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Abstract: Osteoarthritis (OA) is a degenerative disease that affects the synovial joints, especially the
knee joint, diminishing the ability of patients to perform daily physical activities. Unfortunately, there
is no cure for this nearly irreversible musculoskeletal disorder. Nowadays, many researchers aim
for in silico-based methods to simulate personalized risks for the onset and progression of OA and
evaluate the effects of different conservative preventative actions. Finite element analysis (FEA) has
been considered a promising method to be developed for knee OA management. The FEA pipeline
consists of three well-established phases: pre-processing, processing, and post-processing. Currently,
these phases are time-consuming, making the FEA workflow cumbersome for the clinical environ-
ment. Hence, in this narrative review, we overviewed present-day trends towards clinical methods
for subject-specific knee OA studies utilizing FEA. We reviewed studies focused on understanding
mechanisms that initiate knee OA and expediting the FEA workflow applied to the whole-organ
level. Based on the current trends we observed, we believe that forthcoming knee FEAs will provide
nearly real-time predictions for the personalized risk of developing knee OA. These analyses will
integrate subject-specific geometries, loading conditions, and estimations of local tissue mechanical
properties. This will be achieved by combining state-of-the-art FEA workflows with automated
approaches aided by machine learning techniques.

Keywords: osteoarthritis; knee joint; articular cartilage; finite element analysis

1. Introduction

The knee is a synovial joint that transmits loads and motions between the distal femur
and proximal tibia bones, mediated by the lever function of the patella. It allows joint
rotations (internal–external, varus–valgus, and extension–flexion) and relative translations
of the contacting bones to each other (in anterior–posterior, medial–lateral, and distal–
proximal directions). Normal joint function is guaranteed by the smooth interaction of
specialized joint tissues within the knee (Figure 1). A thin articular cartilage layer covers
the bone ends, ensuring almost frictionless contact between the bones and reducing impact
joint loads. Crescent-shaped menisci, located between the femur and tibia at both lateral
and medial compartments, reduce the contact pressures in articular cartilage. Ligaments
stabilize the knee joint and restrict excessive joint motions during different physical activi-
ties, while tendons transmit muscle forces to bony structures [1–4]. All knee joint tissues
work in harmony to maintain the health of the joint; however, when functionality in any of
the knee components is disturbed, for instance, due to overweightness or trauma, the joint
is exposed to the development of osteoarthritis (OA) [5,6].
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Figure 1. Frontal (left) and coronal (right) views of the internal structures of a left knee joint. Light yellow represents bone
structures, orange ligaments and tendons, red menisci, and light blue articular cartilages.

OA is a degenerative disease that weakens the mechanical properties of articular
cartilage and bone [5,7]. Knee OA was responsible for sequelae in more than 250 million
people worldwide and caused 14 million years lived with disability (YLDs) globally in
2010 [8]. Symptom treatments and surgical interventions make OA an expensive illness for
countries, causing an economic burden of approximately 2% of GDP [9,10]. For instance,
it has been estimated that a total knee joint replacement (TKR) surgery may cost up
to 50,000 USD, and monitoring the success of the surgery may double those costs [11].
Furthermore, over 600,000 TKR surgeries take place in the US annually [12], exposing the
necessity of preventative alternatives to surgery.

The major risk factors for the onset and progression of OA comprise age, gender,
genetics, overweightness, joint misalignment, and joint injuries [5,7,13–18]. These risk
factors can be modifiable, such as weight and misalignment, or unmodifiable, such as age
and genetics. However, due to the patient-specific nature of the disease, predicting its
progression is extremely challenging. Therefore, there is an unmet need for clinical tools
that would give answers to two questions: (1) Will the current knee joint state and physical
activity habits lead to severe OA? (2) If yes, can OA be prevented or its progression delayed
by conservative treatments (e.g., weight loss, gait retraining, physical exercise)? Promising
computational methods are intended to solve them.

Artificial intelligence- (AI-) based solutions have been developed to predict joint
condition using baseline information [19,20]. These methods have shown capabilities
to classify patients into low-risk and high-risk groups based on subject characteristics.
However, they have limitations in simulating the effects of different interventions because
they require a large amount of training data to include all possible treatment options.
Currently, such data are not available.
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Finite element (FE) analysis (FEA) is another computational approach that solves
physics-based problems using constitutive and governing equations. FEA has been, for
three decades, a non-invasive strategy to study how different biomechanical risk factors
may impact knee joint tissues. It has helped researchers understand cartilage degenera-
tion mechanisms at the tissue level and knee joint biomechanics under various loading
conditions in health and disease [21–29].

In general, an FEA is performed in three stages: a pre-processing stage to prepare
the model, a processing stage to solve the mathematical problem, and a post-processing
stage to analyze the results and draw conclusions. Especially for knee joint FEAs, the time
required to generate accurate subject-specific models, with detailed three-dimensional (3D)
geometries and feasible FE meshes, is the main drawback for clinical implementation, since
it may take several working days per individual [30–33].

At this point, it is valuable to describe the state-of-the-art FEAs for evaluating the
onset and progression of knee OA towards future clinical implementations. To this end,
this narrative review aimed to present an overview of relevant FEA-based studies focused
on broadening the understanding of potential mechanisms behind knee OA development
and those focused on expediting the FEA pipeline to simulate three-dimension models of
the knee at the whole-organ level. For that, we sourced published scientific papers from
ScienceDirect, PubMed, and SpringerLink databases. Papers including terminologies such
as “cartilage”, “osteoarthritis”, “knee”, “three-dimension”, “finite element”, “imaging”,
“modeling”, “model”, “simulation”, and “automated” were manually sorted following
the aim of this review. Subsequently, we referred to these studies according to the order
of presented FEA workflow phases. We present studies with a relevant influence on each
phase, followed by studies aiming to save time in the respective phase. Finally, we discuss
studies focused on predicting the onset and progression of knee OA and verification and
validation of FEAs.

2. Development of Knee FEA

FEA was proposed in the mid-20th century for solving complex problems by discretiz-
ing a physical domain into small pieces called elements [34]. FEA is currently used in
a wide range of sciences, such as biomechanics, for dealing with nonlinearities of tissue
mechanical behavior, complex geometries, and multi-physics interactions [35].

For knee tissue biomechanics, initial studies focused on structural characterization and
mathematical description utilizing simple loading conditions. Then, due to improvements
in equipment, increasing computing capacity, and theoretical enrichment, more realistic
geometries and loading conditions were included in the numerical models. Thus, the route
from the first 3D knee joint model until now has been a long 40-year journey [36–38].

3. Knee FEA Workflow

FEA involves three main phases (Figure 2). In the pre-processing stage, the geometry,
mesh, constitutive models, loading, and boundary conditions are defined. In the processing
stage, the mathematical equations describing the model are solved numerically. In the
post-processing stage, the results are usually extracted from the simulation software and
analyzed with appropriate programs for further calculations. Additional tasks mandatory
for achieving reliable FEA results include mesh convergence analyses, verifications, and
validations against experimental data [30,39,40].
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Figure 2. Finite element analysis workflow. Pre-processing integrates preparatory information to define the model. Process-
ing solves the governing equations behind the physical interactions aided by computational tools. Post-processing evaluates
the simulation outputs using qualitative and quantitative methods. Verification and validation feeds back into the modeling
process to ensure logical results that represent the realistic behavior of the problem in question and draw conclusions
regarding the problem simulated. MRI—Magnetic resonance imaging, CT—computed tomography, SSM—statistical shape
modeling, CAD—computer aided design, PG—proteoglycan, IMU—inertial measurement unit, EMG—electromyography,
AI—artificial intelligence, PDE—partial differential equation, ACL—anterior cruciate ligament, KL—Kellgren-Lawrence
score, MOAKS—MRI osteoarthritis knee score, WORMS—whole-organ magnetic resonance imaging score.

3.1. Pre-Processing

Knee FEAs face frequent challenges, one of which is to establish the feasible level
of detail for a particular study [31,35]. A detailed model requires more information to
describe the geometry, constitutive material models, and boundary conditions. Obtaining
and implementing this information into a FE model is a time-consuming task. Hence, novel
strategies to expedite each of these activities are needed.

3.1.1. Geometry

Commonly, an experienced musculoskeletal radiologist segments medical images,
identifying and contouring the tissues of interest (bone, cartilage, meniscus, ligaments,
and tendons) to obtain their 3D representation. For that, information from magnetic
resonance imaging (MRI) or computed tomography (CT) scans can be used. MRI is usually
preferred over CT since it has superior soft-tissue contrast and no ionizing radiation is
used [19,41–43].
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Manual segmenting of an MRI dataset of the knee, using an 0.5 mm slice thickness,
takes several hours [26,44–46]. For the CT dataset, it takes even longer due to higher image
resolution. Hence, the rapid generation of 3D geometries from medical images has received
special attention not only for modeling purposes but for surgery planning and implant
designing [44–51]. For example, Ambellan et al. [44] automated the segmentation of MRI
images via AI. They used convolutional neural networks (CNNs) to rapidly contour tissues
in 2D and 3D domains and used statistical shape modeling (SSM) to control zones with
high variability in shape, such as those susceptible to osteophytes. The authors trained
their custom software with manual segmentations from the MICCAI SKI10 challenge
(https://ski10.grand-challenge.org/) (accessed on 13 October 2021) and the Osteoarthritis
Initiative (OAI) (https://nda.nih.gov/oai/) (accessed on 13 October 2021). The accuracy
of the automated method was as good as that of human experts and reduced the time
to one-sixth of a manual procedure. In another example, Paproki et al. [52] sped up the
segmentation and analysis of menisci in healthy and osteoarthritic knees from the OAI
database. They automated the segmentation process based on active shape modeling
(ASM) and SSM. Comparisons revealed that the automated process identified variables
useful for OA evaluations such as volume, tibial coverage, and menisci subluxation as
well as manual methods did. In total, segmenting and assessing one patient took ~30 min,
suggesting the use of this approach for large cohort studies.

Once the geometry is ready, commonly in a shell stereolithography CAD format
(.stl), researchers assign a volume to it, translating the shell geometry to a solid for-
mat (e.g., .igs). This activity is done by using custom algorithms or CAD software in-
cluding SolidWorks (SolidWorks Corporation, Waltham, MA, USA), CATIA (Dassault
Systèmes, Vélizy-Villacoublay, France), and Rhinoceros (Robert McNeel & Associates,
Seattle, WA, USA).

3.1.2. Mesh

As a second step, shell or volumetric geometries of the knee structure are discretized
for FEA. This representation of objects as a set of connected elements is the basis of
this method [34]. Hence, the accuracy of the numerical results highly depends on the
mesh quality.

In FEA, a particular element type may be more appropriate for a problem according to
the objective of the study [53,54]. The linear tetrahedral is the simplest volumetric element
and is preferred for automated meshing methods (Figure 3) [33,53,55,56]. However, it
overestimates the stiffness at large deformations and numerous elements are needed to
ensure solution convergence [35]. In contrast, hexahedral elements are recommended
when the problem exhibits a high nonlinear behavior, such as in contact problems [33].
However, it is a challenging task to mesh intricate geometries with only hexahedral ele-
ments [57]. Figure 4 shows an example of a knee joint meshed with hexahedral elements
from the OpenKnee project [58], freely available at https://simtk.org/projects/openknee
(accessed on 13 October 2021). High-order elements (e.g., tet10, tet15, hex20; Figure 3) are
recommended to better track deformations and stresses in soft tissues such as cartilage,
muscle, or ligament since they produce smoother strain and stress estimates with fewer
elements compared to linear approximations (e.g., tet4). In addition, they provide a closer
representation of complex curved surfaces [54,57].

https://ski10.grand-challenge.org/
https://nda.nih.gov/oai/
https://simtk.org/projects/openknee
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Figure 3. Some types of solid elements used for FEA. From left to right, tetrahedral of four nodes (tet4), tetrahedral of ten
nodes (tet10), tetrahedral of fifteen nodes (tet15), hexahedral of eight nodes (hex8), hexahedral of twenty nodes (hex20).
(FEBio User Manual 2.9-3.8.2.1 https://help.febio.org/FEBio/FEBio_um_2_9/index.html) (accessed on 13 October 2021).

Figure 4. Finite element mesh of the knee joint using hexahedral elements [52]. This model has been used in various
investigations and is freely available at https://simtk.org/projects/openknee (accessed on 13 October 2021).

Usually, meshing algorithms create an accurate mesh by controlling the size and type
of elements [53,54]. These meshing tools are found in commercial and open-source software.
Commercial meshers include HyperMesh (Altair Inc., Troy, MI, USA) and others contained
in FEA software such as ABAQUS (SIMULIA, Providence, RI, USA) or ANSYS (Ansys,
Canonsburg, PA, USA). Open-source meshers include Gmsh, SALOME, and MeshLab. On
the other hand, it is also possible to use custom algorithms. For instance, Rodriguez-Vila
et al. [33] developed an automated meshing tool for knee cartilages and menisci, whose
inputs are 3D geometries in .stl format, to generate hexahedral meshes of tissues in ~200 s.
These meshes matched well with the original geometries, with reliable discretization and
time savings in subject-specific models of the knee joint. That algorithm and eight knee
meshes from the OAI can be freely reached at https://im.engr.uconn.edu/downloads.php
(accessed on 24 November 2021).

This stage of the FEA workflow can be expedited in other ways. For example, Baldwin
et al. [45] accelerated the meshing process by working directly on the set of medical images,
avoiding the segmentation stage. They proposed to control the shape of the mesh via
key nodes (handles) distributed in the mesh. The user fits hexahedral meshes of femoral,
tibial, and patellar cartilages directly to the morphology of the patient in ~1.5 h. This

https://help.febio.org/FEBio/FEBio_um_2_9/index.html
https://simtk.org/projects/openknee
https://im.engr.uconn.edu/downloads.php
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template-based approach allows for control of the element type and mesh quality, although
it still depends on the time and expertise of users to identify the tissue contours on images.

In a final example, combining the study of knee geometry variability and fast mesh
generation, Rao et al. [49] developed a method to rapidly define knee FE models. They
used MRI and experimental data from 20 cadaveric knees and used principal component
analysis (PCA) to identify what geometric characteristics added more to the variability
between subjects. A template mesh from an average knee geometry was fitted to different
subjects using handles to control node subsets. The element type for bones was linear
triads and linear hexahedral elements were used for cartilage. They found that the size and
the relative position and alignment (tibial anterior–posterior) of knee structures in a loaded
state were the main sources of variability. This method allows generating knee models
with realistic geometries of virtual subjects useful for implant design.

3.1.3. Material Constitutive Models

The constitutive models are chosen according to the objective of the study [59–62],
and the mechanical parameters should be selected to mimic real tissue behavior based on
the experimental data.

Cartilage. Articular cartilage can be described as a biphasic fibril-reinforced material.
This tissue reacts differently under tensile and compressive forces. In addition, it exhibits a
time-dependent behavior caused by two mechanisms: in compression, mainly due to fluid
exudation, and in tension, mainly due to the viscoelasticity of the solid phase, particularly
collagen fibrils.

The simplest constitutive model defines this tissue as an isotropic homogeneous
elastic material, indicating it mimics only one time-point from the stress–relaxation curve.
As such, it should be used with caution to model only instantaneous and equilibrium
tissue responses [63,64]. For time-dependent behavior, cartilage has been modeled using
solid viscoelastic [65,66] and biphasic formulations [67,68]. Biphasic models are based
on poroelasticity theory, developed by Biot [69], and mixture theory, developed by Mow
et al. [70–72]. Both theories consider a biphasic material composed of incompressible solid
and fluid phases and lead to equivalent solutions [73]. There, the volumetric changes in
tissue are explained by the net fluid flux through tissue boundaries. Subsequent cartilage
models captured both relaxation mechanisms, with biphasic formulations including a
viscoelastic solid phase [74–77]. Further descriptions allow for modeling of the anisotropy
caused by the collagen fibril network as well as the depth-dependent heterogeneities
in water and the proteoglycan (PG) and collagen contents [78–80]. Finally, since PGs
induce cartilage swelling due to negative charges, the most complex descriptions include
swelling [81,82] and triphasic [83,84] models.

The site-specific distributions of material constituents in cartilage may impact its
mechanical response or serve as a measurement of tissue integrity. Researchers can use
imaging techniques such as quantitative MRI (qMRI) to compute such distributions [85–87].
At the organ scale, Räsänen et al. [86,87] studied the effect of in vivo fixed charge density
(FCD) distribution in knee cartilage under different loading conditions. To do so, they
obtained the FCD distribution using 23Na-MRI and used a fibril-reinforced poroviscoelastic
with swelling effect formulation for cartilage and menisci. First, in [86], they compared the
MRI-based tibial cartilage deformation before and after the standing period with the patient
bearing half of their weight for 13 min statically. They concluded that using a subject-
specific FCD content differs from using a constant value or a generic depth-dependent
distribution from the literature. Second, in [87], they simulated the stance phase of the
gait modeling combinations of different FCD contents and collagen network stiffnesses.
Results showed that combining the lowest FCD content with the softest collagen network,
as found in knee OA patients, resulted in a considerable reduction in cartilage mechanical
capabilities. In addition to MRI-based solutions, ultrasound techniques can also estimate
tissue characteristics in vivo, such as thickness and stiffness [88–91], but quantifying other
material properties such as permeability is still restricted to in vitro setups.
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Sometimes, the aim of the study can be reached with an intermediate complex material
formulation. For instance, by using a biphasic transversely isotropic description, different
authors were able to reproduce experimental cartilage stress–relaxation tests [92–94]. Bolcos
et al. [95] used a biphasic transversely isotropic model [60] to identify zones of knee cartilage
susceptible to post-traumatic osteoarthritis. This demonstrated that constitutive models
with this complexity level could simulate realistic responses of the tissue.

Meniscus. Regarding material models for meniscal tissue and meniscal attachments,
similarly to cartilage, a variety of constitutive models have been proposed, from isotropic
elastic to biphasic elastic reinforced with fibrils [96–101]. Párraga et al. [99] compared two
biphasic fibril-reinforced tissue models to justify using a complex or simpler distribution of
meniscus constituents. They compared depth-dependent and homogenized distributions
for collagen, water, and PGs in an axisymmetric model of the knee joint, including cartilage
and meniscus. Results showed no significant differences in the cartilage fibril strain
between the models. Thus, the authors suggested that using a homogenous distribution
of meniscus constituents yields trends in stresses and strains similar to those found when
using a depth-dependent one.

Ligament and tendon. Similarly, the ligament tissue can be described as a complex
material and different constitutive models have been used to model it [37,63,102–105]. With
respect to this tissue, Orozco et al. [106] studied the impacts of using different geometrical
representations and formulations of ligaments on knee joint mechanics. They simulated the
gait cycle of a 3D knee joint, including the anterior and posterior cruciate ligaments (ACL,
PCL), lateral and medial collateral ligaments (LCL, MCL), quadriceps, patellar tendons,
menisci, and patellar, femoral and tibial cartilage. They formulated ligaments as springs,
elastic, hyperelastic, poro-hyperelastic, and fibril-reinforced poro-hyperelastic. Results
suggested that, at certain time points of functional activities, simpler material formulations
could mimic the mechanical response obtained with more complex models. This approach
saves time in the pre-processing stage, by skipping the segmentation of ligament geometry,
and in the processing stage, since solving models using springs is faster than using complex
fibril-reinforced poro-hyperelastic formulations.

Bone. Different authors model bone tissue as a homogenous and solid elastic material
even though its heterogeneous and biphasic nature is known [28,107–110]. Moreover, the
boundary between bone and cartilage is not abrupt. In this region we find transition
zones between cartilage, calcified cartilage, subchondral bone, and trabecular bone. Sten-
der et al. [28,108] identified the importance of these transition zones when modeling OA in
bone and explained the mechanical crosstalk between the different tissues. Nevertheless,
when the interest is focused on cartilage only, bones have been often modeled as rigid
bodies in many studies. Through this assumption, researchers avoid including the specific
geometry of bones and only consider their constraining effect as boundary conditions such
as rigid and impermeable regions [24,111].

3.1.4. Subject-Specific Motion and Loading

Once the domain is discretized and the constitutive material models are chosen, the
next step is to define the boundary conditions and loading.

Usually, this subject-specific information is obtained via motion capture. This task can
be conducted using infrared cameras and reflective markers, using inertial measurement
units (IMUs), or using video recordings and AI. In addition to motion, the ground reaction
forces (GRFs) are recorded with pressure sensors, and the muscular activation is captured
via electromyography (EMG). Then, joint motions, moments, contact forces, and muscle
forces in the knee can be estimated using inverse kinematics via musculoskeletal mod-
eling [24,112–115]. This process is facilitated with software such as AnyBody (AnyBody
Technology, Aalborg, Denmark), Vicon (Vicon Motion Systems Ltd., Oxford, UK), and
OpenSim [116]. Other options to estimate these variables in the knee involve AI, where
physics-based models are replaced by trained machine learning models [42,117–120]. In
these models, knee loading patterns (e.g., joint forces and moments) can be predicted from
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measured variables (e.g., marker trajectories, GRFs, and EMGs) by organizing the input
information into matrix form and optimizing a set of parameters to correlate it with the
desired response. Some machine learning methods are better than others depending on the
type of data and the objective of the study [117,121].

The implementation of mechanical loadings in knee joint models is essential for es-
timating the mechanical response of cartilage, menisci, ligaments, and tendons [3,24].
However, generating subject-specific data from different physical activities can be a cum-
bersome task that might take weeks or months to complete. Thus, for expediting the
implementation of the loading conditions, some authors have estimated them by scaling a
mean gait pattern to different patients according to body weight (BW) [122], using experi-
mental data or using musculoskeletal models [113,114]. Another option would be using
machine learning approaches with few inputs. For instance, De Brabandere et al. [123] used
a mobile phone on 10 hip OA patients to estimate the hip and knee joint impulses through
different exercises. Results suggested that they were able to specify the hip impulse in
patients differently from a population-based average. However, the pipeline they proposed
should be improved for better accuracy.

The exact locations of tendons and ligaments in knee FE models are usually approxi-
mated, affecting the kinematics and kinetics of simulations [111,124,125]. This is due to the
simplified geometry representation of the tissues and the variability in the insertion point
locations from medical images [125,126]. In this regard, Harris et al. [1] studied knee laxity
by combining experimental data and FEA. They analyzed four cadaveric knees and opti-
mized the location of the insertion points, the pre-strain, and the stiffness of the ligaments
based on one-to-one validations. The authors acknowledged the difficulties of the process
and made the experimental data and the optimized model parameters freely available.

3.1.5. Model Configuration

This refers to the decisions regarding what knee structures to include in the models,
what level of detail is needed, and what assumptions will be included in the final model.
Rooks et al. [126] showed how this decision-making process results in different strategies to
answer the same research question concerning the knee joint using FEA. In that study, five
teams developed FE models of two knees to simulate a passive knee flexion between 0 deg
and 90 deg, considering the patellofemoral and tibiofemoral joints. In general, the teams
had similar workflows, although they integrated some knee structures differently. In brief,
the teams considered bones as rigid bodies, just one included deformable cartilages, one of
them excluded the menisci, and one of them excluded the tendons. The time required to
solve the models varied between 30 min and 9 h.

Sometimes, a multi-scale model is needed to answer the research question [125,127–131].
In these cases, researchers look for the concurrent effects of mechanical stimuli through
different physics scales [131]. For instance, it is possible to even simulate the chondrocyte
mechanical environment within cartilage under unconfined compression [132] or gait
cycle loading in healthy and meniscectomized knees [129]. In more detail, Esrafilian
et al. [130] combined FEA with musculoskeletal models assisted by EMG to develop a
subject-specific knee joint model. They formulated bones as rigid bodies, cartilage as
fibril-reinforced poroviscoelastic, menisci as fibril-reinforced poroelastic, and ligaments
as non-linear springs. The loading corresponded to a gait cycle, and the muscle forces
were estimated by an EMG-assisted musculoskeletal model. They performed a sensitivity
analysis to study the effect of ligament pre-strain on the mechanical response of cartilage.
The results indicated that the pre-strain of ACL, PCL, and MCL highly affected contact
forces and contact areas, while it less affected cartilage stresses, fluid pressures, and fibril
strains. Thus, the authors recommended being more rigorous in calibrating ligament
pre-strain when the interest is the kinematics and kinetics of the joint compared to studies
focused on the mechanical response of articular cartilage. Regarding the time, authors spent
one month in the pre-processing stage, the FE model ran in 30 h and the post-processing
stage was automated.
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Bolcos et al. [32] explored expediting FE models for potential clinical use in the
future. They compared articular cartilage biomechanics between kinetic and kinetic–
kinematic driven knee joint models simulating a gait cycle. In the most complex kinetic
model, forces and moments drove the simulation during the stance phase of gait. In the
simplest kinetic–kinematic driven model, only forces and rotations were used to control the
simulated gait motion. Comparisons between models revealed similar cartilage mechanical
responses (i.e., maximum principal stress, maximum principal strain, and pore pressure).
In conclusion, combining kinematic and kinetic inputs, which is easier to implement than
kinetic alone, saves weeks of workload compared to the most complex model without
sacrificing much accuracy.

3.2. Processing

At this stage of an FEA, the mathematical problem behind the model is solved using
numerical algorithms. This considers the governing equations describing the physics, the
discretized domain, the material constitutive models, and the boundary conditions. The in-
clusion of time-dependent and inertial terms defines what type of analysis (static, transient,
or dynamic) should be performed. Depending on the complexity of the model (number of
mathematical equations) and the available computational resources, to computationally
solve the numerical problem may take from minutes to weeks [133].

There is a variety of specialized software to process complex FE models. For instance,
ABAQUS (SIMULIA, Providence, RI, USA) is a popular software utilized for FEA in biome-
chanics. This commercial software enables incorporating user-defined (UMAT) subroutines
to describe constitutive models, which is a common necessity for developing new mate-
rial formulations. In addition, ANSYS (ANSYS, Canonsburg, PE, USA) and COMSOL
(COMSOL, Stockholm, Sweden) are commercial software widely used for biomechanics
modeling. On the other hand, FEBio (FEBio Software Suite, Salt Lake City, UT, USA) is an
open-source and freely available software focused on solving problems in biomechanics
and is particularly focused on solving biphasic problems [134,135].

3.3. Post-Processing

This is a central stage when results of the FEAs are interpreted. Adequate post-
processing gives insights into the assumptions made at the beginning of the research and
supports further hypotheses.

There are different ways to analyze the results. For example, appropriate fringe plots
offer a visual translation of the intensities of variables such as deformations and stresses,
and vector fields and streamlines are appropriate to describe principal tensor components
and fluid motions [136]. In addition, figures and statistics are mandatory for qualitative
and quantitative evaluations of tendencies and correlations, respectively. For these post-
processing tasks, many researchers trust MATLAB (The Mathworks, Natick, MA, USA),
since it offers a wide variety of functions for extensive analyses by manipulating matrices,
and statistical software such as SPSS (IBM SPSS Statistics, Armonk, NY, USA) and Stata
(StataCorp LP, College Station, TX, USA).

Furthermore, it is commonly necessary to understand the effect of parameter vari-
ations on the model outputs, such as material parameter uncertainties on resultant dis-
placements or stresses. These sensitivity studies, which require iterative processes, are
accomplished by linking different software and programming languages. For example,
programing routines in MATLAB, Isight (SIMULIA, Providence, RI, USA), or Python run
a model a certain number of times or look for the optimization of an objective function
using the FEA software results [1,24,80]. This kind of analysis is time-demanding but
elucidates important conclusions, e.g., indicating what are the parameters that most affect
the model response [115,137–139]. Once these studies are accomplished, the modeling can
be improved by considering variations in only those identified parameters, increasing the
reliability of the final models, and drawing suggestions concerning the tissue properties
that should be more carefully determined. For instance, Dhaher et al. [2] quantified the vari-
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ation in patellofemoral kinematics and contact stress caused by uncertainties from material
properties of LCL, MCL, PCL, ACL, and lateral (LPL) and medial (MPL) patellofemoral
ligaments by combining FEAs and Monte Carlo simulations. They found that uncertainties
in the ACL material parameters caused high variation in the patellofemoral kinematics,
and even larger effects compared to tissues of the patellofemoral joint.

3.4. Onset and Progression of OA

Several factors are associated with increased risk of developing OA, such as obesity,
diabetes, genetics, age, and gender [7,140,141]. In addition to these factors, joint injuries
may cause lesions in articular cartilage, contributing to the development of post-traumatic
OA [21,95,142]. However, the causative mechanisms for the initiation and progression of
OA are not fully understood.

FE models have been used to test hypotheses regarding the OA mechanisms at differ-
ent scales. On the one hand, at the tissue level, researchers have studied the effects of the
depletion of cartilage constituents on the mechanical response of the tissue, such as reaction
forces and displacements in unconfined compression relaxation tests of cartilage sam-
ples [143–145]. Others investigated the cross-talk between tissues that could address tissue
remodeling when the mechanical environment changes [28]. Mechanobiological models
have also intended to explain the interplay of tissue constituents with the degradation of
cartilage, including cell signaling to modify the mechanical response [21,146–148].

On the other hand, at the joint level, researchers have simulated a variety of diseased
conditions. These studies include investigations of the effect of size and location of cartilage
superficial defects on strain and stress concentrations [139], the effect of knee structures’
relative orientation on cartilage thinning [149] and the effect of collagen disorganization
on the load-bearing functions of cartilage [150,151]. Moreover, to understand possible
OA pathways, Orozco et al. [146] developed a mechanobiological knee joint model to
predict FCD alterations involving cartilage lesions in ACL ruptured and reconstructed
patients. Their results were contrasted with quantitative longitudinal changes observed
in MRI maps. That study postulated that excessive shear deformations and fluid velocity
are responsible for the FCD loss in the injured cartilage tissue. In addition, related to
an ACL deficient knee, Shim et al. [148] studied the subchondral bone remodeling after
simulating a three-month walking loading condition. They used a multiscale approach
and compared the simulated cell signaling between healthy and ACL deficient states,
which would drive bone remodeling and the subsequent cartilage inflammatory response.
Results showed higher strain at the zone of calcified cartilage and a higher concentration of
proinflammatory mediators in the ACL deficient knee compared to the healthy condition.

Aiming for future clinical applications of knee FEAs, Liukkonen et al. [152] imple-
mented a FE-based method to estimate the onset and progression of knee OA in 21 knees.
In their method, the cartilage collagen network was assumed to soften when a stress
threshold for failure was exceeded, mimicking the tissue degradation. Models included
subject-specific MRI-based geometries only for the medial compartment, based on the
OA prevalence, and a typical joint loading share between the medial and lateral sides.
The menisci were subtracted from the models, but their load-bearing effect was consid-
ered when applying the generic gait loading condition (scaled with subject body weight)
through the tibiofemoral joint. The researchers simulated the future cartilage degradation
from a baseline condition when all subjects were healthy, with a Kellgren–Lawrence grade
of 0 (KL0). Then, they verified the predictions against OAI data by classifying follow-up
KL grades of the 21 knees in healthy (KL0) and diseased (KL2 and KL3) groups. In order
to include more subjects efficiently, Mononen et al. [26] proposed a FEA template-based
method for the above approach (Figure 5). They parameterized the model geometries to
scale a template mesh from an atlas of 21 subjects to different individuals. In addition, they
used stress thresholds for damage linked to the age of the subject [140]. By this method,
the time to create a subject-specific model was reduced from one week to 2 min. Results
showed that the approach had promissory capabilities to classify patients into four different
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KL grade groups (KL0, KL2, KL3, KL4) based on the baseline information. They verified
their method with the same OAI subjects used in [152].

Figure 5. Workflow of an atlas-based approach to study the progression of knee OA [22]. This approach considered the
medial compartment only and subtracted the load-bearing fraction of the meniscus from the axial force. (a) The traditional
way to model a specific knee and (b) the template-based approach.
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3.5. Verification and Validation

When developing new models or approaches, they should be verified and validated
before the results they produce can be trusted. The verification can be completed by
comparing the computational model results with those of similar previous works. The
reason behind this is to confirm that the new models offer logical results. Subsequently,
the validation is crucial for demonstrating the capabilities of the model to reproduce and
predict experimental results. The source of experimental data for validations includes
in vitro and in vivo experiments. In vitro experiments include testing of tissue explants
and complete joints from cadavers. Commonly, stress–relaxation test data with several
strain steps are used to calibrate and validate material parameters of cartilage, especially
for complex material models [63,104,153,154]. In vivo experiments can include data from
instrumented knee prostheses (with a force sensor) after total knee replacement (TKR)
surgery, and data from non-invasive techniques such as MRI [155], and external transducers
such as pressure sensors, electromyography, and markers for gait analysis [24,124,156].

Parameters for the validation of musculoskeletal and FE joint models include in vivo
forces through tibiofemoral and patellofemoral joints [3], cartilage deformations [155,157,158],
and displacements of the patella and menisci, which are variables useful for the assessment
of musculoskeletal disorders [13,111,159–161]. In this regard, MRI and fluoroscopy have
been used to study the relative motion of internal structures of the knee in vivo [162–165].
For instance, Li et al. [166] combined dual fluoroscopy with SSM to evaluate the kinematics
of the knee joint. The dual fluoroscopy combined with the SSM technique was used
to automatically calculate subject-specific geometries and the relative motion of bony
structures. They studied the kinematics of the stance phase of three subjects walking at
3.2 kilometers per hour. Their method produced root mean square (RMS) errors as high as
1.77 mm in geometries, 3.3 degrees in rotations, and 2.4 mm in displacements, compared to
a CT-based method. This study evaluated an approach to expedite the kinematic analysis
of subjects and reduce radiation exposure compared to using CT scans.

Regarding knee OA prediction models, they are currently verified and validated
against qualitative and quantitative data. Qualitative assessments involve, for example,
comparisons of the location of damage and morphology changes in cartilage [95,149,167].
On the other hand, quantitative assessments are more challenging due to experimental
inaccuracies and difficulties in analyzing clinical image data properly. At a local tissue level,
the OA Research Society International (OARSI) proposed grading the tissue damage based
on histologic characteristics, resulting in a six-grade scale [168,169]. At a whole-organ
level, other grading systems can be used. They include the Collins grading system [168],
which classifies tissue characteristics by direct observation of the tissue, commonly with the
patient under surgery or autopsy. A recent study [170] found a high correlation (R = 0.887)
between OARSI grading scores and Collins scores using 22 cartilage samples from six
donors, indicating an equivalence between both physical scale evaluations.

For conservative clinical practices, performing biopsies to collect tissue samples could
be detrimental to the integrity of the joint. Thus, comparison against clinical history data
can be considered the gold standard [18,20,22,171,172]. Here, simulated predictions for OA
development, estimated with the information obtained at the baseline and model outcomes,
are compared against follow-up data (changes compared to baseline) utilizing quantitative
data obtained from clinical imaging. For these comparisons, for instance, researchers
have access to the Osteoarthritis Initiative (OAI) database, available for public access at
https://nda.nih.gov/oai/ (accessed on 26 November 2021), which offers information on
4796 patients, followed during eight years [173]. This database includes various data
types such as imaging with X-rays and MRI, biomarkers, Western Ontario and McMaster
Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score
(KOOS) assessments, MRI Osteoarthritis Knee Score (MOAKS), Whole-Organ Magnetic
Resonance Imaging Score (WORMS) and Kellgren–Lawrence grades (KL).

https://nda.nih.gov/oai/
https://nda.nih.gov/oai/


Appl. Sci. 2021, 11, 11440 14 of 24

4. Discussion

Computational analyses in biomechanics and medicine are valuable for surgery plan-
ning, medical device design, and understanding and preventing disease progression [174].
The ability to predict the initiation and progression of diseases would yield many benefits
for patients, society, and the economies of countries. In this review, we focused on compu-
tational finite element analysis (FEA) aiming for an understanding of knee OA mechanisms
and improvements for speeding up subject-specific models and simulations.

Regarding planning surgical procedures, FEAs can be utilized to understand the effects
of meniscectomies on cartilage stress distributions [175,176]. Zhang et al. [176] simulated
the effects of degenerative and radial tears of meniscus and meniscectomies on tissue
stresses and displacements. Results indicated that performing a medial meniscectomy
increases stresses in remaining tissue. Another application is design of surgical procedures
for correcting extra- and intra-articular deformities associated with knee OA. Ji et al. [177]
proposed combining an opening-wedge high tibial osteotomy (OWHTO), related to extra-
articular deformities, with a tibial condylar valgus osteotomy (TCVO), related to intra-
articular deformities. FEAs and experimental tests on synthetic bone models revealed a
comparable strength of the novel procedure to the currently used OWHTO procedure.

In addition to surgical interventions, conservative options, such as gait retraining
and weight loss, could also be aided and encouraged by computational models to prevent
disease progression [22,178–180]. Richards et al. [181] showed the impact of a six-week
gait retraining program on 16 subjects. They recommended specific gait retraining to
reduce the knee adduction moment (KAM) in patients with medial knee OA. They used
musculoskeletal modeling to estimate moments at the knee joint and assess the effect of the
toe-in pattern trained during gait. For training, they used an instrumented treadmill with
graphical interfaces to provide feedback to the patient during the trials. Results suggest
the program effectively reduced the KAM in medial knee OA patients even six months
after the training. The authors recommended complementing their study with additional
FEA analyses. These variations in the KAM can easily be implemented in FEA models to
estimate the consequence of these rehabilitation protocols on the knee joint tissues.

As shown, FEA is currently utilized and recommended for complementing other
approaches. Thus, for subject-specific analysis towards clinical applications in OA, we
identified that certain phases in the current pipeline can be accelerated. In pre-processing,
several studies have proposed solutions for rapid image segmentation to obtain the patient-
specific geometry of the joint and procedures for automated meshing. However, no
approach has been implemented to rapidly indicate subject-specific input loadings, nor
biomechanical adaptations of the patient, e.g., gait pattern alterations caused by pain
during OA worsening. In this regard, there are proposals for rapid loading estimation
that can be later linked with those focused on rapidly obtaining the knee geometry and
mesh. For instance, Pizzolato et al. [180] implemented a workflow for the real-time esti-
mation of the knee medial tibiofemoral contact force. Their method used a physics-based
electromyogram-driven neuromusculoskeletal model. Burton et al. [117] compared dif-
ferent machine learning algorithms to predict the activation of muscles around the knee
as well as the knee and hip contact forces. They found that a recurrent neural network
(RNN) offered the best predictive capabilities. The RNN was able to mimic the outcomes
of musculoskeletal modeling, which is a physical-based method.

Regarding accelerating the processing stage, not much information was given in the
literature within our scope. However, based on our experience, these FE models can be
solved utilizing parallel computing on powerful computer servers, although limitations
arise related to licensing of commercial software. Thus, it would be valuable to hear from re-
searchers in this field regarding their experiences and suggestions for alternative strategies.

For expediting the post-processing, it is highly dependent on the research question.
When studying the effect of uncertainties in models, e.g., from material properties, the type
of parametric study chosen will considerably impact the time necessary for the completion
of the analyses [35]. On the other hand, when iterative processes are not needed but large
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cohorts are studied, automating the analysis can easily be implemented by linking FE
software outputs with programming languages such as Python and MATLAB.

To verify OA prediction results, the best approach is comparing predictions against
degenerative tissue changes obtained from clinical imaging during a follow-up period. This
can be a challenging task since the analysis of morphological changes may be subjective
and takes a great deal of time, especially when data from thousands of subjects are required.
This exposes the necessity for novel methods to produce objective data to verify prediction
results. As an example to overcome that limitation, automated approaches to measuring
cartilage thickness from clinical image data have been developed [182]. This method could
be utilized to generate feasible data (changes in cartilage thickness between baseline and
follow-up imaging) to verify novel degenerative and adaptive algorithms.

To account for patient-specific tissue composition information to study knee OA, imag-
ing is a well-developed field in medicine, with continuous improvements in equipment
and post-processing tools [183], that can be linked to the FEA workflow. Mapping MRI
markers have demonstrated good correlations with early OA location and progression.
These markers include T2 and T1$ relaxation times, which are related to water content,
collagen distribution, and proteoglycans density [184–186], which can be considered as
FE model inputs. Early in this review, we highlighted how Räsänen et al. [86,87] used
23Na-MRI information as input data for FEAs of the knee. Though the distribution of
MRI parameters can be transferred into the distribution of mechanical parameters in FE
models, the workflow behind this translation is time-consuming. Recent studies have
made efforts to rapidly produce MRI marker distributions [187,188], but the approach to
automatically translating them into FE models is still missing. As subchondral bone has a
contribution to the development of knee OA [189,190], it should also be considered when
making more accurate FE models to predict disease progression. In this line of research,
Hirvasniemi et al. [191] developed a methodology to correlate bone density and texture
with OA progression from X-ray images with low clinical post-processing, offering a rapid
and low-cost analysis. Bone information can be incorporated in the FEA workflow, either
for site-specific inputs or for verification purposes.

As mentioned earlier, in vivo estimation of tissue mechanical properties in the knee
joint is challenging, making it difficult to include complex patient-specific tissue informa-
tion in FE models. However, in vivo tissue stiffnesses can be estimated using techniques
including MRI [158,192], based on strain–stress relationships, and ultrasound [88], based
on wave velocities in media. Wu et al. [193] used shear wave elastography (SWE) to
determine Young’s moduli of muscles, ligaments, and tendons around the knee joint. The
study involved 50 female and male subjects, divided into groups aged 21–30, 31–40, 41–50,
and above 51 years. The authors found higher values for males and decreasing values for
older subjects, but the mechanisms behind the decrease in the mechanical properties due
to aging are still unknown. In the future, these unmodifiable characteristics (age, gender)
of patients could be considered in models through correlations and by utilizing statistical
methods or machine learning algorithms, together with in vivo properties measured using
noninvasive techniques.

FEA approaches coexist with other computational methods to study OA. For instance,
several studies have utilized mathematical models of the patellofemoral joint (PFJ), as-
suming the joint as a two-dimensional mechanism, to determine contact areas and forces
resulting in contact pressure distributions [194–197]. This approach has demonstrated good
results by relating the biomechanical parameters of the PFJ to OA. These studies highlight
that this method works rapidly compared to FEA, although the range of movement is
limited to the sagittal plane and the articular cartilage is modeled as an isotropic linear
elastic material. Similarly, discrete element analysis (DEA) has been utilized to model hip
and knee joint contacts [198–200]. DEA demonstrated a similar contact response compared
to FEA models of the hip joint [199], and similar contact pressure distributions to exper-
imental measurements in the PFJ [198]. DEA does not require a volumetric mesh, using
shell elements instead, with which elastic springs are associated, relating to the thickness of
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tissue (cartilage) and elastic properties (Young modulus and Poisson ratio). In this method,
contact is enforced by the springs when penetration of surfaces is detected. DEA offers
solutions in seconds, although cartilage is assumed to be isotropic and linear elastic.

Statistical and AI tools are active fields to study knee OA. From this point of view,
Halilaj et al. [20] modeled the longitudinal progression of knee OA based on OAI data of
medical visits of 1243 patients, including X-ray measurements and WOMAC scores. With
this information, they built regression models to classify subjects into different clusters
according to the observed radiographic and pain progressions. Their approach was able
to predict radiographic progression utilizing the information from two visits separated
by one year and predicted the pain progression using only one observation. Kokkotis
et al. [121] reviewed many applications of machine learning related to knee OA. These
covered the prediction of disease onset and progression based on a variety of patient
characteristics [201], correlation of features that could allow the early diagnosis of knee
OA, and techniques for fast medical image segmentation [202] and classification [203].
However, AI methods cannot be used to simulate the effects of clinical interventions on the
mechanics of the knee, including the subsequent adaptation processes in articular cartilage.

Based on the investigations mentioned in the present review, studying knee OA via
FEA is becoming faster and more reliable in terms of model input (pre-processing). Some
gaps and difficulties are being filled and solved for translating these exploratory advances
to the clinical environment. We believe the fields of active research related to studying
knee OA via FEA would be:

• Automate pre-processing tasks using a minimum amount of information (geometry
generation and loading specification);

• Incorporate site-specific tissue composition and mechanical properties;
• Develop accurate algorithms for OA prognosis (theory and validation);
• Develop efficient multiscale modeling methods (from joint to tissue level);
• Combine advances in FEA, musculoskeletal modeling, and AI.

Thus, in the near future, coming investigations will efficiently combine machine
learning approaches, faster and more affordable imaging techniques for rapidly generating
subject-specific geometries and meshes, and personalized mechanical inputs such as tissue
properties and loading scenarios. Similar phenomena will occur within processing and
post-processing with accelerated task performance via coupling analysis methods (e.g.,
FEA and AI). In the long term, these advances would enable novel treatment management
strategies to delay or prevent the progression of knee OA. Personalized predictions will
offer a new route to optimize the most cost-effective therapy option. Furthermore, visual
information from personalized prognoses and the effects of different interventions could
motivate and commit patients to suggested treatment.
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