
applied
sciences

Article

Genetic Algorithms: A Practical Approach to Generate Textual
Patterns for Requirements Authoring

Jesús Poza * , Valentín Moreno, Anabel Fraga and José María Álvarez-Rodríguez

����������
�������

Citation: Poza, J.; Moreno, V.; Fraga,

A.; Álvarez-Rodríguez, J.M. Genetic

Algorithms: A Practical Approach to

Generate Textual Patterns for

Requirements Authoring. Appl. Sci.

2021, 11, 11378. https://doi.org/

10.3390/app112311378

Academic Editor: Giancarlo Mauri

Received: 27 September 2021

Accepted: 29 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Knowledge Reuse Group, University Carlos III, 28911 Madrid, Spain; vmpelayo@inf.uc3m.es (V.M.);
afraga@inf.uc3m.es (A.F.); josemaria.alvarez@uc3m.es (J.M.Á.-R.)
* Correspondence: jepozac@inf.uc3m.es

Abstract: The writing of accurate requirements is a critical factor in assuring the success of a project.
Text patterns are knowledge artifacts that are used as templates to guide engineers in the requirements
authoring process. However, generating a text pattern set for a particular domain is a time-consuming
and costly activity that must be carried out by specialists. This research proposes a method of auto-
matically generating text patterns from an initial corpus of high-quality requirements, using genetic
algorithms and a separate-and-conquer strategy to create a complete set of patterns. Our results show
this method can generate a valid pattern set suitable for requirements authoring, outperforming
existing methods by 233%, with requirements ratio values of 2.87 matched per pattern found; as
opposed to 1.23 using alternative methods.

Keywords: text patterns; genetic algorithm; knowledge reuse; requirements authoring;
requirements engineering

1. Introduction

The emergence of digitalization in the engineering discipline has led to the improve-
ment of the engineering process of safety-critical systems. According to the report on the
“Future of Systems Engineering” [1] by the International Council of Systems Engineering
(INCOSE), there are five major goals (“Model use for decision making”, “Authoritative
source of truth”, “Tech innovation”, “Collaborative environment” and “Digital engineer-
ing workforce and culture”) and several stages to reach the major objective of digital
engineering. Interoperability, standardization, digital twins, semantics, simulation, and
Model-based Systems Engineering [2] (MBSE) are key technologies to bring digitalization to
the Systems Engineering discipline. In this context, the notion of “augmented engineering”
will be reached once data can semantically link together and exploited through different
techniques such as AI/ML to automate some existing, complex and, in many cases, manual
tasks, e.g., recovery traceability links between system artifacts [3], generate documentation
or check quality (consistency) of the system under development.

On the other hand, the proper specification of a system has been demonstrated to
be one of the cornerstones to timely and safely deliver complex products and services.
Requirements Engineering [4] is a traditional engineering method used to specify complex
systems. The Requirements Engineering Process comprises several activities to elicit, ana-
lyze, specify, verify, and validate requirements at different levels of abstractness (business,
user/stakeholder, system, software, telecommunications, system operational concept, etc.).
Commonly, these activities are implemented using different techniques to finally gener-
ate a specification document. More specifically, requirements authoring is usually done
through text-based statements to be understandable for both business and technical users.
Other more formal techniques such as logical models (e.g., linear temporal logic) may exist
but, in the end, they are usually verbalized to ease the communication between the agents
involved in the specification process. In this sense, semi-formal techniques like boilerplates

Appl. Sci. 2021, 11, 11378. https://doi.org/10.3390/app112311378 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8827-7893
https://orcid.org/0000-0001-5837-920X
https://orcid.org/0000-0003-1668-6054
https://doi.org/10.3390/app112311378
https://doi.org/10.3390/app112311378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311378
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311378?type=check_update&version=2

Appl. Sci. 2021, 11, 11378 2 of 19

or patterns are also used to restrict how requirement statements can be written (syntax)
and what they can specify (semantics).

In the latter, the use of ontologies including the main domain entities and relation-
ships of the system under specification represents the ground truth to properly specify
requirements and being able to verify [5] the quality properties of consistency, correctness,
and completeness (CCC). In this sense, it is possible to assess, for example, that a system
element is assigned to the proper operations and restrictions making use of the required
magnitudes and units of measurement. Technological solutions integrated with the main
requirements management systems such as the Requirements Authoring Tool (RAT) and
methodologies like Volere can be also found in the market. In fact, RAT is a specific tool,
part of the Reuse SE Suite [6], oriented to ease the writing of requirements following the
approach of predefining a terminology, a set of semantic relationships, and a set of patterns
to write requirement statements, see Figure 1. This tool has been successfully deployed
in different safety-critical systems such as aerospace and automotive and, it also includes
libraries to measure quality ensuring that every requirement and the specification by itself
accomplish with the CCC quality properties.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 19

between the agents involved in the specification process. In this sense, semi-formal tech-
niques like boilerplates or patterns are also used to restrict how requirement statements
can be written (syntax) and what they can specify (semantics).

In the latter, the use of ontologies including the main domain entities and relation-
ships of the system under specification represents the ground truth to properly specify
requirements and being able to verify [5] the quality properties of consistency, correctness,
and completeness (CCC). In this sense, it is possible to assess, for example, that a system
element is assigned to the proper operations and restrictions making use of the required
magnitudes and units of measurement. Technological solutions integrated with the main
requirements management systems such as the Requirements Authoring Tool (RAT) and
methodologies like Volere can be also found in the market. In fact, RAT is a specific tool,
part of the Reuse SE Suite [6], oriented to ease the writing of requirements following the
approach of predefining a terminology, a set of semantic relationships, and a set of pat-
terns to write requirement statements, see Figure 1. This tool has been successfully de-
ployed in different safety-critical systems such as aerospace and automotive and, it also
includes libraries to measure quality ensuring that every requirement and the specifica-
tion by itself accomplish with the CCC quality properties.

Figure 1. Example of requirement pattern within the RAT tool. Tokens are integers representing
syntactical and semantic terms.

However, the intrinsic need of predefining a knowledge base (terminology, concepts,
relationships, and patterns) and the effort to reuse existing specifications including stand-
ards (in many cases, specifications of the safety-critical system contain the order of thou-
sands of requirement statements), are preventing the proper automation of this first stage
within the engineering process in the scope of the major goal of “Authoritative source of
truth”. Therefore, it is essential to provide new tools that aid in these processes.

From a technical perspective and to avoid defining patterns from scratch, a method
to automatically infer patterns from existing documents (e.g., existing requirements spec-
ifications, standards, etc.) can allow us to ease the process of requirements authoring by
reusing existing text-based statements.

In this paper, we will describe a solution capable of automatically generating require-
ments patterns, based on the use of genetic algorithms [7] and separate-and-conquer
methods [8], in conjunction with a controlled vocabulary. The result patterns may conduct
the authoring process, avoiding complex structures, ambiguity, or using a vocabulary not
included in the dictionary.

Afterward, the proposed method to infer textual patterns is validated with a real cor-
pus of requirements and compared to previous works [9]. Finally, some conclusions and
future works are also outlined.

2. State of the Art
After more than 50 years [10], the use of requirements in the Software and Systems

Engineering lifecycle is a widely accepted method for analysis purposes [11]. In the clas-
sical view, requirements try: (1) to address or answer the question “What?” (More specif-
ically, What the target system is supposed to do?) (2) to serve as a system specification
that can be used in further stages such as design or testing.

Figure 1. Example of requirement pattern within the RAT tool. Tokens are integers representing
syntactical and semantic terms.

However, the intrinsic need of predefining a knowledge base (terminology, concepts,
relationships, and patterns) and the effort to reuse existing specifications including stan-
dards (in many cases, specifications of the safety-critical system contain the order of
thousands of requirement statements), are preventing the proper automation of this first
stage within the engineering process in the scope of the major goal of “Authoritative source
of truth”. Therefore, it is essential to provide new tools that aid in these processes.

From a technical perspective and to avoid defining patterns from scratch, a method
to automatically infer patterns from existing documents (e.g., existing requirements speci-
fications, standards, etc.) can allow us to ease the process of requirements authoring by
reusing existing text-based statements.

In this paper, we will describe a solution capable of automatically generating re-
quirements patterns, based on the use of genetic algorithms [7] and separate-and-conquer
methods [8], in conjunction with a controlled vocabulary. The result patterns may conduct
the authoring process, avoiding complex structures, ambiguity, or using a vocabulary not
included in the dictionary.

Afterward, the proposed method to infer textual patterns is validated with a real
corpus of requirements and compared to previous works [9]. Finally, some conclusions
and future works are also outlined.

2. State of the Art

After more than 50 years [10], the use of requirements in the Software and Systems
Engineering lifecycle is a widely accepted method for analysis purposes [11]. In the classical
view, requirements try: (1) to address or answer the question “What?” (More specifically,
What the target system is supposed to do?) (2) to serve as a system specification that can
be used in further stages such as design or testing.

In this sense, requirements as common practice for understanding and stating both
stakeholders’ intentions and system functionalities is still far from being fully developed
and, in many cases, the use of requirements is isolated in the inception phases of the

Appl. Sci. 2021, 11, 11378 3 of 19

development process. However, the current practice in the Systems Engineering discipline
strongly relies on building an underlying knowledge graph [12] of the development life-
cycle being able to trace any piece of information. For instance, requirements data can
be used to boost the use of descriptive and analytical models [13], current practice in the
Systems Engineering discipline.

That is why the first step to properly state requirements relies on being able to promote
textual statements into concept-based descriptions. Domain entities and relationships can
be used then to model the structure and semantics of textual requirements (i.e., patterns)
and then, reuse such information to automate more complex tasks such as traceability link
recovery, automatic model population, or test case generation to name a few. To do so, it
is possible to find a general set of patterns like those in the EARS [14] (Easy approach to
requirements syntax) approach or those defined in the context of the CESAR (Cost-efficient
methods and processes for safety-relevant embedded systems) European project (deliver-
able “Requirement Capturing Specification of Improved Methods” D_SP2_R3.3_M3_Vol2).
However, they only offer a general syntax structure without paying attention to the seman-
tics of the requirements statements.

In this context, ontologies emerge to provide a common understanding of what is
being specified. Formal ontologies have been widely used in multiple domains, e.g.,
e-Health, Tourism, e-Government, e-Learning, or Information Science, and with multiple
objectives: information extraction, information retrieval, or recommendation engines.
More specifically, in the Systems Engineering discipline, ontologies have been applied to
unify domain knowledge under a common data model and paradigm, e.g., The NASA
QUDT Units Ontology or the NASA Knowledge graph built with Stardog, and to reason
about data consistency. The European Space Agency (ESA) has also led to the creation of
the Space Systems ontology, used to model the underlying knowledge generated during
the development of space products and ease the collaboration between the agency and
the industry. The ESA has also created the Object-Role Modelling [15] language to define
patterns and verbalize them into requirements. However, all these approaches are based
on the assumption that patterns must be first generated.

On the other hand, in the field of computational linguistics, it is possible to find
pure methods to infer textual patterns like the one presented in [16] to reconcile company
names. Foundational language models [17], based on Deep Learning techniques such as
transformers [18], have been widely used to perform natural language processing tasks
such as text generation and entity recognition. However, these methods require a large
corpus and an adequate training time to provide meaningful results that may not apply to
a vertical domain like requirements authoring.

As preliminary conclusions, requirements are a first member of the Software and Sys-
tems Engineering process. Although methodologies like MBSE are now focusing on models,
the reality shows that textual requirements are still valid to specify a system and to serve
us as a communication tool. Moreover, model verbalization that has been explored [19] for
a long time in other domains, is now a key aspect in the Systems Engineering discipline
to improve the explainability of both descriptive and analytical models. In this context,
patterns, and semantics (ontologies) emerge to help in the authoring process of, at least,
requirements. However, and considering the huge amount of requirements statements
already available in different specifications and standards, there is not yet a common
approach to properly infer requirements patterns. Some initial attempts using machine
learning [20] have been done but approaching the problem from the perspective of quality
and learning from a labeled dataset. The Reuse Knowledge Group has also investigated an
approach to obtain text patterns automatically [9]. Using a set of 545 requirements, they got
442 text patterns. The ratio of text patterns found versus the number of requirements was
0.81 (This ratio will be used to measure our experiment’s performance versus this previous
work) not good enough to incorporate the solution as part of the Reuse SE Suite.

That is why, in this work, we propose a new approach based on the use of Genetic
Algorithms (GA) [7] in conjunction with separate-and-conquer [8] strategy. This method

Appl. Sci. 2021, 11, 11378 4 of 19

will deal with thousands of combinations of terms trying to find quality patterns and
checking them against a knowledge base and previous experiments.

GA are an approach to solve non-deterministic problems inspired by natural selec-
tion [7,21]. The basis is the generation of a variety of possible solutions to a problem
(population). Using a selection criterion (fitness function), the algorithm selects the best
individuals and generates offspring that inherit the characteristics of the parents. If parents
demonstrate good fitness, the breeding process (interchange of parent’s genes) will gener-
ate better offspring. This is an iterative process that, in the end, may find good solutions to
the problem. Since the method is not deterministic and uses randomness as a source of
variety, a valid final solution is not guaranteed.

GA have been used in a wide variety of scenarios where no deterministic approaches
are feasible: searching optimal ubication of wind turbines in wind farms [22], requirements
prioritization [23], generating regular expression patterns [24], and solving the traveling
salesman problem [25,26].

These are the activities involved in a generic GA:

1. Solution codification: define genes, individuals, and population.
2. Define a fitness function to evaluate how suitable every individual is as a possible

solution to the problem.
3. Randomly generate an initial population.
4. ITERATE

a. Evaluate population of generation n using the fitness function
b. Select parents to cross breed (creating an individual pool)
c. Crossbreed parents. Generate generation n + 1
d. Mutation of generation n + 1
e. Replace generation n with generation n + 1

5. UNTIL exit condition.

Separate-and-conquer strategy has been long used in many inductive rule learning
algorithms [8]. Basically, the separate-and-conquer algorithm consists of a global loop
that searches for a particular solution that partially solves the problem; the instances of
the problem solved are separated (conquest), the partial solution is stored, and the loop
continues with the remaining instances not solved.

A similar approach, the combination of genetic algorithms and separate-and-conquer
strategy, has been used by Bartoli in an experiment to find text patterns [24] for information
extracting in regular expressions.

3. Methodology
3.1. Basic Definitions
3.1.1. Pattern, Tokens, and Slots

A textual pattern is a template, formal representation of a model or boilerplate that
can be used to represent several real-world sentences (Figure 1). They are formed by cells
containers called slots representing word positions. There have syntactic and semantic
components called tokens filling the slots. Textual patterns allow the recognition of similar
sentences throughout a document or sets of documents of a similar context. In Reuse SE
tools, Tokens are represented by an integer (see Table 1).

3.1.2. Requirement and Requirements Sets

For our purpose requirements are just textual sentences. They are processed by the
Knowledge Manager Indexer component of the Reuse SE Suite using the basic NLP process
(sentence segmentation, word tokenization, lemmatization, stemming, and syntactic and
semantic analysis) [27] and transformed into slots and tokens, as shown in Figure 2.

Appl. Sci. 2021, 11, 11378 5 of 19

Table 1. Sample table of tokens from Reuse SE tools.

Token Term Token Term

1134 acronyms (ok) 2228 noun
1103 adjective 1123 number
1151 adverb 1117 opening exclamation mark
1106 adverbial phrase 1115 opening question mark
1130 article 1170 phrasal verb
1210 aspectual verb 1153 place adverb
1118 closing angle brackets 1199 possessive pronoun
1224 definite article 1105 proposed adjective
1111 left slash 1152 time adverb
1171 modal phrase 1241 unclassified adjective
1130 modal compulsory 1144 unclassified noun
1128 month 1108 verb

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19

Table 1. Sample table of tokens from Reuse SE tools.

Token Term Token Term
1134 acronyms (ok) 2228 noun
1103 adjective 1123 number
1151 adverb 1117 opening exclamation mark
1106 adverbial phrase 1115 opening question mark
1130 article 1170 phrasal verb
1210 aspectual verb 1153 place adverb
1118 closing angle brackets 1199 possessive pronoun
1224 definite article 1105 proposed adjective
1111 left slash 1152 time adverb
1171 modal phrase 1241 unclassified adjective
1130 modal compulsory 1144 unclassified noun
1128 month 1108 verb

3.1.2. Requirement and Requirements Sets
For our purpose requirements are just textual sentences. They are processed by the

Knowledge Manager Indexer component of the Reuse SE Suite using the basic NLP pro-
cess (sentence segmentation, word tokenization, lemmatization, stemming, and syntactic
and semantic analysis) [27] and transformed into slots and tokens, as shown in Figure 2.

Figure 2. How KM Indexer process Requirements (tables, attributes, and relationships have been
simplified to show relevant attributes for the experiment).

Another view of a requirement, similar to the Pattern view, is shown in Figure 3.

Figure 3. View of a Requirement after KM indexer process.

Requirements Sets (RS) represent a group of phrases that define user needs in a par-
ticular domain (i.e., engineering: aircraft cockpit electric requirements). They have been
generated by experts and constitute our methodology’s main input to find Requirements
Pattern Sets (see Section 3.1.3).

Figure 2. How KM Indexer process Requirements (tables, attributes, and relationships have been
simplified to show relevant attributes for the experiment).

Another view of a requirement, similar to the Pattern view, is shown in Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19

Table 1. Sample table of tokens from Reuse SE tools.

Token Term Token Term
1134 acronyms (ok) 2228 noun
1103 adjective 1123 number
1151 adverb 1117 opening exclamation mark
1106 adverbial phrase 1115 opening question mark
1130 article 1170 phrasal verb
1210 aspectual verb 1153 place adverb
1118 closing angle brackets 1199 possessive pronoun
1224 definite article 1105 proposed adjective
1111 left slash 1152 time adverb
1171 modal phrase 1241 unclassified adjective
1130 modal compulsory 1144 unclassified noun
1128 month 1108 verb

3.1.2. Requirement and Requirements Sets
For our purpose requirements are just textual sentences. They are processed by the

Knowledge Manager Indexer component of the Reuse SE Suite using the basic NLP pro-
cess (sentence segmentation, word tokenization, lemmatization, stemming, and syntactic
and semantic analysis) [27] and transformed into slots and tokens, as shown in Figure 2.

Figure 2. How KM Indexer process Requirements (tables, attributes, and relationships have been
simplified to show relevant attributes for the experiment).

Another view of a requirement, similar to the Pattern view, is shown in Figure 3.

Figure 3. View of a Requirement after KM indexer process.

Requirements Sets (RS) represent a group of phrases that define user needs in a par-
ticular domain (i.e., engineering: aircraft cockpit electric requirements). They have been
generated by experts and constitute our methodology’s main input to find Requirements
Pattern Sets (see Section 3.1.3).

Figure 3. View of a Requirement after KM indexer process.

Requirements Sets (RS) represent a group of phrases that define user needs in a
particular domain (i.e., engineering: aircraft cockpit electric requirements). They have been
generated by experts and constitute our methodology’s main input to find Requirements
Pattern Sets (see Section 3.1.3).

3.1.3. Requirements Patterns Set (RPS) for a Domain

A Requirements Patterns Set (RPS) is a group of patterns that can match most of the
requirements of a specific domain. It defines the valid structure, vocabulary, syntactic and
semantic restrictions of the requirements of the domain.

A domain is a collection of terms and rules used in describing a need or definition
of solutions for a concrete business or system, or application. A domain describes the
concepts and problems in that domain. The term” domain” can be used as an area of
knowledge with common terminology [28]

Reuse SE Suite uses RPS in their core algorithms to check the quality of requirements
and support the authoring process.

Appl. Sci. 2021, 11, 11378 6 of 19

An RPS for a specific domain is built using a significant sample of requirements human
written, selected, and qualified as good requirements. This process requires high knowledge
and expertise, both in the business domain of the set (i.e., aerospace engineering) and in
modeling and NLP disciplines. It is time-consuming and must be refreshed periodically as
new requirements are incorporated into the domain with new valid vocabulary, etc.

Once a requirements patterns set is built, KM tools can use it to check the quality
of new requirements or support the writing of new requirements in the phase of the
requirements elicitation and definition of the system engineering process.

The quality of an RPS is valued by its simplicity, measured by the number of require-
ments that the set has, and completeness measured by the total number of requirements
matched by the RPS. A good Requirements Patterns Set should have a fewer number of
patterns and be able to recognize the maximum number of requirements.

So, the genetic algorithm’s goal will be to find an RPS with the minimum number of
patterns possible and the maximum number of matched requirements for a specific set
of requirements.

3.1.4. Pattern Matching

Requirements patterns are Text Patterns used to manage requirements. They are used
to represent valid requirements models in a specific domain. The validation process of a
requirement against a pattern consists of verifying if all components of the requirement
(tokens) fit the tokens and slots defined in the pattern. In this case, we say that the
requirement “match” the pattern and therefore is a good requirement for that pattern.

They can also be used to help in the authoring process. The SE authoring tool analyses
the piece of requirement already written on the fly, searches the patterns that match the
piece of phrase, and offers valid tokens to end the authoring process in the same way other
predictive writing tools do [29].

The validation process of a requirement against a pattern consists of verifying if
all components of the requirement (language tokens) fit against the slots defined in the
pattern. In this case, we say that the requirement “match” the pattern and, therefore, is a
good requirement.

Figure 4 shows an example of the matching process of several requirements against a
specific pattern. To consider that a pattern matches a requirement, all requirements must
match the pattern’s tokens in the same order to consider that the requirement matches the
pattern. Green shadowed slots are matched; Orange shadowed slots are slots not matched.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 19

3.1.3. Requirements Patterns Set (RPS) for a Domain
A Requirements Patterns Set (RPS) is a group of patterns that can match most of the

requirements of a specific domain. It defines the valid structure, vocabulary, syntactic and
semantic restrictions of the requirements of the domain.

A domain is a collection of terms and rules used in describing a need or definition of
solutions for a concrete business or system, or application. A domain describes the con-
cepts and problems in that domain. The term” domain” can be used as an area of
knowledge with common terminology [28]

Reuse SE Suite uses RPS in their core algorithms to check the quality of requirements
and support the authoring process.

An RPS for a specific domain is built using a significant sample of requirements hu-
man written, selected, and qualified as good requirements. This process requires high
knowledge and expertise, both in the business domain of the set (i.e., aerospace engineer-
ing) and in modeling and NLP disciplines. It is time-consuming and must be refreshed
periodically as new requirements are incorporated into the domain with new valid vocab-
ulary, etc.

Once a requirements patterns set is built, KM tools can use it to check the quality of
new requirements or support the writing of new requirements in the phase of the require-
ments elicitation and definition of the system engineering process.

The quality of an RPS is valued by its simplicity, measured by the number of require-
ments that the set has, and completeness measured by the total number of requirements
matched by the RPS. A good Requirements Patterns Set should have a fewer number of
patterns and be able to recognize the maximum number of requirements.

So, the genetic algorithm’s goal will be to find an RPS with the minimum number of
patterns possible and the maximum number of matched requirements for a specific set of
requirements.

3.1.4. Pattern Matching
Requirements patterns are Text Patterns used to manage requirements. They are used

to represent valid requirements models in a specific domain. The validation process of a
requirement against a pattern consists of verifying if all components of the requirement
(tokens) fit the tokens and slots defined in the pattern. In this case, we say that the require-
ment “match” the pattern and therefore is a good requirement for that pattern.

They can also be used to help in the authoring process. The SE authoring tool anal-
yses the piece of requirement already written on the fly, searches the patterns that match
the piece of phrase, and offers valid tokens to end the authoring process in the same way
other predictive writing tools do [29].

The validation process of a requirement against a pattern consists of verifying if all
components of the requirement (language tokens) fit against the slots defined in the pat-
tern. In this case, we say that the requirement “match” the pattern and, therefore, is a good
requirement.

Figure 4 shows an example of the matching process of several requirements against
a specific pattern. To consider that a pattern matches a requirement, all requirements must
match the pattern’s tokens in the same order to consider that the requirement matches the
pattern. Green shadowed slots are matched; Orange shadowed slots are slots not matched.

Figure 4. Matching process of a Pattern against several Requirements. Figure 4. Matching process of a Pattern against several Requirements.

3.1.5. Optional Slots and Wildcard Token

Slots may be optional, meaning that requirements having or not having the correspon-
dent slot in the specific position are matched by the Pattern. Optional slots are represented
in square brackets []. Wildcard slots are special Pattern slots that allow any kind and
number of tokens and slots to be matched, in the matching process of a requirement any
type and number of slots, until a slot in the requirement is identical to the following
pattern slot found. Figure 5 shows an example of the matching process with optional and
wildcard slots.

Appl. Sci. 2021, 11, 11378 7 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19

3.1.5. Optional Slots and Wildcard Token
Slots may be optional, meaning that requirements having or not having the corre-

spondent slot in the specific position are matched by the Pattern. Optional slots are repre-
sented in square brackets []. Wildcard slots are special Pattern slots that allow any kind
and number of tokens and slots to be matched, in the matching process of a requirement
any type and number of slots, until a slot in the requirement is identical to the following
pattern slot found. Figure 5 shows an example of the matching process with optional and
wildcard slots.

Figure 5. Special patterns slots: Optional slots represented with brackets and wildcard tokens, rep-
resented with an asterisk.

These are the two main mechanisms used to generate Requirements Patterns that
recognize multiple requirements, patterns that match more than one requirement. In ad-
dition, for authoring purposes, these characteristics provide flexibility by allowing writ-
ing or not particular slots or parts in the process of writing requirements.

3.1.6. Affinity Parameter
Wildcards would allow, eventually, the generation of a unique Pattern with one

wildcard token as shown in Figure 6. This “universal” pattern would match any require-
ment in any domain.

Figure 6. Universal Pattern. The Asterisk represents a wildcard token as described in Section 3.1.5.

The Genetic Algorithm will find this “universal” pattern as the best possible one since
it matches all possible requirements. To avoid this problem, we have defined a parameter
that limits the number of slots that a wildcard token can match. This is the Affinity Param-
eter. A value of 3 in this parameter means that only 3 slots may be matched by the wild-
card, so if more requirements slots following the wildcard do not match the pattern next
token, then the requirement is not matched by the pattern.

Figure 7 shows how different Affinity parameter values affect the matching process
of the same Pattern with the same Requirement.

Figure 5. Special patterns slots: Optional slots represented with brackets and wildcard tokens,
represented with an asterisk.

These are the two main mechanisms used to generate Requirements Patterns that rec-
ognize multiple requirements, patterns that match more than one requirement. In addition,
for authoring purposes, these characteristics provide flexibility by allowing writing or not
particular slots or parts in the process of writing requirements.

3.1.6. Affinity Parameter

Wildcards would allow, eventually, the generation of a unique Pattern with one wild-
card token as shown in Figure 6. This “universal” pattern would match any requirement in
any domain.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19

3.1.5. Optional Slots and Wildcard Token
Slots may be optional, meaning that requirements having or not having the corre-

spondent slot in the specific position are matched by the Pattern. Optional slots are repre-
sented in square brackets []. Wildcard slots are special Pattern slots that allow any kind
and number of tokens and slots to be matched, in the matching process of a requirement
any type and number of slots, until a slot in the requirement is identical to the following
pattern slot found. Figure 5 shows an example of the matching process with optional and
wildcard slots.

Figure 5. Special patterns slots: Optional slots represented with brackets and wildcard tokens, rep-
resented with an asterisk.

These are the two main mechanisms used to generate Requirements Patterns that
recognize multiple requirements, patterns that match more than one requirement. In ad-
dition, for authoring purposes, these characteristics provide flexibility by allowing writ-
ing or not particular slots or parts in the process of writing requirements.

3.1.6. Affinity Parameter
Wildcards would allow, eventually, the generation of a unique Pattern with one

wildcard token as shown in Figure 6. This “universal” pattern would match any require-
ment in any domain.

Figure 6. Universal Pattern. The Asterisk represents a wildcard token as described in Section 3.1.5.

The Genetic Algorithm will find this “universal” pattern as the best possible one since
it matches all possible requirements. To avoid this problem, we have defined a parameter
that limits the number of slots that a wildcard token can match. This is the Affinity Param-
eter. A value of 3 in this parameter means that only 3 slots may be matched by the wild-
card, so if more requirements slots following the wildcard do not match the pattern next
token, then the requirement is not matched by the pattern.

Figure 7 shows how different Affinity parameter values affect the matching process
of the same Pattern with the same Requirement.

Figure 6. Universal Pattern. The Asterisk represents a wildcard token as described in Section 3.1.5.

The Genetic Algorithm will find this “universal” pattern as the best possible one since
it matches all possible requirements. To avoid this problem, we have defined a parameter
that limits the number of slots that a wildcard token can match. This is the Affinity Parameter.
A value of 3 in this parameter means that only 3 slots may be matched by the wildcard,
so if more requirements slots following the wildcard do not match the pattern next token,
then the requirement is not matched by the pattern.

Figure 7 shows how different Affinity parameter values affect the matching process of
the same Pattern with the same Requirement.

Affinity parameter is a powerful tool to manage genetic algorithm behavior. In search
and extractions environments it can broaden or narrow the distance of specific desired
words focusing only on the important words.

Appl. Sci. 2021, 11, 11378 8 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19

Figure 7. Impact of Affinity parameter in the matching process. The Asterisk represents a wildcard
token as described in Section 3.1.5.

Affinity parameter is a powerful tool to manage genetic algorithm behavior. In search
and extractions environments it can broaden or narrow the distance of specific desired
words focusing only on the important words.

3.2. Algorithms Implementation
3.2.1. Solution Approach

We will combine the use of Genetic Algorithms (GA) with a divide-and-conquer
strategy to obtain an optimum Requirements Patterns Set RPS. Figure 8 shows the global
algorithm, including both GA and conquest iterations. We first use the GA to produce a
population of patterns matching several requirements; the best candidate will be the pat-
tern that matches the major number of requirements. This pattern is stored in the RPS,
and the requirements matched by it are marked as conquest and excluded from the re-
maining RS. This constitutes a global iteration.

The algorithm continues with a new iteration with a smaller Requirements Set, in-
cluding only those not yet matched with any of the patterns found. The genetic algorithm
and the separate-and-conquest algorithm have both stopping conditions: The first stop
condition is the conquest of all requirements; other stopping conditions are managed by
parameters as described later in this section.

Figure 7. Impact of Affinity parameter in the matching process. The Asterisk represents a wildcard
token as described in Section 3.1.5.

3.2. Algorithms Implementation
3.2.1. Solution Approach

We will combine the use of Genetic Algorithms (GA) with a divide-and-conquer
strategy to obtain an optimum Requirements Patterns Set RPS. Figure 8 shows the global
algorithm, including both GA and conquest iterations. We first use the GA to produce
a population of patterns matching several requirements; the best candidate will be the
pattern that matches the major number of requirements. This pattern is stored in the
RPS, and the requirements matched by it are marked as conquest and excluded from the
remaining RS. This constitutes a global iteration.

The algorithm continues with a new iteration with a smaller Requirements Set, in-
cluding only those not yet matched with any of the patterns found. The genetic algorithm
and the separate-and-conquest algorithm have both stopping conditions: The first stop
condition is the conquest of all requirements; other stopping conditions are managed by
parameters as described later in this section.

3.2.2. Genetic Algorithm
Genetic Algorithm Definitions

Genes: In this experiment, genes are just slots. The slot is the minimum information
that can be inherited from parents to children. It is filled with tokens that act as alleles of
the gen. Each gen (slot) may be filled with different tokens (alleles) as shown in Figure 9.

Individuals: In the model are a group of genes. An individual has one and only one
chromosome (set of ordered genes). There are two types of individuals: requirements and
patterns. They have the same structure of chromosomes and genes. Patterns have also, for
every gene the attribute that determines if that token may be optional. If true, the slot may
appear or not in the requirements to match. There is also a special token present only in
pattern individuals, it is the wildcard token, used also in the matching of the requirement
process. Figure 9 shows individuals and genes for patterns and requirements.

Populations: A population is a group of individuals. In our model we have 2 types of
population: Patterns Populations and Requirements Populations also named Requirements
Sets. Individuals of the same population may have a different number of genes. This is
a significant difference with respect to the nature paradigm, where all individuals of the
same species share the same genotype, that is, the number of chromosomes and the number
of genes. Figure 10 shows a sample or Requirements Population.

Appl. Sci. 2021, 11, 11378 9 of 19
Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 19

Figure 8. Diagram flow with the global algorithm.

3.2.2. Genetic Algorithm
Genetic Algorithm Definitions

Genes: In this experiment, genes are just slots. The slot is the minimum information
that can be inherited from parents to children. It is filled with tokens that act as alleles of
the gen. Each gen (slot) may be filled with different tokens (alleles) as shown in Figure 9.

Individuals: In the model are a group of genes. An individual has one and only one
chromosome (set of ordered genes). There are two types of individuals: requirements and
patterns. They have the same structure of chromosomes and genes. Patterns have also, for
every gene the attribute that determines if that token may be optional. If true, the slot may

Figure 8. Diagram flow with the global algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19

appear or not in the requirements to match. There is also a special token present only in
pattern individuals, it is the wildcard token, used also in the matching of the requirement
process. Figure 9 shows individuals and genes for patterns and requirements.

Figure 9. Genes and individuals (Requirements and Patterns). Asterisk represents a wildcard to-
ken as described in Section 3.1.5.

Populations: A population is a group of individuals. In our model we have 2 types
of population: Patterns Populations and Requirements Populations also named Require-
ments Sets. Individuals of the same population may have a different number of genes.
This is a significant difference with respect to the nature paradigm, where all individuals
of the same species share the same genotype, that is, the number of chromosomes and the
number of genes. Figure 10 shows a sample or Requirements Population.

Figure 10. Sample Population of Requirements.

Tokens frequency: In a population of requirements (Requirements Set), the fre-
quency of syntactical tokens is calculated when the genetic algorithm treats a new RS ac-
cording to Equation (1). Table 2 shows an example of tokens and relative frequency for a
particular RS. Token Frequency = Num of times token appears in the RSTotal number of tokens in RS (1)

Table 2. Sample of the table of tokens with relative frequency in a specific RS.

Reqs Set Id Token ID Token Frequency Token Count in Reqs Set Syntactical Text
4 1144 0.23657 3431 unclassified noun
4 1119 0.15362 2228 noun
4 1224 0.09019 1308 definite article
4 1108 0.04344 630 verb
4 1110 0.04116 597 symbol
4 1230 0.03530 512 verb to be
4 1229 0.03282 476 preposition to
4 1012 0.02565 372 adjective
4 1213 0.02462 357 preposition

Genetic Algorithm Processes
Create Pattern population: The first step in GA is the creation of a random popula-

tion of patterns. This will be the first generation of the algorithm. The number of individ-

Figure 9. Genes and individuals (Requirements and Patterns). Asterisk represents a wildcard token
as described in Section 3.1.5.

Appl. Sci. 2021, 11, 11378 10 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19

appear or not in the requirements to match. There is also a special token present only in
pattern individuals, it is the wildcard token, used also in the matching of the requirement
process. Figure 9 shows individuals and genes for patterns and requirements.

Figure 9. Genes and individuals (Requirements and Patterns). Asterisk represents a wildcard to-
ken as described in Section 3.1.5.

Populations: A population is a group of individuals. In our model we have 2 types
of population: Patterns Populations and Requirements Populations also named Require-
ments Sets. Individuals of the same population may have a different number of genes.
This is a significant difference with respect to the nature paradigm, where all individuals
of the same species share the same genotype, that is, the number of chromosomes and the
number of genes. Figure 10 shows a sample or Requirements Population.

Figure 10. Sample Population of Requirements.

Tokens frequency: In a population of requirements (Requirements Set), the fre-
quency of syntactical tokens is calculated when the genetic algorithm treats a new RS ac-
cording to Equation (1). Table 2 shows an example of tokens and relative frequency for a
particular RS. Token Frequency = Num of times token appears in the RSTotal number of tokens in RS (1)

Table 2. Sample of the table of tokens with relative frequency in a specific RS.

Reqs Set Id Token ID Token Frequency Token Count in Reqs Set Syntactical Text
4 1144 0.23657 3431 unclassified noun
4 1119 0.15362 2228 noun
4 1224 0.09019 1308 definite article
4 1108 0.04344 630 verb
4 1110 0.04116 597 symbol
4 1230 0.03530 512 verb to be
4 1229 0.03282 476 preposition to
4 1012 0.02565 372 adjective
4 1213 0.02462 357 preposition

Genetic Algorithm Processes
Create Pattern population: The first step in GA is the creation of a random popula-

tion of patterns. This will be the first generation of the algorithm. The number of individ-

Figure 10. Sample Population of Requirements.

Tokens frequency: In a population of requirements (Requirements Set), the frequency
of syntactical tokens is calculated when the genetic algorithm treats a new RS according to
Equation (1). Table 2 shows an example of tokens and relative frequency for a particular RS.

Token Frequency =
Num of times token appears in the RS

Total number of tokens in RS
(1)

Table 2. Sample of the table of tokens with relative frequency in a specific RS.

Reqs Set Id Token ID Token Frequency Token Count in
Reqs Set Syntactical Text

4 1144 0.23657 3431 unclassified
noun

4 1119 0.15362 2228 noun
4 1224 0.09019 1308 definite article
4 1108 0.04344 630 verb
4 1110 0.04116 597 symbol
4 1230 0.03530 512 verb to be
4 1229 0.03282 476 preposition to
4 1012 0.02565 372 adjective
4 1213 0.02462 357 preposition

Genetic Algorithm Processes

Create Pattern population: The first step in GA is the creation of a random population
of patterns. This will be the first generation of the algorithm. The number of individuals of
the population is a parameter of the GA algorithm; greater values allow more individual
genes diversity but impact performance.

The tokens to fill the slots of the individuals of the pattern population are selected
randomly but according to their frequency in the RS of the experiment (see Table 2). So, if a
particular token has a frequency of 0.03 in the RS, it will have a probability to be chosen
of 0.03 when filling each slot of a pattern population. This is the first improvement since
we will have a similar frequency of tokens and diversity in both the RS and the pattern
population that will match the RS.

Evaluate, Fitness Function: we defined two metrics as shown in Equations (2) and (3)
to evaluate the performance of a pattern in a particular Requirements Set. RM counts then
the number of requirements that a pattern match from the TS. RM value is used to order
patterns. The best patterns are those with higher RM values. If several patterns have the
same RM, then the second metric, SM is used to rank them. SM counts the total number of
tokens matched by the pattern, considering the entire RS. Figure 11 shows an example of
fitness calculation for a pattern against an RS of 2 requirements.

RM = Count of Requirements matched by the pattern (2)

Appl. Sci. 2021, 11, 11378 11 of 19

SM =
req=numreq

∑
req=1

slot=reqslots
∑

slot=1
α

α = 1 i f token <> wildcard − α = 0 i f token = wildcard
(3)

Note that wildcards do not contribute to SM.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19

uals of the population is a parameter of the GA algorithm; greater values allow more in-
dividual genes diversity but impact performance.

The tokens to fill the slots of the individuals of the pattern population are selected
randomly but according to their frequency in the RS of the experiment (see Table 2). So, if
a particular token has a frequency of 0.03 in the RS, it will have a probability to be chosen
of 0.03 when filling each slot of a pattern population. This is the first improvement since
we will have a similar frequency of tokens and diversity in both the RS and the pattern
population that will match the RS.

Evaluate, Fitness Function: we defined two metrics as shown in Equations (2) and
(3) to evaluate the performance of a pattern in a particular Requirements Set. RM counts
then the number of requirements that a pattern match from the TS. RM value is used to
order patterns. The best patterns are those with higher RM values. If several patterns have
the same RM, then the second metric, SM is used to rank them. SM counts the total number
of tokens matched by the pattern, considering the entire RS. Figure 11 shows an example
of fitness calculation for a pattern against an RS of 2 requirements. RM = Count of Requirements matched by the pattern (2)

SM = αୱ୪୭୲ୀ୰ୣ୯ୱ୪୭୲ୱ
ୱ୪୭୲ୀଵ

୰ୣ୯ୀ୬୳୫୰ୣ୯
୰ୣ୯ୀଵ

α = 1 if token <> wildcard − α = 0 if token = wildcard

(3)

Note that wildcards do not contribute to SM.

Figure 11. Calculation of Pattern Fitness for a particular RS of 2 requirements (Affinity = 2). Aster-
isk represents a wildcard token as described in Section 3.1.5.

Select Pool: Selecting parents for the mating pool is done with a tournament meth-
odology. Some parametrization is done for this process, allowing to modulate if only the
better parents are selected, or several individuals with less performance (less Fitness) may
also be selected. This will permit to tune the variability in the descendants and to manage
convergence velocity. If only better individuals are chosen, the algorithm will converge
quickly, losing other evolutive possibilities. The process begins with a random selection
of a candidate parent. This candidate will be compared with several other randomly cho-
sen candidates. Only the one with the best Fitness will be selected.

Breed: Breeding is made by interchanging random genes (slots) between parents. In
this experiment, each pair of parents generate a couple of descendants as shown in Figure
12.

Figure 11. Calculation of Pattern Fitness for a particular RS of 2 requirements (Affinity = 2). Asterisk
represents a wildcard token as described in Section 3.1.5.

Select Pool: Selecting parents for the mating pool is done with a tournament method-
ology. Some parametrization is done for this process, allowing to modulate if only the
better parents are selected, or several individuals with less performance (less Fitness) may
also be selected. This will permit to tune the variability in the descendants and to manage
convergence velocity. If only better individuals are chosen, the algorithm will converge
quickly, losing other evolutive possibilities. The process begins with a random selection of
a candidate parent. This candidate will be compared with several other randomly chosen
candidates. Only the one with the best Fitness will be selected.

Breed: Breeding is made by interchanging random genes (slots) between parents.
In this experiment, each pair of parents generate a couple of descendants as shown in
Figure 12.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19

Figure 12. Sample breeding process. Asterisk represents a wildcard token as described in Section
3.1.5.

Mutate: In this experiment, we have defined four kinds of mutations:
• Change of token: Change of token (allele) in one slot of the pattern
• Change of optionality characteristic of a gene: A gene slot, changes its optional-

ity becoming optional or not (opposite of the current situation)
• Increase of size: Increase the number of slots of the individual, adding a random

number of new slots.
• Decrease of size: Decrease the number of slots of the individual, extracting slots

at the end of the individual.
These mutations are carried out on the descendants after the breed process. The num-

ber of mutations in each generation is modulated using the mutation level parameter.
Replace: The new generation members stored in the mating pool replace the mem-

bers with less Pattern Fitness, following the steady-state technique. This technique deletes
the members with the worst fitness value. This guarantees that the best individuals are
maintained and can be selected again in the next generations. A new generation is then
created.

Exit: The GA stops if one of these three circumstances occurs:
• All Requirements have been matched,
• The maximum number of generations as specified by a specific parameter is

reached,
• After a specified number of consecutive generations without a significant in-

crease in population fitness. The number of consecutive generations and the
minimum increase of fitness are GA parameters.

3.2.3. Separate-and-Conquer Algorithm
The strategy of Separate-and-Conquer has been implemented in our experiment us-

ing the algorithm shown in Figure 8.
Save Pattern in RPS: In a particular iteration, only the best pattern from those found

by the genetic algorithm, the one that matches the major number of requirements, is used
to conquest, and stored in the RPS. The rest of the patterns are rejected. There is a param-
eter to define the minimum number of requirements that a pattern must match to be con-
sidered as a real solution. Thus, if the genetic algorithm does not generate any pattern
matching at least a number equal to this parameter in a conquest iteration, no pattern will
be stored as a solution in that iteration.

Conquest Requirements: The requirements matched by the best pattern are marked
as conquest and will not be used in future genetic loops; only the remaining requirements
will be used in the rest of the iterations.

Update alleles library: Using only the remaining requirements, a new calculation of
alleles relative frequency is done. This facilitates the searching of new patterns since the
relative frequency is used to create new patterns populations: the filling of tokens when
creating a new population is done by a probabilistic function that considers the relative
frequency of each allele.

Stop condition: Stop conditions are

Figure 12. Sample breeding process. Asterisk represents a wildcard token as described in
Section 3.1.5.

Mutate: In this experiment, we have defined four kinds of mutations:

• Change of token: Change of token (allele) in one slot of the pattern
• Change of optionality characteristic of a gene: A gene slot, changes its optionality

becoming optional or not (opposite of the current situation)
• Increase of size: Increase the number of slots of the individual, adding a random

number of new slots.
• Decrease of size: Decrease the number of slots of the individual, extracting slots at the

end of the individual.

These mutations are carried out on the descendants after the breed process. The number
of mutations in each generation is modulated using the mutation level parameter.

Replace: The new generation members stored in the mating pool replace the members
with less Pattern Fitness, following the steady-state technique. This technique deletes
the members with the worst fitness value. This guarantees that the best individuals

Appl. Sci. 2021, 11, 11378 12 of 19

are maintained and can be selected again in the next generations. A new generation is
then created.

Exit: The GA stops if one of these three circumstances occurs:

• All Requirements have been matched,
• The maximum number of generations as specified by a specific parameter is reached,
• After a specified number of consecutive generations without a significant increase in

population fitness. The number of consecutive generations and the minimum increase
of fitness are GA parameters.

3.2.3. Separate-and-Conquer Algorithm

The strategy of Separate-and-Conquer has been implemented in our experiment using
the algorithm shown in Figure 8.

Save Pattern in RPS: In a particular iteration, only the best pattern from those found
by the genetic algorithm, the one that matches the major number of requirements, is used to
conquest, and stored in the RPS. The rest of the patterns are rejected. There is a parameter
to define the minimum number of requirements that a pattern must match to be considered
as a real solution. Thus, if the genetic algorithm does not generate any pattern matching at
least a number equal to this parameter in a conquest iteration, no pattern will be stored as
a solution in that iteration.

Conquest Requirements: The requirements matched by the best pattern are marked
as conquest and will not be used in future genetic loops; only the remaining requirements
will be used in the rest of the iterations.

Update alleles library: Using only the remaining requirements, a new calculation of
alleles relative frequency is done. This facilitates the searching of new patterns since the
relative frequency is used to create new patterns populations: the filling of tokens when
creating a new population is done by a probabilistic function that considers the relative
frequency of each allele.

Stop condition: Stop conditions are

• All Requirements have been matched,
• The maximum number of iterations as specified by a specific parameter is reached,
• After a specified number of consecutive iterations without finding any pattern.

This number is also a parameter.

3.2.4. Algorithms Main Parameters

Table 3 shows the main parameters defined for the genetic and conquest algorithms.
These parameters may be changed depending on the RS or the scenario of pattern search
to fine-tune algorithm behavior.

Scenarios Depending on the Objective

Affinity defines how specific a given pattern is. If we want more generalist patterns
we will increase this value, allowing authors to include more concepts or terms in the
requirements authoring process. This may be useful in the first steps of requirements
definitions (user requirements, global requirements). For more specific requirements (e.g.,
software, architecture, or design requirements) good patterns must be more specifics. To get
that, the Affinity parameter must be lower.

Minimum Reqs to Match parameter will determine the accuracy of the patterns found.
Low parameter values (e.g., 2) will allow greater and very accurate RPS. This may be
interesting in the final steps of building a god RPS.

Appl. Sci. 2021, 11, 11378 13 of 19

Table 3. Main GA parameters.

Parameter Description

Affinity Number of slots of the requirements that are allowed to match
by a wildcard token of a token.

Generations Maximum number of generations for the GA algorithm.

Maximum Pattern size Maximum number of slots of the Patterns generated by GA.

Maximum Reqs size
Maximum number of words of the requirements to be
analyzed. The number of words of the requirement. This is
the main quality metric identified in previous works [5,30].

Minimum Reqs to Match

Number of requirements that a pattern found with the GA
shall match to be included in the final RPS.
If this minimum is not reached by any pattern generated by
the genetic algorithm, then the conquest iteration does not get
any pattern.

Mutation level
Probability of mutation for the entire population.
A Mutation level = 0.2 will cause mutations in 20% of the
members of the population in each GA generation.

Number of conquest
iterations Maximum number iterations. It is an exit condition.

Pool Size Number of members of the mating pool. It must be a number
less than Pattern Population members.

Population size Number of patterns (individuals) of the pattern population.

Scenarios Depending on the Performance

The rest of the parameters affect the performance of the algorithms, i.e., the time taken
to find possible solutions. High values for Generation, Population, Pool, and Maximum
Pattern size parameters will decrease performance. However, if we significantly lower
them, it is likely that the algorithm will not find valid solutions.

Mutation level and Pool size also affect the convergence speed, that is, the number of
generations a particular iteration gets for the bests results and the ability to explore more
solutions of the solution spectrum.

3.2.5. Metrics for Measure the Quality of the Solution

We will use the quality metrics listed in Table 4.

Table 4. Quality Metrics.

Metric Description Formula Good Quality
Represented by

AvRm
Average of Reqs
matched by the
Patterns of RPS

AvRm =
∑Pat. in RPS

p=1 RqMatchedp

Count o f Pat. in RPS
High value

%Rm
Percentage of

Requirements of RS
matched by RPS

%Rm =
∑Pat. in RPS

p=1 RqMatchedp

Count o f Reqs. in RS × 100 High value

BPRm
Number of Reqs

matched by the Best
Pattern of RPS

BPRm = MAX
(

RqMatchedp
)

High value

AvRm is the main ratio used to evaluate the quality of a solution. The worst solution
will have an AvRm value equal to 1; that means that we have found one pattern for every
requirement, so no improvement has been made from the initial situation. High values
mean that we have got generalist patterns capable of matching several requirements. This is

Appl. Sci. 2021, 11, 11378 14 of 19

a good situation for authoring at least in the initial phases, where flexibility is needed.
This metric will be compared with the same metric obtained in the previous experiment.

%Rm is the percentage of Requirements conquest by the RPS found. We will try to
maximize this metric. Nevertheless, it’s difficult to get a value of 100% since, in every RS
we find some quantity of “unique” requirements, that is, requirements that do not fill any
kind of template or boilerplate. If this value is too low (below 70%), the RS may include a
too wide range of vocabulary or there is more than one domain or type of requirements in
the RS.

BPRm defines how many requirements are matched by only one pattern, the best one
found in a particular RPS; this is a good metric of the Genetic Algorithm performance since
the fitness function of the GA is based on this value for the evaluation and pool selection
process. Therefore, when tunning GA parameters we will try to maximize this value.
Total value depends on the RS analyzed and others GA parameters, especially Affinity
Parameter; values greater than 4 should be expected in any case.

4. Experiments
4.1. Problem Statement

The problem to solve is to obtain a Requirements Pattern Set (RPS) automatically that
matches the maximum number of Requirements of a Requirement Set (RS) for a particular
domain. If the RS is representative, then the RPS found can be used as the set of patterns
for requirements authoring for that domain using the KM RAT tool.

The quality of the solutions will be measured using the metrics defined in Section 3.1.3.
AvRm, the ratio between the number of Patterns found and the total number of the
Requirement set, will be used to compare the performance of our method against the
previous experiment.

4.2. Case Study and Data Sets

We have used as a case study, the same corpus of requirements used in previous
work (see Chapter 2). These requirements are a subset of a collection of requirements
provided by INCOSE (International Council on Systems Engineering). They were previ-
ously tagged by experts as good or badly written. They were also classified by domain
or type of requirements (hw/sw requirements, functional requirements, maintenance
requirements, etc.).

For our experiments, we have only used the subset of requirements tagged as good
written. They represent a universe of 545 requirements classified in 10 Requirements sets
according to their domain. Table 5 lists the Requirements Sets.

Table 5. Requirements Sets are used as inputs to the experiment.

RS Id RS Name Number of
Requirements Content

3 Hwsw_1 45 Hardware and base software requirements
41 Funct_Gen1 34 Functional requirements
42 Funct_SMG 77 Functional requirements
43 Funct_STS 47 Functional requirements
44 Funct_Gen2 101 Functional requirements
45 Funct_QAR 60 Functional and Quality requirements
46 Funct_QM 65 Functional and Quality requirements
47 Funct_SMG 75 Functional requirements
48 Hwsw_2 23 Hardware and base software requirements
49 SEC 18 Security requirements

TOTAL 545

The requirements provided by INCOSE are protected by confidentiality, so in the
sample tables or figures shown in this paper, we use alternative textual requirements.

Appl. Sci. 2021, 11, 11378 15 of 19

We have employed the same database obtained with the KM indexer process in the
previous experiment; that guarantees the same input data, the same tokenization, and
syntactical classification of the text words of the requirements. This approach will allow us
to compare our results with the ones obtained using the count of the frequency of pairs of
consecutive tokens and substitution.

4.3. Experiment Results
4.3.1. Example

Figure 13 shows a real snapshot of the software developed for the experiment showing
how a pattern matches several requirements from a requirement set.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19

syntactical classification of the text words of the requirements. This approach will allow
us to compare our results with the ones obtained using the count of the frequency of pairs
of consecutive tokens and substitution.

Table 5. Requirements Sets are used as inputs to the experiment.

RS Id RS Name Number of Requirements Content
3 Hwsw_1 45 Hardware and base software requirements
41 Funct_Gen1 34 Functional requirements
42 Funct_SMG 77 Functional requirements
43 Funct_STS 47 Functional requirements
44 Funct_Gen2 101 Functional requirements
45 Funct_QAR 60 Functional and Quality requirements
46 Funct_QM 65 Functional and Quality requirements
47 Funct_SMG 75 Functional requirements
48 Hwsw_2 23 Hardware and base software requirements
49 SEC 18 Security requirements

 TOTAL 545

4.3. Experiment Results
4.3.1. Example

Figure 13 shows a real snapshot of the software developed for the experiment show-
ing how a pattern matches several requirements from a requirement set.

Figure 13. Snapshot of a real experiment using the software developed. This is the result of just one
conquest iteration. Pattern ID 18074 matches Requirements Id 1508, 1527, and 1524 of the RS. Aster-
isks represent wildcard tokens as described in Section 3.1.5.

In this example, the pattern with ID 18074 has been found in generation 32 of the
genetic algorithm and has conquest 3 requirements. In the snapshot, green slots are slots
matched by the pattern with the same token value and blue slots are slots “matched” by
wildcard tokens (token 2, 4, and 6 in the pattern). White requirements are requirements
not conquest by text pattern found.

This is just an example of conquest iterations. In real experiments, we have used a
maximum of 300 generations and 50 conquest iterations (see Table 6).

Table 6. Main GA parameters used in experiments.

Parameter Value
Population size 50 to 80

Pool size 20
Mutation level 25%

Minimum Reqs to Match 2
Affinity 3

Figure 13. Snapshot of a real experiment using the software developed. This is the result of just
one conquest iteration. Pattern ID 18074 matches Requirements Id 1508, 1527, and 1524 of the RS.
Asterisks represent wildcard tokens as described in Section 3.1.5.

In this example, the pattern with ID 18074 has been found in generation 32 of the
genetic algorithm and has conquest 3 requirements. In the snapshot, green slots are slots
matched by the pattern with the same token value and blue slots are slots “matched” by
wildcard tokens (token 2, 4, and 6 in the pattern). White requirements are requirements not
conquest by text pattern found.

This is just an example of conquest iterations. In real experiments, we have used a
maximum of 300 generations and 50 conquest iterations (see Table 6).

Table 6. Main GA parameters used in experiments.

Parameter Value

Population size 50 to 80
Pool size 20

Mutation level 25%
Minimum Reqs to Match 2

Affinity 3
Conquest iterations 50

Generations 300
Maximum Reqs size 12

4.3.2. Summary of Results

Table 7 summarizes the experiments and the results. The table shows the best results
of several attempts done with every RS. The algorithm uses a repetitions parameter that
determines how many times the same experiment is done. The GA is not deterministic; that
means that we can get different solutions in different attempts with the same inputs and
with the same parameterization. The repetitions will determine the overall time taken by

Appl. Sci. 2021, 11, 11378 16 of 19

each experiment. Since the final goal of the experiment is trying to evaluate the goodness
of the solution, with no attention to time performance, this has not been taken in care.
Future works may be done to optimize this. All these experiments have had the same GA
parameters listed in Table 6.

Table 7. Summary results.

Exp. Id RS RS Total
Reqs.

Reqs.
Conquest %Rm RPS AvRm BPRm

1 Hwsw_1 45 41 91% 9 4.56 11
2 Funct_Gen1 34 25 74% 7 3.57 6
3 Funct_SMG 77 73 95% 20 3.65 15
4 Funct_STS 47 47 100% 14 3.36 14
5 Funct_Gen2 101 93 92% 22 4.23 17
6 Funct_QAR 60 52 87% 10 5.20 15
7 Funct_QM 65 58 89% 14 4.14 9
8 Funct_SMG 75 54 72% 12 4.50 16
9 Hwsw_2 23 17 74% 5 3.40 6

10 SEC 18 12 67% 4 3.00 5

TOTAL 545 472 87% 117 4.03

We have got averages of Requirements conquest (%Rm values) ranging from 67% to
100%. As the Minimum Reqs Matched parameter is set to 2, the requirements not matched
are, in any way, unique requirements; if we would want to match these requirements, we
will have to build patterns specifics for them, manually.

We have also got very good averages of requirements matched per pattern (AvRm
metric) in each experiment (from 3.00 to 5.20). The last column of the table shows the
number of requirements matched by the best pattern of the RPS found in each experiment.
Values rank from 5 to 15 requirements matched by the same pattern. The variations are
related to GA performance and also with the variability of the requirements in each domain.
Domains more accurate (in the number of vocabulary terms and size of requirements)
show better values of BPRm and higher values of AvRm, meaning that it is possible to
characterize the entire scenario with fewer patterns.

We can compare our results with the previous experiment. through global values and
AvRm metric. To compare both results we will do a correction to the global RPS obtained
in our experiments. This correction consists in adding a pattern for each requirement not
matched, to have the same Requirements achieved inf both cases (See Table 8).

Table 8. Correction of RPS found in our experiments. This allows a comparison of our experiment
with the previous one.

RS Reqs. Conquest RPS AvRm

TOTAL GA Experiments 545 472 117 4.03
TTOTAL GA—RPS corrected 545 545 190 1 2.87

Previous experiment 545 545 442 1.23
1 We add a new pattern for each requirement not matched by GA algorithms. This allows to compare results with
the previous experiment.

In the previous experiment, they needed 442 patterns to match 545 requirements, with
an average of 1.23 requirements matched per pattern. In our experiment, once we correct
the results to get the same requirements conquest, we have got a total of 190 patterns
to match the same 545 requirements. Our average of requirements matched per pattern
AvRm is 2.87 which represents an improvement of 233% of the results obtained in the
previous experiment.

Appl. Sci. 2021, 11, 11378 17 of 19

4.3.3. Algorithm Running Time

Table 9 shows information about the average running time of each experiment and the
average time needed to get a new valid pattern. As performance has not been the goal of
this experiment future work will be done to improve performance based on GA parameters
(Generations, Pool, and Population size).

Table 9. Running time of the experiments.

Exp. Id RS RS Total
Reqs.

Reqs.
Conquest

Duration
(mins)

Average Time to Find
Each Pattern (mins)

1 Hwsw_1 45 41 20.92 2.32
2 Funct_Gen1 34 25 16.04 2.29
3 Funct_SMG 77 73 47.23 2.36
4 Funct_STS 47 47 20.97 1.50
5 Funct_Gen2 101 93 48.56 2.21
6 Funct_QAR 60 52 21.43 2.14
7 Funct_QM 65 58 25.02 1.79
8 Funct_SMG 75 54 24.67 2.06
9 Hwsw_2 23 17 7.59 1.52

10 SEC 18 12 10.83 2.71

4.3.4. Impact of Requirements Size and Affinity Parameters

Requirement size, that is, the number of words in a requirement of a requirement
has been identified in previous studies [30] as the main metric to determine the quality of
requirements. Lower size requirements are in general best-defined requirements.

This parameter also has a major impact in searching text patterns using our methodol-
ogy. Table 10 shows how the maximum size of the requirements parameter impacts the
number of patterns found. In general, beyond 12 words it is difficult to find good patterns.

Table 10. Impact of Requirements size and Affinity Parameter in global results using HWsw_1 RS.

Affinity = 3 Affinity = 4

Num. of
Reqs. 1

Maximum
Req. Size 2

Reqs
Conquest RPS Reqs

Conquest RPS

45 12 40 5 45 5
45 13 40 5 45 4
45 14 21 6 41 4
45 15 19 4 38 5
45 16 12 3 35 4

1—Hwsw_1 Reqs Set. 2—Number of words.

In the experiments, we have used the maximum reqs size parameter to truncate
requirements with a higher number of words.

The affinity parameter constitutes the second most important parameter. It has a great
impact on the GA performance, as shown in Table 10. To determine the adequate value for
this parameter, the scenario shall be considered.

5. Conclusions and Future Works

This paper proposes a complete methodology to get text patterns automatically from
sets of requirements. The method, based on combining Genetic Algorithms and the
separate-and-conquer strategy, is a novel approach. We have got good results in terms of
patterns found using different Requirements Sets belonging to different domains. In all
the cases, the algorithm has found textual patterns matching a significant number of
requirements. Compared with previous works we have got improvement up to 233%.

Specialists may use the methodology to get textual patterns, instead of the heavy
process of building them manually.

Appl. Sci. 2021, 11, 11378 18 of 19

We consider the parametrization of the algorithm as an important strength of the
solution since it allows to change how the algorithm will behave depending on the objective.
The algorithm has 14 main parameters that change how the genetic and the divide-and-
conquer will work. This gives high flexibility to the methodology that can be used in
different authoring scenarios or even being used for other purposes, such as text searching
or classification.

Future Works: New Scenarios with Different Parameters Values

Based on the variation of Affinity and Minimum Reqs to Match parameters, future
works will be done comparing the two main scenarios described in Table 11 and using the
same Requirements Sets.

Table 11. Scenarios for using the methodology in future works.

Scenario Goal Parameter’s Value

1—Introducing authoring tools.

To have a generalist RPS that
allow authoring with relative high

freedom in a particular domain
(fewer specific requirements)

Affinity—High
Minimum match—High

2—Using authoring tools in a very
restricted environment where

precision is required

To have a very specific RPS that
conduct authoring very narrowly

(e.g., design phase)

Affinity—Low
Minimum match—Low

Author Contributions: Conceptualization, J.P. and V.M.; Formal analysis, J.P. and V.M.; Funding
acquisition, A.F.; Methodology, J.P., V.M. and A.F.; Software, J.P.; Supervision, J.M.Á.-R.; Writing—
original draft, J.P.; Writing—review and editing, A.F. and J.M.Á.-R. All authors have read and agreed
to the published version of the manuscript.

Funding: This research has received funding from RESTART project: “Continuous Reverse Engineering
for Software Product Lines” (ref. RTI2018-099915-B-I00). Convocatoria de Proyectos de I + D + i
Retos Investigación del Programa Estatal de I+D+i orientada a los Retos de la Sociedad 2018. Grant
agreement num. 412122. ECSEL18: Project New Control (Project 6221/31/2018) and National PCI
funding nº 449990.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McDermott, T.; DeLaurentis, D.; Beling, P.; Blackburn, M.; Bone, M. AI4SE and SE4AI: A Research Roadmap. Insight 2020, 23,

8–14. [CrossRef]
2. Micouin, P. Model-Based Systems Engineering: Fundamentals and Methods; iSTE: London, UK; Wiley: Hoboken, NJ, USA, 2014.
3. Alvarez-Rodríguez, J.M.; Mendieta, R.; Moreno, V.; Sánchez-Puebla, M.Á.; Llorens, J. Semantic recovery of traceability links

between system artifacts. Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 2020, 30, 1–28. [CrossRef]
4. Dick, J.; Hull, E.; Jackson, K. Requirements Engineering; Springer International Publishing: Cham, Switzerland, 2017.

Available online: http://link.springer.com/10.1007/978-3-319-61073-3 (accessed on 4 November 2021).
5. Génova, G.; Fuentes, J.M.; Morillo, J.L.; Hurtado, O.; Moreno, V. A framework to measure and improve the quality of textual

requirements. Requir. Eng. 2011, 18, 25–41. [CrossRef]
6. Reuse Company, “Systems Engineering Suite”. Available online: https://www.reusecompany.com/systems-engineering-suite

(accessed on 10 October 2020).
7. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1996.
8. Furnkranz, J. Separate-and-Conquer Rule Learning. Artif. Intell. Rev. 1999, 13, 3–54. [CrossRef]
9. Parra, E. Metodología Orientada a la Optimización Automática de la Calidad de los Requisitos. Ph.D. Thesis, Universidad

Carlos III de Madrid, Madrid, Spain, 2016. Available online: https://e-archivo.uc3m.es/handle/10016/23936 (accessed on
1 August 2019).

10. Ebert, C. 50 Years of Software Engineering: Progress and Perils. IEEE Softw. 2018, 35, 94–101. [CrossRef]

http://doi.org/10.1002/inst.12278
http://doi.org/10.1142/S0218194020400197
http://link.springer.com/10.1007/978-3-319-61073-3
http://doi.org/10.1007/s00766-011-0134-z
https://www.reusecompany.com/systems-engineering-suite
http://doi.org/10.1023/A:1006524209794
https://e-archivo.uc3m.es/handle/10016/23936
http://doi.org/10.1109/MS.2018.3571228

Appl. Sci. 2021, 11, 11378 19 of 19

11. Kotonya, G. Requirements Engineering: Processes and Techniques; J. Wiley: Chichester, UK; New York, NY, USA, 1998.
12. Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; de Melo, G.; Gutierrez, C.; Gayo, J.E.L.; Kirrane, S.; Neumaier, S.;

Polleres, A.; et al. Knowledge Graphs. 2020. Available online: https://www.morganclaypool.com/doi/10.2200/S01125ED1V0
1Y202109DSK022 (accessed on 9 November 2021).

13. INCOSE. Systems Engineering Vision 2020. 2020. Available online: https://www.incose.org/incose-member-resources/chapters-
groups/ChapterSites/blues/chapter-news/2009/02/23/se-vision-2020 (accessed on 23 November 2021).

14. Mavin, A.; Wilkinson, P.; Harwood, A.; Novak, M. EARS (Easy Approach to Requirements Syntax). In Proceedings of the IEEE
International Conference on Requirements Engineering, Atlanta, GA, USA, 31 August–4 September 2009; pp. 317–322. [CrossRef]

15. Schmaal, R.J.L.; Balsters, H.; Valera, S. Formal Specification of a Meta Hierarchical Logical Data Model Using Object Role
Modeling. In On the Move to Meaningful Internet Systems: OTM 2011 Workshops, Crete, Greece, 17–21 October 2011; Meersman,
R., Dillon, T., Herrero, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7046, pp. 370–379. Available online:
http://link.springer.com/10.1007/978-3-642-25126-9_48 (accessed on 9 November 2021).

16. Alvarez-Rodríguez, J.; de Pablos, P.; Vafopoulos, M.; Labra-Gayo, J. Towards a Stepwise Method for Unifying and Reconciling
Corporate Names in Public Contracts Metadata: The CORFU Technique. In Proceedings of the Research Conference on Metadata
and Semantic Research, Thessaloniki, Greece, 19–22 November 2013; Garoufallou, E., Greenberg, J., Eds.; Springer International
Publishing: Berlin/Heidelberg, Germany, 2013; Volume 390, pp. 315–329. [CrossRef]

17. Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.;
Brunskill, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2021, arXiv:2108.07258.

18. Rothman, D. Transformers for Natural Language Processing: Build Innovative Deep Neural Network Architectures for NLP with Python,
PyTorch, TensorFlow, BERT, RoBERTa, and More; Packt Publishing: Birmingham, UK, 2021.

19. Halpin, T.; Curland, M. Automated verbalization for ORM 2. In Proceedings of the OTM Confederated International Conferences
on the Move to Meaningful Internet Systems, Montpellier, France, 29 October–3 November 2006; pp. 1181–1190.

20. Moreno, V.; Génova, G.; Parra, E.; Fraga, A. Application of machine learning techniques to the flexible assessment and improve-
ment of requirements quality. Softw. Qual. J. 2020, 28, 1645–1674. [CrossRef]

21. Mallawaarachi, V. Introduction to Genetic Algorithms—Including Example Code. Toward Data Sci. Medium 2017. Available online:
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3 (accessed on
23 July 2018).

22. Khanali, M.; Ahmadzadegan, S.; Omid, M.; Nasab, F.K.; Chau, K.W. Optimizing layout of wind farm turbines using genetic
algorithms in Tehran province, Iran. Int. J. Energy Environ. Eng. 2018, 9, 399–411. [CrossRef]

23. Tonella, P.; Susi, A.; Palma, F. Interactive requirements prioritization using a genetic algorithm. Inf. Softw. Technol. 2013, 55,
173–187. [CrossRef]

24. Bartoli, A.; de Lorenzo, A. Learning text patterns using separate-and-conquer genetic programming. In Proceedings of the
European Conference on Genetic Programming, Copenhagen, Denmark, 8–10 April 2015; pp. 16–27. [CrossRef]

25. Karova, M.N.; Petkova, J.; Penev, S.P. Web Application of Traveling Salesman Problem using Genetic Algorithms. In Proceedings
of the Papers, Volume 2, XLII International Scientific Conference on Information, Communication and Energy Systems and
Technologies ICEST, Ohrid, Macedonia, 24–27 June 2007; pp. 24–27. Available online: http://rcvt.tu-sofia.bg/ICEST2007_2_99.pdf
(accessed on 27 January 2021).

26. Stoltz, E. Evolution of a salesman: A complete genetic algorithm tutorial for Python. Toward Data Sci. Medium 2018.
Available online: https://towardsdatascience.com/evolution-of-a-salesman-a-complete-genetic-algorithm-tutorial-for-
python-6fe5d2b3ca35 (accessed on 18 February 2021).

27. Jurafsky, D.; Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009.

28. Harsu, M. A Survey on Domain Engineering. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197
.7897&rep=rep1&type=pdf (accessed on 12 September 2020).

29. Chen, M.X.; Lee, B.N.; Bansal, G.; Cao, Y.; Zhang, S.; Lu, J.; Tsay, J.; Wang, Y.; Dai, A.M.; Chen, Z.; et al. Gmail Smart Compose:
Real-Time Assisted Writing. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 4–8 August 2019. [CrossRef]

30. Parra, E.; Dimou, C.; Llorens, J.; Moreno, V.; Fraga, A. A methodology for the classification of quality of requirements using
machine learning techniques. Inf. Softw. Technol. 2015, 67, 180–195. [CrossRef]

https://www.morganclaypool.com/doi/10.2200/S01125ED1V01Y202109DSK022
https://www.morganclaypool.com/doi/10.2200/S01125ED1V01Y202109DSK022
https://www.incose.org/incose-member-resources/chapters-groups/ChapterSites/blues/chapter-news/2009/02/23/se-vision-2020
https://www.incose.org/incose-member-resources/chapters-groups/ChapterSites/blues/chapter-news/2009/02/23/se-vision-2020
http://doi.org/10.1109/RE.2009.9
http://link.springer.com/10.1007/978-3-642-25126-9_48
http://doi.org/10.1007/978-3-319-03437-9_31
http://doi.org/10.1007/s11219-020-09511-4
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
http://doi.org/10.1007/s40095-018-0280-x
http://doi.org/10.1016/j.infsof.2012.07.003
http://doi.org/10.1007/978-3-319-16501-1_2
http://rcvt.tu-sofia.bg/ICEST2007_2_99.pdf
https://towardsdatascience.com/evolution-of-a-salesman-a-complete-genetic-algorithm-tutorial-for-python-6fe5d2b3ca35
https://towardsdatascience.com/evolution-of-a-salesman-a-complete-genetic-algorithm-tutorial-for-python-6fe5d2b3ca35
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.7897&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.7897&rep=rep1&type=pdf
http://doi.org/10.1145/3292500.3330723
http://doi.org/10.1016/j.infsof.2015.07.006

	Introduction
	State of the Art
	Methodology
	Basic Definitions
	Pattern, Tokens, and Slots
	Requirement and Requirements Sets
	Requirements Patterns Set (RPS) for a Domain
	Pattern Matching
	Optional Slots and Wildcard Token
	Affinity Parameter

	Algorithms Implementation
	Solution Approach
	Genetic Algorithm
	Separate-and-Conquer Algorithm
	Algorithms Main Parameters
	Metrics for Measure the Quality of the Solution

	Experiments
	Problem Statement
	Case Study and Data Sets
	Experiment Results
	Example
	Summary of Results
	Algorithm Running Time
	Impact of Requirements Size and Affinity Parameters

	Conclusions and Future Works
	References

