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Abstract: Finding outliers in functional infinite-dimensional vector spaces is widely present in
the industry for data that may originate from physical measurements or numerical simulations.
An automatic and unsupervised process of outlier identification can help ensure the quality of a
dataset (trimming), validate the results of industrial simulation codes, or detect specific phenomena
or anomalies. This paper focuses on data originating from expensive simulation codes to take into
account the realistic case where only a limited quantity of information about the studied process is
available. A detection methodology based on different features, such as h-mode depth or the dynamic
time warping, is proposed to evaluate the outlyingness both in the magnitude and shape senses.
Theoretical examples are used to identify pertinent feature combinations and showcase the quality of
the detection method with respect to state-of-the-art methodologies of detection. Finally, we show
the practical interest of the method in an industrial context thanks to a nuclear thermal-hydraulic use
case and how it can serve as a tool to perform sensitivity analysis on functional data.

Keywords: functional data analysis; functional outlier detection; probabilistic modeling; computer
experiments; sensitivity analysis

1. Introduction

Presently, the ever-increasing capabilities of measurement, generation, and storing of
data have increased the scientific and industrial communities’ interest in what are known
as functional data. In its most general form, the domain of functional data analysis deals
with any object with the form of a function, regardless of its dimension. For example, the
most basic form these objects can adopt is one-dimensional (i.e., univariate) real functions,
which can represent the evolution of a physical parameter of interest over time (or another
variable). These data normally originate through an empirical measurement system or a
simulation code.

The great interest of the functional data analysis is that it allows consideration of the
intrinsic nature of the data, i.e., the underlying process that generates them is supposed
to have certain restrictions of domain, regularity, continuity and so on. As the functional
data are infinite-dimensional by nature, functional data analysis methods always rely on a
dimension reduction technique, whether implicitly or explicitly. More precisely, it is the
case in the context of classification [1], clustering [2], landmark research and registration [3]
of functional data. By providing more synthetic descriptors of functional observations,
functional data analysis methods allow a more practical treatment of data thanks to the
available multivariate tools.
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The domain of functional data analysis can be traced back to the works of Grenan-
der [4], but the term itself was coined by Ramsay, [5]. Some of the most widely regarded
references for the domain include the general works of [6] or [7], focused on non-parametric
methods for functional data. Functional data can be found in a wide variety of contexts,
among which we can mention: environmental sciences [8,9], medical sciences [10], econ-
omy [11] and others. In the context of this paper, our work is motivated using expensive
simulation codes [12,13] that are commonly used in the nuclear industry to complement
the nuclear safety assessment reports [14], and which require specific statistical tools. These
thermal-hydraulic simulators, such as the system code CATHARE2 [15], can simulate the
evolution of the essential physical parameters during a nuclear transient, and they are
expensive to evaluate (several hours per run) and analyze due to the complexity of the
simulated phenomena (highly nonlinear interactions between its parameters).

In general, in the context of nuclear safety, the main analyzed parameters are the scalar
values known as Safety Parameters, which are representative of the severity of an accidental
transient. However, the analysis of the whole evolution of the aforementioned physical
parameters is a complex domain that has been subject to considerable research efforts in
recent years, such as in the works of [16] or [17]. The detection and analysis of outlying
transients in these sets of simulations are useful to detect unexpected physical phenomena,
validate the simulations providing valuable descriptors of the functional outputs of interest,
or quantify the extreme behavior or penalizing nature of specific subsets of those transients.

Despite the diversity of domains, there are several common points of interest between
all of them. For example, in the most usual case of univariate functions, a typical difficulty
that arises in the pre-treatment phase of the data are the subject of the discretization of the
grid on which the data are observed. Univariate curves are not normally observed in their
entirety (since they are intrinsically infinite-dimensional). Instead, they are indexed by some
variable, usually the time in the univariate case, in a grid that can be homogeneous or not.
Indeed, points are not necessarily equally spaced, as with biological measurements such as
blood pressures, or with temporal data originated by a simulation code whose time step
evolves accordingly with the convergence impositions of the numerical solver. Naturally,
the representation of the underlying functional process is still a matter of discussion. It
does not only depend on the spacing of each point in the time grid but also other notions
such as the density of data. This quantity can differ by several orders of magnitude in
the case of numerical simulators depending on the restrictions imposed to time steps to
guarantee the convergence, the presence or not of random noise, etc. For a more profound
analysis on the importance of these subjects, the reader can refer to [18].

This paper focuses on a functional outlier detection technique, which is an unsuper-
vised problem, showing its sensitivity to both magnitude and shape outliers and its ranking
capabilities. The importance of this work is closely related to the data quality domain, since
the presence of anomalous behaviors that might have been originated by measurement
errors, non-convergence of algorithms or the existence of non-physical values of numerical
simulators may produce spurious results when treating a dataset. As explained in [19],
when the underlying process that creates the data behaves unusually, it results in the creation
of outliers. Therefore, it may contain useful information about abnormal characteristics of the
system. Finally, the particularities of functional data treatment with respect to multivariate
ones require specific tools to have acceptable detection capabilities [20].

The functional outlier detection domain has gained relevance in recent years, and the
methods for detecting these outliers do not cease to improve. However, the techniques
can differ significantly between them. Many of them rely on the notion of statistical
depth [9,21,22] or other measures (e.g., entropy [23]). In contrast, others rely on other
dimensionality reduction methods, clustering, or hypothesis testing on the coefficients of
some functional decomposition [24], as well as graphical tools [25]. A simulation study
comparing depth measurements to detect functional outliers can be found in [26]. Naturally,
all these techniques showcase different detection capabilities, and they can be more adapted
to the detection of a particular type of outliers.
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In our study, we consider that the data correspond to independent and identically
distributed (i.i.d.) realizations of a random process Z, taking its values in a functional space
F . In practice, any realization zi of the random variable Z can only be observed in a limited
number of points in the domain, i.e., it is observed as the random vector (zi(t1), ..., zi(tp)),
with {t1, ..., tp} ∈ T ⊂ R. This data representation is not itself appropriate to the detection
of outlying functions. Section 2 thus presents how to define and compute a modeling of
data dedicated to the characterization of outliers, using Gaussian Mixture Models (GMM).
The introduction of the measures and methods will be found in the Supplementary Material
of this paper. Based on this data representation, Section 3 presents our functional outlier
detection methodology. Sections 4 and 5 provide some analytical and industrial application
examples. The Supplementary Material of this paper also contains complementary numeri-
cal tests. The properties, capabilities and limitations of the methodology are discussed in
Section 6.

2. Adapting Gaussian Mixture Models for Outlier Detection

As mentioned in the introduction, functional data are elements of a functional space,
typically functions defined on a continuous interval of R. Measuring, storing and analyzing
these data is however realized using numerical devices and computers, and hence impose
a digital representation of data. For this reason, the value of functions is available only on
a finite-dimensional sub-domain of their theoretical definition domain, i.e., in a discretized
version. When dealing with time-dependent physical quantities, this discretization basi-
cally consists of a projection on a time grid which can be regular or not. To achieve an
efficient detection of outlying functions, a transformation of the dataset is required, which
brings out the features of the data that discriminate outlying ones from the rest of the set.

The use of probabilistic models in lower-dimensional feature spaces is useful to
detect anomalous points assuming that they provide a good fit for the data and are able
of capturing the central trend of the data. In this context, the use of Gaussian Mixture
Models (GMM) is a common approach [20], since they can provide a good fit to the data
if the number of components is not fixed, while providing an estimate of the generative
probability of each point according to the model. However, their basic use suffers from
well-known spurious effects in the outlier detection domain [19]. The main problems are:

• If the probabilistic model is adjusted including the potential outliers, they may bias
the estimation of the underlying model. This is especially problematic if the outliers
are assumed to be generated by a different distribution than the other data and are
not only considered to be extreme realizations of the same underlying process as the
others. On top of that, if the sample presents a high degree of contamination or the
sample is small, this bias can greatly influence the detection.

• If the multivariate sample can be classified in several different clusters but they number
of components is not well-chosen, the possibility of overfitting the probabilistic model
to the data becomes a real problem. In this case, some small-sized clusters may appear
overly adjusted to the outliers, which will not be identified as such.

These reasons motivate the modifications of the Expectation Maximization (EM)
algorithm used in order to fit the GMM to the sample of data in the considered feature
space, S ⊂ RR, with U = {ur}R

r=1 being the set of features such that ∀ur ∈ U , ur : F 7→ R.
The objective is to generate a probabilistic model appropriate for outlier detection.

Let {z1, ..., zi, ..., zn} be an i.i.d. sample of functional data, with {u1, ..., ui..., un} being
the set of associated features for each curve (for clarity, ui = (u1(zi), ..., ur(zi), ..., uR(zi))),
the objective is the estimation of the set of parameters of the GMM {ω, µk, Σk}K

k=1. This
optimization problem is usually solved by maximum likelihood estimation via the EM
algorithm [27]. The form of the problem is:

max
ω∈RK ,{µk ,Σk}K

k=1

n

∑
i=1

log
( K

∑
k=1

fk(ui; µk, Σk)
)

. (1)
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This well-known algorithm consists of maximizing the log-likelihood function of the
Gaussian mixture when a certain amount of binary latent variables g such that gk ∈ {0, 1}
and ∑K

k=1 gk = 1, and which allow the representation of the corresponding kth gaus-
sian component that is considered each time. This way, the conditional distribution of
p(u|gk = 1) = fk(u|µk, Σk) and p(u) = ∑K

k=1 ωk fk(u|µk, Σk). The last element required for
the estimation of the GMM parameters in each step are the conditional probabilities of g
given u (usually called responsibility that component k takes in explaining the observation).
Their values are:

γ(gk) = p(gk = 1|u) = p(gk = 1)p(u|gk = 1)

∑K
j=1 p(gj = 1)p(u|gj = 1)

=
ωk fk(u|µk, Σk)

∑K
j=1 ωj fk(u|µj, Σj)

. (2)

The estimation of the parameters is then performed in the following steps:

1. Initialize the values of the desired parameters {ωk, µk, Σk}K
k=1,

2. E-step: Evaluate the current responsibilities with the previous parameter values,
3. M-step: Re-estimate the parameters using the responsibilities,
4. Evaluate the log-likelihood function presented in Equation (1).

The modifications of the algorithm consist of iteratively check and reinitialize the
estimated parameters during the procedure to detect the undesired and spurious effects by
adding two steps after the estimation of the likelihood function:

1. Check if ui = µk for any k ∈ {1, ..., K}. The appearance of these singularities may
maximize the log-likelihood function to infinity, since it is unbounded, and cause an
overfitting of the data to isolated points. This phenomenon is well described in [28].
If this kind of anomaly is detected, the point is subtracted from the sample and the
EM algorithm continues without it. Naturally, these points will be subject to close
analysis since they are good candidates for potential outliers in the sample.

2. For each iteration step, ωk can be viewed as the prior probability of gk = 1, and γ(gk)
can be seen as the posterior probability given the observed sample. If this posterior
probability is considered too low (in our applications we shall take a value of 0.1 as the
minimum weight of the mixing coefficients), we will consider that the corresponding
component is either overfitting the data, or that it has detected a small subset of
points which is not representative of the central trend of the data. In this case, the
other calculated parameters of the components are kept and the values of means and
covariances of the small cluster are reinitialized to a random value in the space.

These modifications allow for the GMM that is fitted to the sample in the feature space
to stay general, and provide good candidates of outliers during the construction of the
model, all of that while avoiding overfitting.

3. Outlier Detection
3.1. Test for Outlyingness

Thanks to these elements, we can construct a hypothesis test by making use of the
components of the GMM adjusted model. This way, for any ui ∈ RR:

H0 : ui has been generated by fk with probability at least pαk

H1 : ui is an outlier.
(3)

Under H0, p(ui|gk = 1) > pαk, where pαk = fk(uα|µk, Σk) such that P(uα|gk = 1) ≥ α.
The set of data points less likely than uα is composed by points u ∈ S ⊂ RR which verify:

(u− µk)
TΣ−1(u− µk) ≥ (uα − µk)

TΣ−1(uα − µk). (4)

And therefore, P[(u − µk)
TΣ−1(u − µk) ≥ (uα − µk)

TΣ−1(uα − µk)] = 1 − P[L ≤
(uα − µk)

TΣ−1(uα − µk)], where L follows a Chi-squared distribution, L ∼ χ2(k). By
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performing this test over all the points considered in the feature space, we obtain a unique
criterion for outlier detection, such that the outlying points will be the ones presenting
p-values under a certain threshold α, ∀ fk.

3.2. Ordering Score in the Feature Space

Once all the parameters are fixed at their estimated values, it is possible to quantify the
extremal behavior of any point in the considered multivariate space through the notion of
Level Set [29]. Formally, given an absolutely continuous probability measure ν with density
p, the Minimum Level Set Dθ is the set of minimal volume (according to the Lebesgue
measure) whose measure is θ:

Dθ = argmin
D⊂RR ,ν(D)≥θ

λ(D) (5)

where λ is the Lebesgue measure in RR. Due to the concave downward nature of the
GMM [30], the set D is unique and ν(Dθ) = θ. This way, a probabilistic score of outlying-
ness for functional data can be obtained via the probability mass retained in the associated
Level Set of each functional datum zi:

θ̂i =
∫
RR

p̂(u)1{ p̂(u)≥ p̂(ui)}d
Ru (6)

where 1 is an indicator function, and p̂ is the adjusted probability density function of the
GMM with the estimated parameters:

p̂(u; ω, µ̂k, Σ̂k) =
K

∑
k=1

ω̂k
1

2π
√
|Σ̂k|

exp
(
− 1

2
(u− µ̂k)

TΣ̂−1
k (u− µ̂k)

)
. (7)

This integral must be solved by numerical methods. For R = 1, 2, there exists efficient
software able to solve it, whereas several algorithms based on the Cholesky decomposition
have been developed for the higher-dimensional cases [31]. In the applications presented
here we will limit ourselves to two components, orienting each one of them to magnitude
or shape outlier detection.

The above presented level set notion gives an unambiguous way of defining to what
extend an observation is unlikely to be observed when assuming it was generated in
accordance with the same probability law as the rest of the dataset. The GMM provides in
turn the required underlying probabilistic model allowing this definition. With the resulting
outlyingness scores θi, we have now available a properly constructed quantification tool
for the degree of outlyingness of an observation. We can thus use common statistical
approaches to implement an outlier detection procedure, such as considering the occurrence
probability of a data point is too small when θi < α, where α is a significance level.

Finally, let us consider the more realistic case where the availability of data is actually
limited, and the sample of functional data is too small to generate the GMM with an
acceptable level of reliability (the global convergence of the EM algorithm is not necessarily
reached).This is for instance the case for expensive industrial simulation codes, such as
mechanical or thermal-hydraulic simulators. In this case, a natural extension of this idea
for outlier detection can be implemented via bootstrap resampling, [32]. B groups are
formed by successively drawn with replacement in the original sample. This way, the
absence of data can be mitigated through the re-estimation of the GMM for each bootstrap
group. If for B bootstrap groups pb(u) represents the GMM of the bth group, the form of
the (bootstrap) estimator of outlyingness would then be:

θ̂i =
∫
RR

1
B

B

∑
b=1

p̂b(u)1{ p̂b(u)≥ p̂b(ui)}.d
Ru (8)



Appl. Sci. 2021, 11, 11475 6 of 19

Throughout this reasoning, the hyperparameter K (the number of components of the
mixture model) has been supposed to be fixed, but in practice, this is yet another input
parameter of the GMM that must be provided a priori to the EM algorithm. Indeed, the
actual form of the model is significantly different depending on the number of components
that are considered. If that is the case, the use of an oversimplified mixture when modeling
complex multivariate distributions can induce incorrect conclusions about the distribution
of data, whereas an unnecessary increase in the number of components may lead to
overfitting problems, unacceptable computational costs or imprecise conclusions.

This issue can be treated as a model-selection problem, and several metrics are avail-
able to estimate an appropriate number of components depending on the sample. Some
examples are the Bayesian Information Criterion (BIC) [33] or the Integrated Completed
Likelihood [34]. In this paper, the selection of the number of components is performed by
means of the Bayesian Information Criterion:

BIC = 2 log(l̂)− k log(n) (9)

where l̂ represents the log-likelihood function for the GMM, k is the chosen number of
components and n is the sample size used for the estimation. The second term introduces a
penalty which depends on the number of components to mitigate overfitting effects.

3.3. Proposed Detection Algorithm

The practical implementation of the detection algorithm is presented below, and
several clarifications will be made. First, the approach does not include a projection of the
considered functional data onto a functional expansion to homogenize the dataset. This
preliminary step may be important in applications with heterogeneous time grids, if the
data are observed with noise etc. Here, it will be supposed that the domain of the data is
already uniform. Furthermore, this kind of projections are not necessary most times when
estimating non-parametric features, such as L2 norms.

Secondly, it is important to note that in the ideal case, the estimation of the GMM
should be made based on a non-contaminated dataset, i.e., without outliers. These existent
outliers should be separated before the estimation if the objective is to model the joint
distribution of the desired features to avoid the introduction of a non-controlled bias.
However, this knowledge is not available a priori, which justifies the trimming procedure
of Algorithm 1. It is worth mentioning the iterative step. Even though it is not explicitly
noted, the K components that are retained depend on the chosen sample for each bootstrap
group. The task of reestimating the parameters for each GMM to optimize the number of
components is not computationally expensive for small values of K, which is appropriate
for datasets that do not present a high degree of multimodality and to avoid overfitting the
data. In our simulations, Kmax = 10.

Another important remark on the algorithm is the extraction step, where the most
outlying functions on the set according to the θ̂i are separated from the original dataset,
and the procedure is re-applied to the remaining functions until a desired homogeneity
level is reached. Naturally, in the case where many samples are available, some extreme
data realizations are bound to appear. Therefore, regardless of the chosen value for α,
these significant data might be separated from the set even though they do not actually
contaminate the set since, although unlikely, these data appear due to the nature of the
underlying generative process. Separating (trimming) all these data may introduce a bias
in the estimation of the successive GMM. This is a known problem in the outlier detection
domain. An example for the functional data case can be found in [9].
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Algorithm 1: FOD algorithm
Result: Set of outlyingness scores {θi}n

i=1, and set of outliers o ⊂ {zi}n
i=1

1. Check if the sample of functional data is uniformly sampled. Otherwise, Project
the data onto a basis of F until a desired level of error ||ẑi − zi|| (with ẑi being
the projected samples on the basis) is reached. Uniformly resample in this grid;

2. Choose a family of R feature functions and project {zi}n
i=1 onto the feature

space S ⊂ RR;
3. for K ∈ {1, ..., Kmax} do

1. Choose (manually or randomly) a starting set of parameters
νold = {µold

k , Σold
k , wold

k }
K
k=1;

2. E-step. Evaluate the corresponding responsibilities γ(gk) for each given
point ui ∈ {ui}n

i=1;
3. M-step. Re-estimate the parameters through:

µnew
k =

1
nk

n

∑
i=1

γ(gk)ui

Σnew
k =

1
nk

n

∑
i=1

γ(gk)(ui − µnew
k )(ui − µnew

k )

wnew
k =

nk
n

where nk represents the number of observations assigned to the kth
Gaussian in the mixture, i.e., nk = ∑K

k=1 γ(gk);
4. Check ||ui − µk||L2 < ε, ε = inf

S
||ui − uj||L2 , ∀i, j ∈ {1, ..., n} × {1, ..., n};

5. For the given level α, check wk < α, ∀k ∈ {1, ..., K}
6. Check for convergence through the likelihood function;
7. BICK = BIC( p̂K). With p̂K being the estimated GMM model

with K components;

end
4. Set K = min({BICK}Kmax

K=1 );
5. For a level α, test H0, H1 ∀ui ∈ {ui}n

i=1. Obtain o;
6. Estimate

θ̂i =
∫
RR

1
B

B

∑
b=1

p̂b(u)1{ p̂b(u)≥ p̂b(ui)}d
Ru, θi∀i ∈ {1, ..., n}

4. Analytical Test Cases

Following [35–37] the detection capabilities of the algorithm can be assessed via
controlled simulation examples. Such simulations make it possible to check whether a
method succeeds in recognizing different kinds of outliers, when these are purposefully
inserted in the dataset. Thus, inserted outliers are constructed to mimic typical outlying
data engineers are facing in their daily practice. Some common notations for the analytical
models are summarized in Table 1.

Table 1. Description of the common parameters of the models.

Notation Description

G(t) Centered Gaussian process of covariance function Σ(t1, t2) = 0.3 exp −|t1−t2|
0.3

Z(t) Functional random variable generating the main model
Z0 Functional random variable generating the outliers
TI Random point uniformly generated in the definition domain of the function
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4.1. Numerical Test Protocol

In all the simulation experiments, there will be a total number of n = 50 curves, 49
of which are generated by a reference model, and one is the contaminating outlier. The
functions are defined in the interval [0, 1], with a grid of 30 equally spaced points and
B = 10 bootstrap groups. Using the previous notation for the DTW algorithm, V = W = 30
points. The description of the models for these control simulation tests is as follows:

• Model 1. Z(t) = 4t + G(t) is the function generator for the reference set of curves. In
this case, the outliers follow the distribution Zo(t) = 4t + G(t) + 21{(tI<t)}.

• Model 2. The reference model for the curve generation remains Z(t) = 4t + G(t),
whereas the outliers are now generated from the distribution Zo(t) = 4t + G(t) +
21{(tI<t<tI+3)}.

• Model 3. Here the reference model becomes Z(t) = 30t(1− t)3/2 + G(t). The outliers
are generated from Zo(t) = 30(1− t)t3/2 + G(t).

• Model 4. For this last case, we keep the reference model as it is for Model 1 and
Model 2, but the outliers simply consist of the sole deterministic part Zo(t) = 4t (the
Gaussian component is removed).

Similar models to 1 and 2 can be found in [35–37], although the multiplicative factor
of the indicator function has been reduced to make the outliers less apparent. Model 3
was also considered in [25,35]. The fourth model was developed here to test the detection
capabilities of pure shape outliers. These models (see Figure 1) or similar ones have already
been tested with existing methodologies, and they were therefore included here to facilitate
the comparability with other detection methods.
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(d) Model 4

Figure 1. Examples of the four analytical test cases. The blue curves correspond to the 49 ones that
are generated from the main model, whereas the red one corresponds to the outlier.

In all cases, a bivariate Gaussian mixture model is adjusted to a pair of selected
features and the outlier detection procedure is applied thereafter. Four commonly used
features in the functional data analysis framework will be considered:

• The modified band depth (BD) (see Equation (3) of the Supplementary Material),
• The h-mode depth (see Equation (4) of the Supplementary Material),
• The dynamic time warping (see Equation (7) of the Supplementary Material),
• The L2 norm, which is one of the most intuitive and widely used metrics that can be

applied to functional data. It takes the form: ||z(t)||2 =
( ∫

R |z(t)|
2dt
)1/2

.
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The detection procedure is applied to N = 100 replications of each model. We shall use
two scores to evaluate the quality of the detection procedure. The first one will naturally
be the estimated θ values of the outlier in each model and replication. This parameter is
directly linked to the probability of being more anomalous than the outliers if the model is
correct. Therefore, the distribution of values of θi, ∀i ∈ {1, ..., n} constitutes an indicator of
the detected outlying nature of the function.

The second score is the average ranking of the outlier with respect to the total pop-
ulation of data. Since the θi score provides an ordering of the anomalous nature of each
element in the set of curves, so it is possible to rank the data accordingly to said metric. In
industrial applications, this ranking can be followed by the engineer to analyze particular
data (e.g., numerical simulations) from the most suspicious (potentially interesting) datum
to less suspicious ones.

Several tests evaluating the performance of the different couples of measures can be
found in the supplementary material of the paper. In particular, it can be seen that the use
of the h-mode depth and the DTW seem appropriate for the detection of the considered
types of outliers.

The use of the h-mode depth allows the detection of magnitude outliers taking into
account the areas of the (t, f (t)) plane where the density of curves is less significant. This
feature is useful since it allows the avoidance of problems derived from the consideration
of multimodal distributions that may present several regions of high density and mask this
type of outliers, a case which is not usually considered in the literature. Furthermore, the
use of the normalized averaged version of the DTW that is considered in the paper allows
the specific targeting of shape outliers. Its use allows the comparison of the functional data
based on a pairwise comparison that only takes into account differences in shape, while
being sensitive to shifts in the t-axis. In any case, their use has been tested against other
similarity and depth measures, showcasing how the combination of these two measures
provides the best identification grounds for outlier detection, both regarding the detection
rates and the robustness.

Finally, we note that there exist similarities between the method presented here and
in [23], but with significant differences. First, in the construction of the model, our paper
proposes modifications to the EM algorithm in order to solve some of the main difficulties
in the use of probabilistic models for outlier detection. Secondly, the measures selected
in the algorithm presented in our paper allow for a certain explainability of why specific
samples have been identified as outliers of shape, magnitude, or a mixture of both, which
was also one of the main objectives. Lastly, the algorithm presented in our paper also
aims at providing an order of outlyingness of the functional data, without necessarily
labeling them as outliers. This outlyingness score aims at being used in domains where
a quantitative score is more useful, such as in the sensitivity analysis one. An industrial
example is provided in Section 5.

4.2. Comparison with State-of-the-Art Methodologies

The detection algorithm for the selected combination of features is performed to compare
it to other detection methods. The selected methodologies are succinctly presented below.

4.2.1. Functional Boxplots

Given a sample of functional data z defined in a time domain T indexed by the
variable t, the 50% central region can be defined as:

C0.5 =
{
(t, z(t)) : min

r=1,...,n/2
zr(t) ≤ z(t) ≤ max

r=1,...,n/2
zr(t)

}
. (10)

This region can be interpreted as an analogous of the inter-quartile range for functional
data, and it effectively corresponds to it pointwise. The whiskers of the functional boxplot
can be computed by extending 1.5 times the pointwise extremes of the central region, such
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that the outliers are detected if they surpass the frontiers defined by these whiskers. The
in-depth analysis of this method can be found in [38].

4.2.2. High-Density Regions

Introduced by [39], the method consists of regrouping the values of the functional data
in the considered time steps in a matrix and performing the Karhunen-Loève decomposi-
tion, obtaining the corresponding coefficients in a lower-dimensional feature space where
the density of the components is estimated via kernel density estimation. This way, the

High-Density Regions (HDR) can be defined as the regions such that:
{

u : f (u) ≥ fα

}
, and

will correspond to the region with highest probability density function with a cumulative
probability of 1− α, which can impose a detection criterion.

4.2.3. Directional Detector

As described in [40], let X be a stochastic process, X : T → Rp, the Functional
Directional Outlyingness is defined as:

FO(X, FX)
∫
T
||O(X(t), FX(t)||2w(t)dt (11)

where w(t) is a weight function. This magnitude can be decomposed into two components,
the Mean Directional Outlyingness (MO) and the Variation of Directional Outlyingness
(VO). The detection algorithm is based on these quantities and the selection of cutoff values
for inferred Mahalanobis distances based on standard boxplots.

4.2.4. Sequential Transformations

This algorithm from [35] relies on the transformation of a wide diversity of shape
outliers into magnitude outliers, much easier to detect through standard procedures. Given
a sequence of operators defined in F (the functional space that generates the considered
data) {Gk}, k = 0, 1, 2, ... , the method consists of sorting the raw and transformed data
into vectors of ranks for each observation. The vectors of ranks are sorted according to a
one-side depth notion, such as the extreme rank depth for instance, and a global envelope is
constructed, which allows the outlier identification.

4.2.5. Results

The results of the application of the algorithm are given for the previously used 4 models
and different degrees of contamination. The experiments were simulated 500 times for a
sample of curves of N = 100, and three different degrees of contamination of outlying
curves: 1%, 5% and 10% of outliers in the sample. The detection rates are summarized in
Table 2.

First, we must note that the identification capabilities and rates are clearly reduced
when the size of the outlying sample is increased. This reduction of the performance of any
detection algorithm is logical, since higher degrees of contamination naturally pollute the
functional sample, which increases the bias of the score that is used for outlier detection. In
the same line, if the size of the outlying sample is considerable (10% of outliers for instance),
an argument can be made to defend that this sample might not be outlying, and that it
simply corresponds to another mode in a hypothetical multimodal functional sample. This
kind of phenomenon, as well as masking effects, are described in detail in [19].

Looking at the results, we can appreciate that the performance of the proposed algo-
rithm is indeed competitive and on par with existent methods, even for complex sets of
functional data, such as Model 4. In this case, we can clearly appreciate how the inclusion of
a measure specifically dedicated to the detection of shape differences allows the consistent
detection of the outlier. This capability is especially significant when we compare it with
the other methods, which prove to be unable to detect this kind of shape outlier. In the
case of the widely used Functional Boxplots, this is to be expected since they are intended
to detect magnitude outliers. Regarding the HDR method, its low detection capabilities
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in this case are due to the fact that the low-dimensional representation through robust
Functional Principal Component Analysis is not sufficiently precise to capture the outlying
nature of the straight line. It is indeed possible that retaining a higher number of modes in
this case could allow better detection capabilities, but this procedure greatly increases the
curse of dimensionality problem (even if this subject is not treated in the paper by [39]),
and it does not allow visualization purposes.

Table 2. Performance of the different algorithms on the test models. The results are expressed
as a percentage (detection rates). DO: Directional Detector; FB: Functional Boxplots; HDR: High-
Density Regions. The values given in bold correspond to the best results for each model.

N = 100, p = 1% Model 1 Model 2 Model 3 Model 4

Algorithm 100.00 96.94 100.00 100.00

DO 59.26 39.51 100.00 0.00

FB 2.33 0.00 100.00 0.00

HDR 89.47 69.64 100.00 0.00

N = 100, p = 5%

Algorithm 91.14 96.79 99.17 97.50

DO 58.23 54.40 100.00 0.00

FB 2.53 4.18 11.95 0.00

HDR 48.35 44.8 49.48 0.00

N = 100, p = 10%

Algorithm 81.50 75.49 86.67 92.37

DO 47.25 45.97 99.63 0.00

FB 0.75 1.71 7.41 0.00

HDR 22.25 23.41 14.07 0.00

It is clear that Model 3 (being the only pure magnitude outlier among the considered
models) is the most simple and easy to detect and virtually any method can consistently
detect this kind of outlier when the sample is not overly polluted. Methods which rely the
most on the density of curves in the functional space and their trends is more vulnerable
to the bias induced in the sample by the curves, as they tend to identify the proportion
of curves that behave unusually as belonging to a different mode of curves instead of
genuine outliers. In the case of the functional boxplots, this is to be expected since by
construction they are dedicated to the detection of magnitude outliers, which is useful if
the contamination of the sample is made by a wide variety of magnitude outliers, but not
so much if those outliers have all been generated by a homogeneous family of curves. In
the case of the HDR plots, the existence of a homogeneous sample of outliers generates a
set of points in their two-dimensional feature space of principal component scores with a
high density of data.

In Models 1 and 2 the conclusions are similar (both models present a combination of
slight magnitude and shape outliers). Most methods do not showcase any robustness for
such slight magnitude outliers, contrary to the presented algorithm. The main conclusion
that can be extracted from these tests is that most methods struggle to find outliers when
they are not apparent, as is the case of the models presented here.

Finally, it must be mentioned that the Directional Detector is the most robust method
when it comes to detecting the pure magnitude outlier presented in Model 3, as is the least
sensitive method to more contaminated samples. The main advantage of this methodology
is its capability of finding outliers in multivariate functional data sets.
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4.3. Ranking Results

Finally, another advantage of the methodology presented in this paper is the ability to
provide a scalar ranking criterion (θi ∈ [0, 1], ∀i ∈ {1, ..., n}) for a sample of functional data.
This is not only useful from a clustering or outlying detection perspective, but also from an
exploratory analysis one. In particular, this kind of score can be used to perform sensitivity
analysis on the functional data (see an example in Section 5).

Depth measures are widely used in this setting, but some advanced techniques that
have developed in recent years, such as the method presented in Section 4.2.4, which
provides an efficient ordering of the data. Naturally, as it happened in the outlier detection
setting, a good order measure should be capable of identifying a potential multimodality
in the set of data, as well as handling the existence of magnitude, shape, or mixed outliers.

The ranking experiments are the same ones as the ones performed for outlier detection
testing, with one outlier in the sample of 100 curves. The results are presented in Table 3.

Table 3. Average ranking of the outlier curve across the 100 replications of the experiments for the
selected models. The Sequential transformations procedure is presented in [35]. The Modified Band
Depth is presented in [36], and the standard Integrated Depth appears in [41]. In this case, the closer the
value of a method is to 100, the more outlying it will be according to the corresponding ranking measure.

N = 100, p = 1% Model 1 Model 2 Model 3 Model 4

Algorithm 98.36 97.80 99.57 93.06
Sequential Transformations 98.14 97.34 99.97 99.88

Modified Band Depth 84.00 61.39 98.49 1
Integrated Depth 83.15 59.81 98.42 1

In this case, we can appreciate that more advanced ranking methods such as the one
presented here and the one presented in [35] provide a consistent ordering of the functional
data. The results provided by these up-to-date methods show that for the sample of
100 curves, the introduced outlier is always found to belong to the 5% more outlying curves
of the sample, and is frequently found to be the most outlying in simpler cases such as
Model 3. Usual ranking techniques for functional data such as depth definitions fail to
clearly identify the more outlying nature of the outlier in the sample, and cannot be reliably
used as order measures in such homogeneous packages of univariate curves.

Finally, we can mention that the better ranking results provided by the Sequential
Transformations algorithm for Model 4 with respect to the method presented in this paper
can be explained due to the nature of the chosen transformations. In particular, the use
of what they call D1 transformation in their paper, which consists of taking the first-

order derivative of the functional data (in their notation, Dl [X(t)] = d(l)X(t)
dtl ), is obviously

appropriate in the case of Model 4, where the pure shape outlier differs mainly by the
values of derivatives. This means that its superior ranking capabilities for this specific
model cannot be generalized for any type of shape outlier, and both methods provide
comparable ranking results.

5. Industrial Test-Case Study
5.1. Presentation

In this section, the outlier detection methodology is applied to a real industrial dataset
of time-dependent numerical simulations. We consider an Intermediate Break Loss of
Coolant Accident (commonly called IBLOCA or simply LOCA) in a nuclear power plant,
simulated with the CATHARE2 code. CATHARE2 is a best estimate computer code capable
of recreating the main physical phenomena that may occur in the different systems involved
in nuclear reactors, in particular in the 900 MW French Pressurized Water Reactors. It
embeds two-phase modeling to calculate the thermal-hydraulic behavior of the coolant
fluid in the reactor.
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A LOCA accident is originated by a breach in the primary circuit, which is designed
to evacuate the heat generated by the nuclear core. The sudden loss of large quantities
of coolant implies a fast increase of the water temperature nearby the nuclear fuel rods,
due to the residual power generated by the core during the accidental transient. This
power discharge and the subsequent temperature elevation must be compensated by the
injection of water through a dedicated safety system. This is supposed to ensure that
fuel rods temperature would remain below the fusion point at all times. Hence, the main
safety criterion in LOCA regarding the confinement of the fuel concerns its Peak Cladding
Temperature (PCT), i.e., its maximum cladding temperature over the duration of the LOCA
(here, the time-dependent cladding temperature is the maximum cladding temperature for
all the fuel rods, whatever its localization in the core).

The particular statistical model under study involves many scalar input parameters
(p = 97), which specify all sorts of physical phenomena whose relative influences in the PCT
are difficult to assess a priori. These input variables can be classified into various categories,
such as (i) initial conditions and limit states for the system (Primary pressure, starting
thermal power, the primary pumps inertia...), (ii) some parameters of specific physical
models and correlations that are used (thermal exchanges between the components, friction
between fluid phases or some geometric parameters of the installation), as well as (iii) some
scenario variables (existence of blockages in the heat exchangers, fuel use in its life-cycle or
initial temperature of the safety water injection).

All of these scalar inputs of the simulation code are uncertain, and are hence represented
by the random vector X = (X1, X2, ..., X97), whereas the output of interest would be Y,
which is normally a critical safety parameter in this case, such as the aforementioned PCT.

The total number of simulations that can be performed is relatively limited for such a
high-dimensional input vector, since each run of the code takes around one hour to finish.
For this reason, the use of classical multivariate statistical techniques is not straightforward.
This explains the widely spread use of space-filling design methods to maximize the
coverage of the input space [42], as well as metamodeling techniques to better exploit
the number of code runs available for the physical model. Briefly explained, space-filling
designs try to optimally explore the space of input variables i.e., they establish criteria to
better choose the analyzed points of this high-dimensional space (in the case of nuclear
transients, there can easily exist more than a hundred input variables). In the case of
metamodels, they are mathematical approximations of more complex physical models that,
despite showing a higher precision in their calculations, take a much higher computation
time. The use of metamodels helps to improve (increase) the total number of available
simulations, so that the results that are finally obtained are more statistically relevant.

In this context, the consideration of the whole functional output (the evolution of the
maximum cladding temperature, whatever its location) is expected to provide a better
insight on the physical phenomena that govern in the transient than the scalar value of
the PCT alone.In our case, 1000 Monte Carlo runs of the code were launched, generating
the set of curves that is presented in Figure 2 for the evolution of the maximum cladding
temperature during the transient.

5.2. Functional Outlier Detection

The previously presented outlier detection technique is applied to this set of curves.
Both the h-mode depth and the DTW are the selected features to obtain the degree of
outlyingness of each functional datum. The curves presenting a degree θ̂ of outlyingness
over 95% are shown in Figure 3.

The first apparent result is that the main magnitude outlier is easily detected, since
the curve that acts as the upper envelope of temperature in most points of the domain is
the one presenting the highest value of θ (θ = 1.0 actually in this case). This curve is not
only anomalous in the magnitude sense, but also in the shape one, similar to Model 4 that
was presented in the previous section (these are sometimes called phase outliers).
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Two other magnitude outliers have been identified, and one of them is also a shape
outlier, presenting an anomalous peak of temperature after about 120 s of simulation
(physical time). The final main outlier is a pure shape one, remaining zones with high
density of data during the whole domain of simulation, but presenting two peaks of
temperature. Especially notorious is the first peak, which occurs around the 100 s of
transient, in a time interval that does not match most curves.
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Figure 2. Examples of IBLOCA transients simulated with CATHARE2. Only 40 curves are displayed
for clarity.
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Figure 3. IBLOCA transient curves presenting the highest degree of outlyingness (red) and the least
outlying curve (blue).

5.3. Sensitivity Analysis on Outliers

In this kind of numerical simulations, the detection of outputs that present a globally
anomalous behavior is of critical importance, and characterizing what are the physical
phenomena which have an actual influence on it can have the same importance, if not
more. A way of performing this analysis is to establish some kind of dependence measure
between the inputs of the simulation code and the outlying score θ. However, the high
dimensionality of the problem and the possible correlations between the input variables
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of the code can make this a difficult task. The Hilbert Schmidt Independence Criterion
(HSIC) [43] can be a useful tool in this context to test the dependence between the scalar
input variables of the code and the outlying score. This is a first step to understand
which physical variables are the ones that actually influence the anomalous behavior of the
outputs.

By performing statistical tests on the HSIC values of the couples (Xi, Y) in the design
of experiments it is possible to quantify their dependence. Without going into the technical
details of the procedure (see [44] ), the HSIC represents a dependence measure between
both variables, and can be used to build a statistical test with null hypothesis: H0: the
variable Xi and Y are independent. The hypothesis is rejected if the associated p-value of
the test is inferior to a significance level threshold α. IfH0 is rejected, then the existence of
a dependence structure between the input variable Xi and the output exists.

In this case, we apply this measure to perform a Target Sensitivity Analysis, i.e., sensi-
tivity analysis but quantifying the influence of the considered parameters in a restricted
domainM of the possible output values (M⊂ Θ such thatM = {θ ∈ Θ|θ > 0.9}). This
application to the set of input data and the obtained values of θ yields several influential
variables that are shown in Table 4.

Table 4. Detected influential variables for θ ∈ M. The variables are not the actual values of the
physical parameters, but multiplicative coefficients that increase of decrease their importance in
a scenario.

Variable Description

X16 Friction between the water and the discharge line of the accumulators
X38 Global heat transfer coefficient in reflood fuel/coolant
X45 Pressure drop to model the constrained flow due to the deformation of the fuel
X62 Friction coefficient between steam and water in the downcomer during the reflood phase
X64 Friction coefficient between water and steam in core during the reflood phase
X68 Heat transfer coefficient between steam and water in the downcomer

All these input variables can be considered to have an influence on the outlyingness
of the resulting simulated curve, which represent the evolution of the maximum cladding
temperature during the transient. Variable X16 represents the friction between the injected
water in the primary circuit by the accumulators and the injection line. This parameter
has been found to be influential in other similar studies since the compensation of the
lost water during the transient is mainly guaranteed by this system (the accumulators),
and therefore the line connecting it to the primary is of crucial importance. If this value
of friction increases, the water flow will be reduced, with the consequent increase in the
average temperatures of the fuel.

Regarding variables 38, 45 and 64, they are representative of physical phenomena
occurring in the reactor pressure vessel during the transient. They model respectively: the
heat transfer coefficient between the nuclear fuel and the surrounding coolant; the increase
in pressure drop due to the deformation of the nuclear fuel due to the thermal-mechanical
stress, prevents the coolant from ascending easily to the top of the reactor pressure vessel;
and the friction between the steam and water in the core during the reflood phase of the
transient. These elements are relevant since their evolution greatly influences the rewetting
dynamic of the fuel, and the heat extraction in the short-term phase of the transient.

Finally, variables X62 and X68 are representative of phenomena which occur between
the steam and coolant water in the downcomer (the annular part which links the injection
line of the accumulators and the nuclear core). This element is critical during the reflood
process, which is why increases in the friction between the ascending steam and the
descending water in this element are penalizing from a safety point of view. This is due to
the fact that if the friction coefficient increases, it means that the momentum of the injected
water will be reduced, and the core will take longer to be filled. Similar conclusions can be
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obtained for the heat exchange coefficient between both phases in the downcomer, since
low values for this variable will imply lower heat extraction rates in the vessel.

The study of two-dimensional scatter plots between these input parameters and the
outlying score θ could already prove to be useful to visualize how the inputs affect the
outlying nature of the functional outputs. An example that illustrates the idea is presented
in Figure 4.
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(a) Scatter plot X62 vs θ
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(b) Scatter plot X68 vs θ

Figure 4. Scatter plots of two input variables of CATHARE2 and the outlyingness score θ. The points correspond to the
bivariate plot of the values of the selected variable and the corresponding θ. The red dots correspond to the simulations that
have been retained as outliers.

As it can be seen, outlying transient concentrate around specific subsets of the domain
of the identified influential variables. These plots are useful to evaluate if the physical
values that originate outlying simulations are physically coherent with their expected
influence. In this particular case, for instance, lower values of friction should correspond to
less penalizing and outlying configurations when the safety criterion is the Peak cladding
temperature of the nuclear fuel. Therefore, the observed effect of this variable is actually
not expected, and it corresponds to an anomalous effect in the coding of this particular
transient that was later corrected by the engineers. In other words, the methodology and
the analysis technique was capable of capturing not only extreme effects in the analyzed
physical time-dependent variable (the Maximum Local Cladding temperature), but it
was also capable of finding actual outliers, in the sense that those simulations showcase
non-physical events in the particular modeling used in this study.

6. Discussion and Conclusions

This paper has dealt with a particular branch of unsupervised anomaly detection:
the outlier detection problem in functional data. The main aspects to take into account
when dealing with functional data or high-dimensional objects in general have also been
developed, exposing its main challenges and advantages. A new time-dependent outlier
detection methodology based on the use of non-parametric features has been proposed,
assessed with synthetic data, and illustrated on thermal-hydraulic simulations, aiming at
capturing the outlyingness of the elements of any considered functional dataset both in the
magnitude and the shape senses. This is done via the joint use of the h-mode depth and
the dynamic time warping, and by defining outliers as data which do not belong to the
minimum volume set of a chosen probability. The underlying distribution in the feature
space is modeled through a GMM whose estimation is adapted to the outlier detection
framework by means of modifications of the EM algorithm. The maximal probability for
which a datum is not regarded as an outlier anymore is used as a score θ of its outlyingness.

An original detection algorithm has been proposed, effectively allowing the trimming
of functional data. This methodology, based on the use of two features, benefits from the
notion of level set to treat real industrial problems based on time-dependent data even if
the available data are scarce. Several features have been compared in this framework based
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on some toy examples and two scores related to the outlyingness of functional data. Based
on the results of these application cases, both the notions of dynamic time warping, and
the h-mode depth have proven their efficiency when compared to other features such as
the L2 norm and the Modified Band Depth.

Finally, the analysis of simulations of the thermal-hydraulic behavior of a nuclear
reactor during a Loss Of Coolant Accident has been carried out to illustrate the benefits of
the method. This was achieved thanks to the use of sensitivity analysis tools (HSIC-based)
capable of accounting for the dependence of the input variables of the numerical simulator.

Regarding the perspectives of this work, a primary objective would be the in-depth
quantification of the causes for the detected anomalous characteristics of certain functions
in real physical cases. In the case of numerical simulators, the identification of the inputs of
the code that actually present an influence on the anomalous outputs can help engineers
to detect possible defects of the code or finding physical phenomena of interest. This is
also relevant to ensure the quality of the datasets that are used in the assessment reports of
critical systems such as nuclear power plants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/app112311475/s1, file S1: Functional outlier detection by means of h-mode depth and dynamic
time warping.
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