Numerical Infeasibilities of Nanofibrous Mats Process Design
Abstract
:1. Introduction
2. Theoretical Support
3. Problem Statement
4. Design Challenge
5. Numerical Procedure
6. Simulation Results
7. Discussion
- Negative values of the (real cube root), where violates the Equation (4);
- To the situation, where the value is expressed as the complex number (complex cube root), where violates the Equation (7).
8. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Concentration of the polymer solution (wt %) | |
Electric field (V/m) | |
Terminal fiber diameter (m) | |
Electric current (A) | |
Conductivity of the solution (S/m) | |
Flow rate (m3/s) | |
Applied voltage (V) | |
Spinning distance (tip-to-collector distance) (m) | |
Surface tension (N/m) | |
Permittivity of the outside medium (A2s4/kgm3) | |
Axial length scale (-) |
References
- Li, H.; Chen, X.; Lu, W.; Wang, J.; Xu, Y.; Guo, Y. Application of Electrospinning in Antibacterial Field. Nanomaterials 2021, 11, 1822. [Google Scholar] [CrossRef]
- Hemamalini, T.; Dev, V.R.G. Comprehensive review on electrospinning of starch polymer for biomedical applications. Int. J. Biol. Macromol. 2018, 106, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Uslu, E.; Gavgali, M.; Erdal, M.O.; Yazman, Ş.; Gemi, L. Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study. Mater. Today Commun. 2021, 26, 101939. [Google Scholar] [CrossRef]
- Rogina, A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296, 221–230. [Google Scholar] [CrossRef]
- Dettin, M.; Zamuner, A.; Roso, M.; Gloria, A.; Iucci, G.; Messina, G.M.L.; D’Amora, U.; Marletta, G.; Modesti, M.; Castagliuolo, I.; et al. Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone. PLoS ONE 2015, 10, e0137505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazzolo, B.; Sieni, E.; Zamuner, A.; Roso, M.; Russo, T.; Gloria, A.; Dettin, M.; Conconi, M.T. Breast Cancer Cell Cultures on Electrospun Poly(-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering 2021, 8, 1. [Google Scholar] [CrossRef]
- Bombin, A.D.J.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020, 114, 110994. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Cheng, L.; Zhang, M.; Mao, Y.; Hou, Y.; Qin, W.; Dai, J.; Liu, Y. Comparison and characterization of polyacrylonitrile, polyvinylidene fluoride, and polyvinyl chloride composites functionalized with ferric hydroxide for removing arsenic from water. Environ. Technol. Innov. 2021, 24, 101927. [Google Scholar] [CrossRef]
- Vahabi, H.; Wu, H.; Saeb, M.R.; Koo, J.H.; Ramakrishna, S. Electrospinning for developing flame retardant polymer materials: Current status and future perspectives. Polymer 2021, 217, 123466. [Google Scholar] [CrossRef]
- Kale, S.M.; Kirange, P.M.; Kale, T.V.; Kanu, N.J.; Gupta, E.; Chavan, S.S.; Vates, U.K.; Singh, G.K. Synthesis of ultrathin ZnO, nylon-6,6 and carbon nanofibers using electrospinning method for novel applications. Mater. Today Proc. 2021, 47, 3186–3189. [Google Scholar] [CrossRef]
- Celebioglu, A.; Uyar, T. Cyclodextrin short-nanofibers using sacrificial electrospun polymeric matrix for VOC removal. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Satilmis, B.; Budd, P.M.; Uyar, T. Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. React. Funct. Polym. 2017, 121, 67–75. [Google Scholar] [CrossRef]
- Wang, H.; Ziegler, G.R. Electrospun nanofiber mats from aqueous starch-pullulan dispersions: Optimizing dispersion properties for electrospinning. Int. J. Biol. Macromol. 2019, 133, 1168–1174. [Google Scholar] [CrossRef]
- Biegler, L.T.; Cambell, S.L.; Mehrmann, V. DAEs, Control, and Optimization. In Control and Optimization with Differential-Algebraic Constarints; SIAM: Philadelphia, PA, USA, 2012. [Google Scholar]
- Maurya, A.K.; Narayana, P.L.; Bhavani, A.G.; Jae-Keun, H.; Yeom, J.-T.; Reddy, N.S. Modeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks. J. Electrost. 2020, 104, 103425. [Google Scholar] [CrossRef]
- Šimko, M.; Lukáš, D. Mathematical modeling of a whipping instability of an electrically charged liquid jet. Appl. Math. Model. 2016, 40, 9565–9583. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000, 87, 4531–4547. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.C.; Yang, J.P.; Yu, C.W. Mixed Euler–Lagrange approach to modeling fiber motion in high speed air flow. Appl. Math. Model. 2005, 29, 253–262. [Google Scholar] [CrossRef]
- Akkoyun, S.; Öktem, N. Effect of viscoelasticity in polymer nanofiber electrospinning: Simulation using FENE-CR model. Eng. Sci. Technol. Int. J. 2021, 24, 620–630. [Google Scholar] [CrossRef]
- Fridrikh, S.V.; Yu, J.H.; Brenner, M.P.; Rutledge, G.C. Controlling the Fiber Diameter during Electrospinning. Phys. Rev. Lett. 2003, 90, 144502. [Google Scholar] [CrossRef] [Green Version]
- Ismail, N.; Maksoud, F.J.; Ghaddar, N.; Ghali, K.; Tehrani-Bagha, A. Simplified modeling of the electrospinning process from the stable jet region to the unstable region for predicting the final nanofiber diameter. J. Appl. Polym. Sci. 2016, 133, 44112. [Google Scholar] [CrossRef]
- Ismail, N.; Maksoud, F.J.; Ghaddar, N.; Ghali, K.; Tehrani-Bagha, A. A mathematical model to predict the effect of electrospinning processing parameters on the morphological characteristic of nanofibrous web and associated filtration efficiency. J. Aerosol Sci. 2017, 113, 227–241. [Google Scholar] [CrossRef]
- Drąg, M. Model-Based Fiber Diameter Determination Approach to Fine Particulate Matter Fraction (PM2.5) Removal in HVAC Systems. Appl. Sci. 2021, 11, 1014. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mohammadi, N.; Mehdipour-Ataei, S. On the preparation of thin nanofibers of polysulfone polyelectrolyte for improving conductivity of proton-exchange membranes by electrospinning: Taguchi design, response surface methodology, and genetic algorithm. Int. J. Hydrog. Energy 2020, 45, 34110–34124. [Google Scholar] [CrossRef]
- Sahay, R.; Thavasi, V.; Ramakrishna, S. Design Modifications in Electrospinning Setup for Advanced Applications. J. Nanomater. 2011, 1–17. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005. [Google Scholar]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Wu, Y.-H.; Li, H.-P.; Shi, X.-X.; Wan, J.; Liu, Y.F.; Yu, D.-G. Effective Utilization of the Electrostatic Repulsion for Improved Alignment of Electrospun Nanofibers. J. Nanomater. 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y. Applications of advanced technologies in the development of functional medical textile materials. In Woodhead Publishing Series in Textiles. Medical Textile Materials; Qin, Y., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 55–70. [Google Scholar] [CrossRef]
- Behere, I.; Ingavle, G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. J Biomed Mater Res. 2021, 1–19. [Google Scholar] [CrossRef]
- Lauricella, M.; Pisignano, D.; Succi, S. Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow. J. Phys. Chem. A 2016, 120, 4884–4892. [Google Scholar] [CrossRef] [Green Version]
- Jirsák, J.; Moučka, F.; Nezbeda, I. Insight into Electrospinning via Molecular Simulations. Ind. Eng. Chem. Res. 2014, 53, 8257–8264. [Google Scholar] [CrossRef]
- He, J.H.; Wu, Y.; Zuo, W.-W. Critical length of straight jet in electrospinning. Polymer 2005, 46, 12637–12640. [Google Scholar] [CrossRef]
- Widartiningsih, P.M.; Iskandar, F.; Munir, M.M.; Viridi, S. Predicting jet radius in electrospinning by superpositioning exponential functions. J. Phys. Conf. Ser. 2016, 739, 012097. [Google Scholar] [CrossRef]
- Widartiningsih, P.M.; Iskandar, F.; Munir, M.M.; Viridi, S. The Influence of Solvent Parameters along Terminal Jet Radius and Fiber Diameter in Electrospinning. J. Phys. Conf. Ser. 2020, 1445, 012025. [Google Scholar] [CrossRef]
- Barua, B.; Saha, M.C. Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. J. Appl. Polym. Sci. 2015, 132, 41918. [Google Scholar] [CrossRef]
- Stepanyan, R.; Subbotin, A.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M. Fiber diameter control in electrospinning. Appl. Phys. Lett. 2014, 105, 173105. [Google Scholar] [CrossRef]
- Lei, S.; Quan, Z.; Zhang, H.; Qin, X.; Wang, R.; Yu, J. Stable-jet length controlling electrospun fiber radius: Model and experiment. Polymer 2019, 180, 121762. [Google Scholar] [CrossRef]
- Šušteršič, T.; Liverani, L.; Boccaccini, A.; Savić, S.; Janićijević, A.; Filipović, N. Numerical simulation of electrospinning process in commercial and in-house software PAK. Mater. Res. Express. 2019, 6, 025305. [Google Scholar] [CrossRef]
- Gadkari, S.B. Scaling analysis for electrospinning. SpringerPlus 2014, 3, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferouka, I.; Šušteršič, T.; Živanović, M.; Filipović, N. Mathematical Modelling of Polymer Trajectory During Electrospinning. J. Serb. Soc. Comput. Mech. 2018, 12, 17–38. [Google Scholar] [CrossRef]
- Riboux, G.; Marín, Á.G.; Loscertales, I.G.; Barrero, A. Whipping instability characterization of an electrified visco-capillary jet. J. Fluid Mech. 2011, 671, 226–253. [Google Scholar] [CrossRef]
- Hohman, M.M.; Shin, M.; Rutledge, G.; Brenner, M.P. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 2001, 13, 2201–2220. [Google Scholar] [CrossRef] [Green Version]
- Hohman, M.M.; Shin, M.; Rutledge, G.; Brenner, M.P. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 2001, 13, 2221–2236. [Google Scholar] [CrossRef] [Green Version]
- Beykal, B.; Onel, M.; Onel, O.; Pistikopoulos, E.N. A data-driven optimization algorithm for differential algebraic equations with numerical infeasibilities. AIChE J. 2020, 66, e16657. [Google Scholar] [CrossRef] [PubMed]
- Polking, J.; Arnold, D. Ordinary Differential Equations Using MATLAB, 3rd ed.; Pearson: London, UK, 2004. [Google Scholar]
- Acklam, P.J. Nthroot Function, 1984–2016; The MathWorks, Inc.: Natick, MA, USA, 2019. [Google Scholar]
Solution Concentration (wt %) | Flow Rate (mL/h) | Tip-to-Collector Distance (cm) | Applied Voltage (kV) |
---|---|---|---|
8 | 1.6 | 15 | 16 |
8 | 1.6 | 15 | 25 |
8 | 1.6 | 15 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drąg, M. Numerical Infeasibilities of Nanofibrous Mats Process Design. Appl. Sci. 2021, 11, 11488. https://doi.org/10.3390/app112311488
Drąg M. Numerical Infeasibilities of Nanofibrous Mats Process Design. Applied Sciences. 2021; 11(23):11488. https://doi.org/10.3390/app112311488
Chicago/Turabian StyleDrąg, Marlena. 2021. "Numerical Infeasibilities of Nanofibrous Mats Process Design" Applied Sciences 11, no. 23: 11488. https://doi.org/10.3390/app112311488
APA StyleDrąg, M. (2021). Numerical Infeasibilities of Nanofibrous Mats Process Design. Applied Sciences, 11(23), 11488. https://doi.org/10.3390/app112311488