x3 − (B12 + 2B66)

∂3wb
∂x∂y2−

Bs
11

∂3ws
∂x3 −

(
Bs

12 + 2Bs
66
) ∂3ws

∂x∂y2 + X13
∂wz
∂x = I0

..
u− I1

∂
..
wb
∂x − J1

∂
..
ws
∂x

(27)

A22
∂2v
∂y2 + A66

∂2v
∂x2 + (A12 + A66)

∂2u
∂x∂y − B22

∂3wb
∂y3 − (B12 + 2B66)

∂3wb
∂x2∂y−

Bs
22

∂3ws
∂y3 −

(
Bs

12 + 2Bs
66
) ∂3ws

∂x2∂y + X23
∂wz
∂y = I0

..
v− I1

∂
..
wb
∂y − J1

∂
..
ws
∂y

(28)

B11
∂3u
∂x3 + (B12 + 2B66)

(
∂3u

∂x∂y2 +
∂3v

∂x2∂y

)
+ B22

∂3v
∂y3 − D11

∂4wb
∂x4 − D22

∂4wb
∂y4 −

2(D12 + 2D66)
∂4wb

∂x2∂y2 − Ds
11

∂4ws
∂x4 − Ds

22
∂4ws
∂y4 − 2

(
Ds

12 + 2Ds
66
) ∂4ws

∂x2∂y2 +

Y13
∂2wz
∂x2 + Y23

∂2wz
∂y2 + q = I0

( ..
wb +

..
ws
)
+ J0

..
wz + I1

(
∂

..
u

∂x + ∂
..
v

∂y

)
− I2∇2 ..

wb − J2∇2 ..
ws

(29)

Bs
11

∂3u
∂x3 +

(
Bs

12 + 2Bs
66
)(

∂3u
∂x∂y2 +

∂3v
∂x2∂y

)
+ Bs

22
∂3v
∂y3 − Ds

11
∂4wb
∂x4 −

Ds
22

∂4wb
∂y4 − 2

(
Ds

12 + 2Ds
66
) ∂4wb

∂x2∂y2 − Hs
11

∂4ws
∂x4 − Hs

22
∂4ws
∂y4 −

2
(

Hs
12 + 2Hs

66
) ∂4ws

∂x2∂y2 + As
55

∂2ws
∂x2 + As

44
∂2ws
∂y2 +

(
Ys

13 + As
55
) ∂2wz

∂x2 +(
Ys

23 + As
44
) ∂2wz

∂y2 + q + N0
xx

(
∂2wb
∂x2 + ∂2ws

∂x2

)
+ N0

yy

(
∂2wb
∂y2 + ∂2ws

∂y2

)
=

I0
( ..
wb +

..
ws
)
+ J0

..
wz + J1

(
∂

..
u

∂x + ∂
..
v

∂y

)
− J2∇2 ..

wb − K2∇2 ..
ws

(30)

−X13
∂u
∂x − X23

∂v
∂y + Y13

∂2wb
∂x2 + Y23

∂2wb
∂y2 +

(
Ys

13 + As
55
) ∂2ws

∂x2 +
(
Ys

23 + As
44
) ∂2ws

∂y2 +

As
55

∂2wz
∂x2 + As

44
∂2wz
∂y2 − Z33wz + gq + gN0

xx

(
∂2wb
∂x2 + ∂2ws

∂x2

)
+ gN0

yy

(
∂2wb
∂y2 + ∂2ws

∂y2

)
= J0

( ..
wb +

..
ws
)
+ K0

..
wz

(31)

where (
Aij, As

ij, Bij, Bs
ij, Dij, Ds

ij, Hs
ij

)
=

NL

∑
k=1

∫ zk+1

zk

(
1, g2, z, f , z2, f z, f 2

)
Cij

(k)dz (32)

(
Xij, Yij, Ys

ij, Zij

)
=

NL

∑
k=1

∫ zk+1

zk

(
g′, g′z, g′ f , g′2

)
Cij

(k)dz (33)

(I0, I1, I2) =
NL

∑
k=1

∫ zk+1

zk

(
1, z, z2

)
ρ(k)dz (34)

(J0, J1, J2) =
NL

∑
k=1

∫ zk+1

zk

(g, f , z f )ρ(k)dz (35)
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(K0, K2) =
NL

∑
k=1

∫ zk+1

zk

(
g2, f 2

)
ρ(k)dz (36)

4. Closed Solutions

Consider an FG-GRC plate with four sides simply supported, as shown in Figure 1.
The transversal load q acts on the surface of the FG-GRC plate. The Navier solution is used
to solve the closed solution of Equations (27)–(31). According to the Navier solution, the
solution form is assumed to be as follows:

u(x, y, t) =
R
∑

r=1

S
∑

s=1

(
Urseiωt cos αx sin βy

)
v(x, y, t) =

R
∑

r=1

S
∑

s=1

(
Vrseiωt sin αx cos βy

)
wb(x, y, t) =

R
∑

r=1

S
∑

s=1

(
Wbrseiωt sin αx sin βy

)
ws(x, y, t) =

R
∑

r=1

S
∑

s=1

(
Wsrseiωt sin αx sin βy

)
wz(x, y, t) =

R
∑

r=1

S
∑

s=1

(
Wzrseiωt sin αx sin βy

)
(37)

where Urs, Vrs, Wbrs, Wsrs, and Wzrs are unknown coefficients, while r and s are the half-
wave numbers in the x and y directions, respectively. ω is the natural frequency. In addition,

i =
√
−1, α =

rπ

a
, β =

sπ

b
(38)

The form of transversal load q is assumed to be as follows:

q(x, y) =
R

∑
r=1

S

∑
s=1

Qrs sin αx sin βy (39)

For the bending analysis in the following, it is necessary to consider a uniformly
distributed transverse load q(x, y) = F0, in which case [43],

Qrs = 4λrsF0/(EMrsπ2) (40)

where
λrs = 1− (−1)r − (−1)s + (−1)r+s (41)

Substituting Equations (37) and (39) into Equations (27)–(31), the closed solutions can
be derived from the following equation.


j11 j12 j13 j14 j15
j12 j22 j23 j24 j25
j13 j23 j33 j34 j35
j14 j24 j34 j44 j45
j15 j25 j35 j45 j55

−ω2


m11 0 m13 m14 0

0 m22 m23 m24 0
m31 m32 m33 m34 m35
m41 m42 m43 m44 m45

0 0 m53 m54 m55





Urs
Vrs

Wbrs
Wsrs
Wzrs

 =


0
0

Qrs
Qrs
0

 (42)
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where

j11 = A11α2 + A66β2, j12 = (A12 + A66)αβ, j13 = −B11α3 − (B12 + 2B66)αβ2

j14 = −Bs
11α3 −

(
Bs

12 + 2Bs
66
)
αβ2, j15 = −X13α, j22 = A66α2 + A22β2

j23 = −B2β3 − (B12 + 2B66)α
2β, j24 = −Bs

22β3 −
(

Bs
12 + 2Bs

66
)
α2β, j25 = −X23β

j33 = D11α4 + 2(D12 + 2D66)α
2β2 + D22β4, j45 =

(
Ys

13 + As
55
)
α2 +

(
Ys

23 + As
44
)

β2

j34 = Ds
11α4 + 2

(
Ds

12 + 2Ds
66
)
α2β2 + Ds

22β4, j55 = As
55α2 + As

44β2 + Z33
j35 = Y13α2 + Y23β2, j44 = Hs

11α4 + 2
(

Hs
12 + 2Hs

66
)
α2β2 + Hs

22β4 + As
55α2 + As

44β2

m11 = I0, m13 = −αI1, m14 = −αJ1, m22 = I0, m23 = −βI1, m24 = −βJ1
m33 = I0 + I2

(
α2 + β2), m34 = I0 + J1

(
α2 + β2), m35 = J0, m44 = I0 + K2

(
α2 + β2)

m44 = I0 + K2
(
α2 + β2), m45 = J0, m55 = K0

To solve for the bending deflection, just take ω = 0, and we can find Urs, Vrs, Wbrs, Wsrs,
and Wzrs, and then the deflection value using Equation (42). The free vibration frequency
can be found by simply substituting Equation (42) for Qrs = 0.

If the effect of thickness stretching is neglected and the same procedure as IRPT is
used, the closed solutions of RPT can be obtained from the following equation.


j11 j12 j13 j14
j12 j22 j23 j24
j13 j23 j33 j34
j14 j24 j34 j44

−ω2


m11 0 m13 m14

0 m22 m23 m24
m13 m23 m33 m34
m14 m24 m34 m44





Urs
Vrs

Wbrs
Wsrs

 =


0
0

Qrs
Qrs

 (43)

where

j11 = A
(

α2 + 1−v(k)c
2 β2

)
, j12 = 1+v(k)c

2 Aαβ, j22 = A
(

1−v(k)c
2 α2 + β2

)
j13 = −Bα

(
α2 + β2), j14 = −Bsα

(
α2 + β2), j23 = −Bβ

(
α2 + β2)

j24 = −Bsβ
(
α2 + β2), j33 = D

(
α2 + β2)2, j34 = Ds(α2 + β2)2

j44 = H
(
α2 + β2)2

+ As(α2 + β2), m11 = m22 = I0, m13 = −αI1, m14 = −αJ1, m23 = −βI1
m24 = −βJ1, m33 = I0 + I2

(
α2 + β2), m34 = I0 + J2

(
α2 + β2)

m44 = I0 + K2
(
α2 + β2)

(A, B, Bs, D, Ds, H) =
NL
∑

k=1

∫ zk+1
zk

(
1, z, f , z2, z f , f 2) E(k)

c

1−v(k)c 2
dz, As =

NL
∑

k=1

∫ zk+1
zk

g2E(k)
c

2(1+v(k)c )
dz

The process of solving RPT is similar to solving IRPT.

5. Results and Discussion

In this section, the bending and free vibration behaviors of the FG-GRC plates are
investigated in detail, with special attention on the effects of the distribution pattern of
GPLs, weight fraction of GPLs, length-to-thickness ratio of FG-GRC plates, and a total
number of layers NL on the mechanical behaviors of FG-GRC plates when the effect of
thickness stretching are considered. It should be noted that since the reinforcing materials
can be considered as uniformly distributed in the horizontal direction, several composite
plates mentioned below (FG-GRC plates, Al/(ZrO2)-1 plates and Al/Al2O3 plates) can be
considered as quasi-isotropic material plates, and their material properties only produce
gradient changes in the transverse thickness direction.

5.1. Static Bending

A functionally graded square plate composed of Al/(ZrO2)-1 is used as an example
to verify the effectiveness of the current method. The material properties are shown below

Al: E1 = 70 GPa, ν1 = 0.3
(ZrO2)-1: E2 = 200 GPa, ν2 = 0.3
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The plate has Al on the upper surface and (ZrO2)-1 on the lower surface with an
intermediate gradient distribution. The effective material properties are shown below [46]:

P(z) = P1 + (P2 − P1)

(
1
2
+

z
h

)n
(n ≥ 0) (44)

where P1 and P2 represent the material properties of Al and (ZrO2)-1, such as Young’s
modulus, density, etc., respectively. n is the volume fraction index. The functionally graded
plate is divided into NL layers of isotropic plates along the thickness direction. The total
material properties of the functionally graded plates are superimposed on the material
properties of each layer in the thickness direction, and the equivalent material property
P(k)

eq for the kth layer is defined as follows [47]:

P(k)
eq =

∫ zk+1

zk

P(z)
zk+1 − zk

dz , (k = 1, 2, · · · , NL) (45)

The dimensionless deflection is defined as follows and the uniformly distributed
transverse load F0= 500 kPa.

wc = 100wE1h3/
[
12
(

1− ν2
1

)
F0a4

]
(46)

The effects of different truncation levels R and S and NL on the dimensionless de-
flection are given in Table 1. n is the volume fraction index. The results show that the
dimensionless deflection is close to convergence when the truncation levels R and S of
Equation (37) are taken as 10 for the different total numbers of layers. Therefore, the use of
R = S = 10 for all subsequent bending deflection-related calculations balances accuracy and
calculation costs.

Table 1. Dimensionless central deflection values of Al/(ZrO2)-1 functionally graded square plates at
different truncation levels. (n = 0.5).

R = S = 1 R = S = 10 R = S = 20

NL = 10 RPT 0.2402 0.2313 0.2312
IRPT 0.2550 0.2462 0.2462

NL = 20 RPT 0.2407 0.2318 0.2317
IRPT 0.2556 0.2467 0.2467

NL = 30 RPT 0.2408 0.2319 0.2318
IRPT 0.2557 0.2468 0.2468

The dimensionless central deflection values for Al/(ZrO2)-1 functionally graded
square plates at a/h = 5, NL = 10, and R = S = 10 are given in Table 2, where n is the
volume fraction index. By comparing with the finite element method [48] and the meshless
local Petrov–Galerkin method [49], it can be seen that RPT and IRPT are in good agreement
with the available literature in terms of results.

Table 2. Dimensionless central deflection values of Al/(ZrO2)-1 functionally graded square plates
under a transverse uniform load. (R = S = 10, NL = 10, a/h = 5).

n

0 0.5 1 2

Ref. [48] 0.1703 0.2232 0.2522 0.2827
Ref. [49] 0.1671 0.2505 0.2905 0.3280

RPT 0.1716 0.2313 0.2715 0.3140
IRPT 0.1830 0.2462 0.2883 0.3327
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Next, consider an FG-GRC plate. The epoxy is selected for the matrix material, and its
material properties are shown below.

epoxy : EM = 3.0 GPa, νM = 0.34, ρM = 1.2 g/cm3

GPLs : EG = 1.01 TPa, νG = 0.186, ρG = 1.06 g/cm3

The geometric dimensions of GPLs are: lG = 2.5 µm, wG = 1.5 µm, hG = 1.5 nm. If
not specified, the default is taken as fG = 1.0% and NL = 10.

Figures 3 and 4 investigated the effects of the total number of layers NL and the GPLs
weight fraction fG on the percentage deflection ratio wc/wM of the FG-GRC square plates
under four different distribution patterns of GPLs using the plate theories IRPT and RPT,
respectively. wc is the center deflection of FG-GRC plates and wM is the center deflection of
plates without GPLs reinforcement (matrix material plates).
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Figure 4. Effect of GPLs weight fraction fG on the deflection ratio wc/wM of FG-GRC plates under
RPT and IRPT.

It can be clearly seen that when the GPLs are asymmetrically distributed (FG-A), the
difference between the results obtained from the two plate theories (RPT and IRPT) is very
obvious. When the GPLs are symmetrically distributed within the FG-GRC plates (UD,
FG-O, and FG-X), the difference between the results calculated by the two plate theories is
very small. This is due to the asymmetric distribution of GPLs in the transverse thickness
direction, resulting in a more significant transverse anisotropy in FG-A-type FG-GRC plates.
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That is to say, the more significant transverse anisotropy of the FG-A-type FG-GRC plates
compared to the symmetrically distributed modes of GPLs leads to a significant difference
in its deflection ratio in the calculated results of RPT and IRPT, and this difference is evident
in both thick plates with a/h = 4 and moderately thick plates with a/h = 10.

It can also be seen from Figures 3 and 4 that the difference in deflection ratio wc/wM
decreases with decreasing a/h values for different distribution modes, and the effect of
thickness stretching tends to increase as the total number of layers NL and the weight
fraction fG of GPLs increase. However, as the total number of layers NL and the weight
fraction fG of GPLs increase, the difference due to the effect of thickness stretching tends to
stabilize.

5.2. Free Vibration

Firstly, metal-ceramic functionally graded materials are calculated to verify the validity
of current methods. A simply supported Al/Al2O3 functionally graded square plate with
a total number of layers NL = 10 is considered. The material properties of Al and Al2O3
are shown in the following equations.

Al: E1 = 70.0× 109 N/m2, ν1 = 0.3, ρ1 = 2702 kg/m3

Al2O3: E2 = 380× 109 N/m2, ν2 = 0.3, ρ2 = 3800 kg/m3

The effective material properties of the functionally graded plates are determined by
Equations (45) and (46), which follow the same procedure as when bending is considered.
n is the volume fraction index. The dimensionless natural frequency of the FG-GRC plates
is defined by the following equation.

ωc = ωh
√

ρ2/E2 (47)

As shown in Table 3, the results of RPT and IRPT are in good agreement with those of
higher-order shear deformation plate theory [50].

Table 3. Dimensionless fundamental frequencies of Al/Al2O3 functionally graded t square plates.

a/h n

0.0 0.5 1.0 4.0 10.0

2 Ref. [50] 0.9400 0.8232 0.7476 0.5994 0.5460
RPT 0.9297 0.8126 0.7366 0.5919 0.5393
IRPT 0.9420 0.8267 0.7529 0.6053 0.5479

5 Ref. [50] 0.2121 0.1819 0.1640 0.1383 0.1306
RPT 0.2113 0.1811 0.1634 0.1375 0.1293
IRPT 0.2122 0.1829 0.1662 0.1406 0.1310

10 Ref. [50] 0.05777 0.04917 0.04426 0.03811 0.03642
RPT 0.05769 0.04914 0.04427 0.03795 0.03611
IRPT 0.05777 0.04950 0.04495 0.03878 0.03656

Next, we will analyze the FG-GRC plates. The material parameters of the epoxy matrix
materials and GPLs are the same as those in the bending analysis. Where the dimensionless
natural frequencies are defined as shown below.

ωc = ωh
√

ρM/EM (48)

in which ωc and ωM are the natural frequencies of FG-GRC square plates and pure epoxy
square plates, respectively.

The dimensionless natural frequencies and relative frequency increase (ωc −ωM)/ωM
of FG-GRC plates are given in Table 4. Each distribution mode of the FG-GRC square plates
was calculated. The results of the calculations for the pure epoxy plates are also included
in Table 4. The dimensionless natural frequencies and relative frequency increases in RPT
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and IRPT were compared. The role played by the effect of thickness stretching in the free
vibration process of FG-GRC plates can be seen by comparing the results of RPT and IRPT
calculations.

Table 4. Dimensionless natural frequencies of pure epoxy square plates and FG-GRC square plates
with various mode shapes. (NL = 10, fG = 1.0%).

a/h r, s Theories Pure
Epoxy UD FG-O FG-X FG-A

4 1, 1 RPT 0.3146 0.6548
(108.1%)

0.5728
(82.1%)

0.6967
(121.5%)

0.6093
(93.7%)

IRPT 0.3169 0.6595
(108.1%)

0.5784
(82.5%)

0.7006
(121.1%)

0.6250
(97.2%)

2, 1 RPT 0.6584 1.3706
(108.2%)

1.2433
(88.8%)

1.3941
(111.7%)

1.2904
(96.0%)

IRPT 0.6668 1.3879
(108.1%)

1.2663
(90.0%)

1.4069
(111.0%)

1.3272
(99.0%)

2, 2 RPT 0.9294 1.9350
(108.2%)

1.7918
(92.8%)

1.9227
(106.9%)

1.8352
(97.5%)

IRPT 0.9441 1.9654
(108.2%)

1.8352
(94.4%)

1.9444
(106.0%)

1.8903
(100.2%)

3, 1 RPT 1.0862 2.2615
(108.2%)

2.1145
(94.7%)

2.2241
(104.8%)

2.1530
(98.2%)

IRPT 1.1050 2.3003
(108.2%)

2.1719
(96.6%)

2.2514
(103.7%)

2.2189
(100.8%)

3, 2 RPT 1.2970 2.7006
(108.2%)

2.5528
(96.8%)

2.6267
(102.5%)

2.5826
(99.1%)

IRPT 1.3216 2.7514
(108.2%)

2.6309
(99.1%)

2.6621
(101.4%)

2.6633
(101.5%)

3, 3 RPT 1.6034 3.3389
(108.2%)

3.1957
(99.3%)

3.2092
(100.1%)

3.2108
(100.2%)

IRPT 1.6368 3.4079
(108.2%)

3.3068
(102.0%)

3.2577
(99.0%)

3.3130
(102.4%)

10 1, 1 RPT 0.0584 0.1216
(108.2%)

0.1023
(75.2%)

0.1366
(133.9%)

0.1118
(91.4%)

IRPT 0.0585 0.1218
(108.2%)

0.1025
(75.2%)

0.1368
(133.8%)

0.1144
(95.6%)

2, 1 RPT 0.1391 0.2895
(108.1%)

0.2470
(77.6%)

0.3188
(129.2%)

0.2674
(92.2%)

IRPT 0.1396 0.2906
(108.2%)

0.2481
(77.7%)

0.3198
(129.1%)

0.2737
(96.1%)

2, 2 RPT 0.2132 0.4437
(108.1%)

0.3828
(79.5%)

0.4809
(125.6%)

0.4111
(92.8%)

IRPT 0.2143 0.4460
(108.1%)

0.3854
(79.8%)

0.4829
(125.3%)

0.4212
(96.5%)

3, 1 RPT 0.2596 0.5402
(108.1%)

0.4691
(80.7%)

0.5803
(123.5%)

0.5015
(93.2%)

IRPT 0.2612 0.5435
(108.1%)

0.4729
(81.0%)

0.5831
(123.2%)

0.5141
(96.8%)

3, 2 RPT 0.3253 0.6770
(108.1%)

0.5930
(82.3%)

0.7190
(121.0%)

0.6302
(93.7%)

IRPT 0.3277 0.6820
(108.1%)

0.5990
(82.8%)

0.7231
(120.7%)

0.6465
(97.3%)

3, 3 RPT 0.4265 0.8877
(108.1%)

0.7870
(84.5%)

0.9284
(117.7%)

0.8294
(94.5%)

IRPT 0.4304 0.8958
(108.1%)

0.7971
(85.2%)

0.9348
(117.2%)

0.8517
(97.9%)

Note: The values in parentheses indicate the relative frequency increase (ωc −ωM)/ωM, in which ωc and ωM are
the natural frequencies of FG-GRC square plates and pure epoxy square plates, respectively.
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As seen in Table 4, the RPT underestimates the dimensionless natural frequency of the
FG-GRC plate compared to the IRPT because the effect of thickness stretching is neglected.
The calculated results for FG-A-type FG-GRC plates with asymmetric distribution of GPLs,
including the dimensionless natural frequencies and relative frequency increases, are
significantly affected by the effect of thickness stretching. This is because the transverse
anisotropy of the FG-GRC plates with FG-A-type distribution is more significant than the
other three distributions. It can also be seen from Table 4 that the FG-GRC plate with
FG-X-type distribution has the best ability to improve the free vibration response of the
plates among the four distribution modes. The UD-type distribution of FG-GRC plates
is almost unaffected by the effect of thickness stretching, which is consistent with our
expected results due to the isotropic nature of the UD-type distribution in the transverse
displacement direction. We can also conclude that when the value of a/h decreases, that
is, when the FG-GRC plates become thicker, the free vibration frequency of the FG-GRC
plates increases significantly.

The effects of the total number of layers NL and the weight fraction fG of GPLs on the
fundamental frequency change in FG-GRC square plates at a/h = 4 and a/h = 10 are given
in Figures 5 and 6, respectively. The relative frequency change is equal to (ωc −ωM)/ωM.
Figure 5 is calculated by taking fG = 1.0% and Figure 6 is calculated by taking NL = 10.
All four distribution modes of the FG-GRC plate were considered and the results of the
RPT and IRPT calculations are compared in Figures 5 and 6.
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Among the four distribution modes, GPLs symmetrically distributed UD-type, FG-O-
type, and FG-X-type FG-GRC plates showed little difference in the calculated results under
the two plate theories (RPT and IRPT). The calculated results for the FG-A-type FG-GRC
plate with asymmetric distribution of GPLs are significantly different under RPT and IRPT.
Compared with the IRPT results, the RPT results without considering the effect of thickness
stretching are significantly lower, which is caused by the more significant anisotropy in
the transverse displacement direction of the FG-A-type distribution than the other three
GPLs symmetrically distributed FG-GRC plates. From Figures 5 and 6, we can also see that
the effect of thickness stretching becomes more significant as the total number of layers
(NL) and the weight fraction ( fG) of GPLs increase. From Figures 3–6, it can be seen that
for the calculated results of bending deflection and free vibration fundamental frequencies
of FG-GRC plates, the difference in results between the four distribution modes of GPLs
decreases significantly as the value of a/h decreases.

6. Conclusions

Based on two types of plate theories considering (IRPT) and not considering (RPT)
the thickness stretching effect, the effect of thickness stretching on the bending and free
vibration behaviors of FG-GRC plates was investigated. The governing equations of the
FG-GRC plates are derived by Hamilton’s principle. The Navier solution method is used to
obtain the closed solutions for the percentage deflection ratio, dimensionless free frequency,
and the relative frequency change in the FG-GRC rectangular simply supported plates.
The effects of a/h value, the total number of layers NL, and weight fraction fG of GPLs are
investigated by comparing the two plate theories. It is found that:

(1) The effect of thickness stretching depends on the transverse anisotropy of FG-
GRC plates. FG-GRC plates with asymmetric distribution of GPLs are most significantly
affected by the effect of thickness stretching. Even for the moderately thick FG-GRC plates
(a/h = 10) with asymmetric distribution of GPLs, the effect of thickness stretching cannot
be neglected when considering their bending and free vibration behaviors.

(2) When the value of a/h decreases, the dimensionless natural frequencies of the
FG-GRC plates increase significantly.

(3) The difference in bending and free vibration of FG-GRC plates due to different
distribution patterns of GPLs decreases significantly as the value of a/h decreases.

(4) The effect of thickness stretching becomes more obvious as the total number of
layers of FG-GRC plates (NL) and the weight fraction of GPLs ( fG) increase.
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