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Abstract: Solar irradiance is an available resource that could support electrification in regions that
are low on socio-economic indices. Therefore, it is increasingly important to understand the behavior
of solar irradiance. and data on solar irradiance. Some locations, especially those with a low socio-
economic population, do not have measured solar irradiance data, and if such information exists, it is
not complete. There are different approaches for estimating solar irradiance, from learning models to
empirical models. The latter has the advantage of low computational costs, allowing its wide use. Re-
searchers estimate solar energy resources using information from other meteorological variables, such
as temperature. However, there is no broad analysis of these techniques in tropical and mountainous
environments. Therefore, in order to address this gap, our research analyzes the performance of three
well-known empirical temperature-based models—Hargreaves and Samani, Bristol and Campbell,
and Okundamiya and Nzeako—and proposes a new one for tropical and mountainous environments.
The new empirical technique models daily solar irradiance in some areas better than the other three
models. Statistical error comparison allows us to select the best model for each location and deter-
mines the data imputation model. Hargreaves and Samani’s model had better results in the Pacific
zone with an average RMSE of 936, 195

[
Wh/m2 day

]
, SD of 36, 01%, MAE of 748, 435

[
Wh/m2 day

]
,

and U95 of 1.836, 325
[
Wh/m2 day

]
. The new proposed model showed better results in the Andean

and Amazon zones with an average RMSE of 1.032, 99
[
Wh/m2 day

]
, SD of 34, 455

[
Wh/m2 day

]
,

MAE of 825, 46
[
Wh/m2 day

]
, and U95 of 2.025, 84

[
Wh/m2 day

]
. Another result was the linear

relationship between the new empirical model constants and the altitude of 2500 MASL (mean above
sea level).

Keywords: temperature-based models; data imputation; tropical environment; logistic regression;
Hargreaves and Samani; Bristow and Campbell

1. Introduction

Solar energy is a promising renewable energy source for supplying the growing en-
ergy demand. It has taken decades for solar energy to become economically feasible in
developing countries. Today, the associated cost of harnessing this energy resource is com-
petitive in certain situations, such as rural and isolated electrification. In isolated and rural
areas, low population density discourages investments for expanding electricity transport
systems due to uncertainty in the profits. The state could face such limitations in ensuring
access to electricity services for rural and isolated populations through non-conventional
energy sources, such as solar energy. In developing countries, solar irradiance data are
often unavailable because of the scarcity of weather stations that measure this variable
and the insufficient or incomplete calibration and maintenance of metering equipment [1].
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In some cases, even when open-access databases are available, information gathering is
extensive [2]. Therefore, in recent years, studies analyzing the correlation and methods for
estimating solar insolation have increased. Empirical models incorporate relevant vari-
ables, such as temperature, sunshine, and relative humidity, to estimate solar insolation, as
academic literature shows. The choice of the weather variable to estimate solar irradiance
depends on available information, which is temperature in this case. We selected temper-
ature because variable data were available in the national database, and AWS measured
temperature and solar irradiance simultaneously in the analyzed locations.

1.1. Background

From empirical models to artificial intelligence, researchers develop models to estimate
solar insolation for different time frames. Simplicity, acceptance, adaptability, and low
computational cost are the advantages of empirical models [3]. Empirical models are
usually based on astronomical, geometrical, physical, and meteorological factors [4]. The
meteorological factors include the cloudiness, temperature, and sunshine that describe
the condition of the sky. Of these, cloudiness is the most crucial factor for determining
solar irradiance behavior. The databases record sunshine duration and temperature [5];
consequently, these variables are most widely used to estimate solar insolation [2]. The
implementation of the empirical model depends on data availability and consistency [6].
Given this, the authors of [7] recommend revising the study site’s data simultaneity and
reliability. In this case, all the weather stations recorded temperature data. Therefore,
temperature-based empirical models are a convenient option for estimating global solar
insolation [8].

In 1982, Hargreaves and Samani presented the first temperature-based model for
estimating solar insolation based on daily temperature differences [9]. In 1984, Bristow
and Campbell proposed a temperature-based empirical model that inputs the difference
between daily maximum and minimum temperatures [10]. In 2011, Cheng et al. evaluated
the performance of the temperature-based models in China. They found that support
vector machine models using maximum and minimum temperatures as input and poly-
nomial kernel functions outperform empirical models [11]. In 2014, Li et al. presented
a temperature-based model for China based on the Hargreaves and Samani model [12].
Quansah et al. evaluated temperature-based and sunshine-based empirical models in
Ghana [13], and Dos Santos et al. assessed nine temperature-based models for Brazil [14].
In 2017, Rivero et al. validated Hargreaves and Samani’s model for Mexico [15], while
Jamil and Akhtar compared empirical models for India’s subtropical and humid envi-
ronments [16]. Although several studies analyzed the empirical models’ behavior in
different places globally, there is no similar amount of research analyzing the efficacy of
temperature-based models for tropical and mountainous environments.

1.2. Contribution

To this end, the purpose of this research study was to assess three empirical temperature-
based models—Hargreaves and Samani (HS), Bristow and Campbell (BC), and Okundamiya
and Nzeako (ON)—for their capacity to estimate solar insolation in a tropical and mountainous
environment. Statistical validation determines and compares the performance of the three
models. Additionally, we proposed a new method based on the logistic regression model in
order to estimate daily solar insolation according to daily temperature differences. This new
approach offers an option to estimate daily solar insolations based on the temperature difference
that could improve the estimation of this resource in sites with different latitudes with low
computational costs. The IDEAM’s (Institute of Hydrology, Meteorology and Environmental
Studies, abbreviated IDEAM according to its Spanish translation) Automatic Weather Stations
(AWSs) located in the State of Nariño, Colombia, measured the information used as input. The
three environmental zones of the area, Pacific, Andean, and Amazonian, allowed evaluating the
models in different weather and physiographic conditions. The database was randomly divided
into two parts: the first for calibrating the models and the second for validating the models
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statistically. Before using the empirical models, the data passed a quality control procedure
to improve the reliability of the results. R-CRAN was the software used to carry out the
computational process needed for the research.

1.3. Paper Structure

The article is organized into the following sections: Section 2 describes the materials and
methods used; Section 2.1 describes the characteristics of the dataset; Sections 2.2 and 2.3 outline
the quality control procedures applied to both solar irradiance and temperature data; Section 2.4
presents the empirical temperature-based models; Section 2.3.4 introduces the author’s proposed
model; Section 2.4 assesses the statistical validation of empirical models; Section 3 presents the
results and discussion; and finally, Section 4 presents the conclusions.

2. Materials and Methods
2.1. Site and Dataset

The weather stations located in Nariño, Colombia (00◦31′08′′ N and 02◦41′08′′ N
latitude; 76◦51′19′′ W and 79◦01′34′′ W longitude), measured solar irradiance and tem-
peratures used as input for the empirical models. The proximity to the Equator and the
Intertropical Convergence Zone influences the weather of this place, causing unimodal or
bimodal rainy seasons and increasing cloud cover due to high humidity in low altitudes.
Additionally, the western mountain range is a barrier for the moist air masses from the
Pacific Ocean; thus, the Pacific foothills become more humid and tend to maintain this
humidity [17]. Hence, it is appropriate to divide the weather and orographic conditions of
Nariño into three environmental regions: the Pacific, the Andean, and the Amazon [18].

The Pacific zone covers 52% of the total territory of Nariño, and this zone includes the
Mira-Mataje binational watershed and a mangrove forest located in the Sanquianga natural
reserve. Additionally, the region has two climatic zones: the Pacific flatlands and the Pacific
foothills. The Pacific flatlands have a humidity level higher than 80%, an average tempera-
ture higher than 26 ◦C, and annual precipitation of between 3000 and 5000 mm/year. The
Pacific foothills have high humidity, an average temperature between 18 ◦C and 24 ◦C,
and annual precipitation between 4000 and 6000 mm/year. However, between the Junín
and Barbacoas localities, the annual precipitation is approximately 9000 mm/year [17–19].
The Andean zone constitutes 40% of the total area of Nariño, and in this zone, the Andes
split into two ranges: western and central [17,20]. The western mountain range exhibits
bimodal precipitation behavior between 800 and 2200 mm/year, with peaks in April–May
and October–November. In the central mountain range, the temperatures vary between
16 ◦C to 24 ◦C, and precipitation averages between 1000 to 1800 mm/year. In the north
zone toward Patia, annual precipitation is less than 1000 mm/year, with temperatures
typically above 24 ◦C [19]. The Amazon zone covers 8% of the Nariño territory and has two
climate zones: mountainous and flatland. The mountainous zone is located between the
Patía and Putumayo rivers with temperatures averaging between 6 ◦C and 11 ◦C and annual
precipitation of about 2000 mm/year. The flatland zone has tropical weather influenced by
the cloudy jungle and precipitation between 500 to 1500 mm/year [19].

There are 9 AWSs measuring solar irradiance, 8 located in Nariño and 1 positioned in
the neighboring state of Cauca, and 16 Conventional Weather Stations (CWS) measuring
temperature (see Tables 1 and 2), located as shown in Figure 1. In the Pacific region, there
are three AWSs. The altitude of these AWS ranges between 16 and 512 MASL. In the
Andean region, there are five AWSs located at altitudes between 1005 and 3120 MASL.
Finally, in the Amazon region, there is one AWS at an altitude of 3577 MASL. The maximum
altitude difference between all AWSs is 3561 MASL. This difference allows evaluating solar
irradiance behavior in a wide range of altitudes in the three diverse environmental regions.
We reviewed a study on the same zone that used Landsat 7 (1999–2015), MODIS (2005–2015)
and VAISALA 3TIER (2000–2015) satellite data; however, when comparing the satellite and
ground data, we found a significant difference between them. The satellite data resulted in
a maximum solar irradiance potential of approximately 245 W/m2 day with MODIS and
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Landsat 7 database [21]. In contrast, the ground measurements show a maximum potential
of approximately 3800 W/m2 day. Furthermore, the results of the national Solar Atlas are
closer to our results than satellite ones.

Table 1. Automatic weather stations in Nariño.

Name Latitude Longitude Altitude Period Region

Biotopo 1.41 −78.28 512 2005–2017 Pacific
Altaquer * 1.56 −78.09 101 2013–2014 Pacific
Granja el
Mira 1.55 −78.70 16 2016–2017 Pacific

Cerro
Páramo 0.84 −77.39 3577 2005–2017 Amazon

La Josefina 0.93 −77.48 2449 2005–2017 Andean
Viento Libre 1.62 −77.34 1005 2005–2017 Andean
Universidad
de Nariño 1.23 −77.28 2626 2005–2017 Andean

Botana 1.16 −77.27 2820 2005–2017 Andean
El Paraiso 1.07 −77.63 3120 2005–2017 Andean
Guapi ** 2.57 −77.89 42 2005–2017 Pacific

* This AWS was not used in this study because the measurement period is short for this study. ** This AWS is in
the neighboring state of Cauca.

Table 2. Conventional weather stations in Nariño.

Name Latitude Longitude Altitude Period Region

CCCP del
Pacífico 1.82 −78.73 1 2005–2017 Pacific

Altaquer 1.56 −78.09 1010 2005–2013 Pacific
Granja el
Mira 1.55 −78.69 16 2005–2017 Pacific

Obonuco 1.19 −77.30 2710 2005–2015 Andean
Apto.
Antonio
Nariño

1.39 −77.29 1796 2005–2017 Andean

San Bernardo 1.53 −77.03 2190 2005–2017 Andean
Taminango 1.55 −77.27 1875 2005–2017 Andean
Común el
automática 0.93 −77.63 3141 2007–2017 Andean

Apto. San
Luis 0.86 −77.67 2961 2005–2017 Andean

Bombona 1.18 −77.46 1493 2005–2017 Andean
Tanama 1.37 −77.58 1500 2005–2017 Andean
Sindagua 1.11 −77.39 2800 2005–2017 Andean
Barbacoas 1.67 −78.13 32 2005–2012 Pacific
Monopamba 0.99 −77.15 2719 2006–2016 Amazon
El Encano 1.15 −77.16 2830 2005–2017 Andean
Chimayoy 1.26 −77.28 2745 2005–2014 Andean
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Figure 1. Automatic and conventional weather stations in Nariño. Source: made by the authors with information
from OpenStreetMap.

2.2. Data Quality Control

Data quality control is a procedure intended to improve the reliability of time series
data. The procedure includes the analysis of database structure, the comparison with fixed
and flexible limits, and time consistency. The application of these steps offered reliable
results in studies of weather data quality control in Spain [22]. The quality control proce-
dure followed in the current research study relied on guidelines presented in regulation
UNE500540, which outlines successive analytical procedures of quality control for different
weather variables [23]. The first step consists of checking the database structure, the second
step compares the data with the maximum extraterrestrial solar irradiance, the third step
compares the time series with the maximum and minimum clear-sky global solar irradiance
limits, and the fourth step consists of analyzing changes in global solar irradiance hour
by hour.

2.2.1. Solar Irradiance Data Quality Control

The first step consists of checking database structure. In our case, the data exhibited
the following structure: AWS code, weather variable code, date, hour, and value. This
step only maintains the values with the described structure [15]. For the fixed-range step,
UNE500540 suggests using the most restrictive condition between the measurement device
limit and the physical phenomenon limit. Nariño’s AWS have Kipp & Zonen CMP11
pyranometers with an upper operation limit of 4000 W/m2 [24]. The physical limit is the
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maximum extraterrestrial solar irradiance I0 of each location computed with the following
equation [25]:

I0 = Isc ×
[
1 + 0, 033 ∗ cos

(
360 ∗ D−3

365

)]
∗ sin(β),

sin(β) = cos(ϕ)× cos(δ)× cos(ωs) + sin(ϕ)× sin(δ)

where Isc is the solar constant, D is the Julian day, β is the solar altitude, and δ is the
declination calculated as follows:

δ = 23.45× sin
[

360× (D + 284)
365

]
,

where ϕ is the latitude, and ωs is the hour angle calculated as follows.

ωs = cos−1[− tan(δ) tan(ϕ)].

Therefore, the most restrictive condition is the extraterrestrial solar irradiance [22].
Consequently, I0 ≥ Imt, where Imt is the measured global solar irradiance by a pyranometer
at time t.

For the flexible range test, UNE500540 suggests comparing the time series with the
maximum and minimum values of a validated time series. In this case, there was no time
series previously validated; therefore, we used, as an alternative, the restriction proposed
for Estévez et al. with one modification. Namely, instead of using I0, we used the following
range defined by the clear-sky global solar irradiance: (0.03 ∗ Ics ≤ Imt ≤ Ics) [21]. The
clear-sky global solar irradiance is equal to τ times I0, Ics = I0 ∗ τ, and τ is the atmospheric
transmittance estimated with Kreith and Kreider’s model as follows [25]:

τ = 0.56×
(

e−0,65×m + e−0,095×m
)

where the air mass m is defined as follows.

m =
1

sin(β)

The fourth step consists of analyzing changes in global solar irradiance hour by hour. This
analysis, known as time consistency, follows the restriction |Icst − Icst−1| > |Imt − Imt−1|.
Time consistency is a useful means for detecting data storage and connection troubles in the
datalogger. A high sampling frequency—for instance, every ten minutes—would increase the
effectiveness of the test.

In addition to the tests mentioned above, it is also necessary to consider the zero offset,
which results from thermal imbalances in the pyranometer. This phenomenon occurs
because the sensor does not absorb any measurable irradiance values in the pyranometer’s
spectral range, resulting in erroneous values [24]. It is essential to offset this imbalance
because neglecting it would entail underestimated solar irradiance records between 0.7%
and 4.3%. Several environmental factors influence the measurement process, so it difficult
to correct all measurement instruments in all locations and environments [26]. Although
various approaches to correct the zero-offset adapted to specific environmental conditions
and instruments exist, the current research did not follow such approaches.

2.2.2. Temperature Data Quality Control

We carried out five temperature validation procedures, structure, range, step, con-
sistency, and persistence, based on the recommendations of Estévez et al. and Rivero
et al. The first step consists of verifying the database structure and that of the solar irradi-
ance validation. The range test involves two evaluation methods: the instrumental range
method determined by the ROTRONIC HYGROCLIP 2 RTD PT100 with a temperature
range between −40 ◦C and 60 ◦C and the use of data validation criteria defined by other
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researchers. Rivero et al. recommended a temperature interval between −50 ◦C and
70 ◦C, while Estévez et al. suggested a range of −30 ◦C to 50 ◦C. We followed Estévez
et al.’s recommendation because it is within the temperature range of the sensor. Likewise,
the analysis of the step test, internal consistency test, and persistency test also followed
Estévez et al.’s quality control process because it offered promising data analysis results in
Spain [22,27].

The step test requires the fulfillment of the following requirements: |Th − Th−1| < 4;
|Th − Th−2| < 7; |Th − Th−3| < 9; |Th − Th−6| < 15; and |Th − Th−12| < 25, where Th is
the air temperature measured at time h. Although this evaluation does not consider other
climatology aspects that can affect temperature variation, such as humidity, wind speed,
cloudiness, and precipitation, the authors of this study applied these restrictions. Another
fundamental requirement is that the daily step restriction fulfills the following condition:
Tmax − Tmin < 30 ◦C, where Tmax and Tmin are the maximum and minimum daily tempera-
tures [26]. Internal consistency assesses the accomplishment of the following conditions:
Tmax > Tmean > Tmin; Tmax(d) > Tmin(d− 1); and Tmin(d) ≤ Tmax(d− 1). Finally, the per-
sistence test verifies measurement variability; therefore, the data must accomplish the con-
ditions Tmax(d) 6= Tmax(d − 1) 6= Tmax(d − 2) and Tmin(d) 6= Tmin(d− 1) 6= Tmin(d− 2),
where d is the day number [22].

2.3. Empirical Temperature-Based Models

Although air temperature is a standard variable measured in weather stations, it has
been infrequently used to estimate solar insolation. Temperature started to be relevant in
estimating solar insolation when agricultural studies modeled solar insolation to analyze
crop production rates. Consequently, researchers from other fields increasingly focus on the
maximum, minimum, and mean temperature values in order to model solar insolation [28].
The most traditional models incorporating maximum and minimum temperatures are the
Hargreaves and Samani and Bristow and Campbell models [4,10]. Both models are the
basis of innovative approaches adapted to specific location conditions [7,12,27,29–32].

2.3.1. Hargreaves and Samani’s Model

In 1982, Hargreaves and Samani (HS) proposed a linear relationship between the
square root of the temperature difference and the fraction between the extraterrestrial and
terrestrial global solar insolation for different periods, as follows:

H
H0

= a(Tmax − Tmin)
0,5

where a is the empirical coefficient, H is the global solar insolation on a horizontal surface,
and H0 is the daily extraterrestrial solar insolation calculated as follows.

H0

(
Wh

m2day

)
= 24

π × Isc ×
(

1 + 0, 033 ∗ cos
(

360∗D
365

))
×
(
cos(ϕ) × cos(δ) × sin(ωs) + π

180 ×ωs × sin(ϕ) × sin(δ)
)
.

This model, however, did not consider the effects of cloudiness, humidity, latitude,
elevation, or topography, among others, in the specific location for which the model is
used [33,34]. Allen stated that the HS model demonstrates better behavior in a monthly
time frame than in a daily time frame because the variables follow a mean trend, resulting
in a consistent relationship between Tmax − Tmin and H/H0 [35].

The empirical coefficient represents the rate of change from the maximum and mini-
mum temperature difference with the ratio between the extraterrestrial and terrestrial solar
insolation. Initially, the HS model proposed an empirical coefficient calibrated with an
eight-year time series from Central Valley in Davis County, California (see Table 3) [4,9].
They found that a relative humidity above 54% affects the empirical coefficient, and that the
maximum and minimum temperature difference is smaller when it is nearly this percentage.
As shown in Table 3, in humid regions, the empirical coefficient has a value less than 0.10
while other regions have values higher than 0.16 [9]. A thorough process uses empirical
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coefficients according to the region under study. Accordingly, Rivero et al. pointed out
that using a fixed empirical coefficient for a large area with different regions may result in
significant errors because topography influences temperature, the advective environment,
and vegetation [15].

Table 3. Hargreaves and Samani’s empirical coefficients.

a Region Type

0.16 Arid and semi-arid
0.17 Interior regions
0.19 Coastal regions

0.10—0.09 Humid climates
Source: [4,14].

2.3.2. Bristow and Campbell’s Model

Bristow and Campbell (BC) presented a model based on two assumptions. The first
assumption is that of a linear relationship existing between the absorbed and incoming solar
insolation, while the second assumption is that of disregarding the heat flux coming from
the soil for a daily period because it is close to zero. However, it is convenient to mention
that the sensible heat produced by diurnal temperatures is higher than that produced
during the nighttime [10]. This is understandable because solar irradiance heats air masses
more due to short-wave radiation, whereas at night, there is less long-wave emission
from the Earth to the atmosphere, reducing the temperature [29]. Furthermore, under
ideal conditions, the temperature is minimum just before sunrise, resulting in a significant
difference between daily maximum and minimum air temperature. This phenomenon
permits the modeling of solar insolation as a function of temperature difference [10]. Under
these assumptions, the authors presented their model:

H
H0

= a
[
1− e(−b∆Tc)

]
,

where a, b, and c are empirical coefficients. a represents the maximum ratio between the
extraterrestrial and terrestrial global solar insolation H/H0; b and c determine how soon
the model achieves such a maximum by temperature increases ∆T. Empirical coefficients
represent the regional characteristics from arid to humid environments [10].

Temperature difference depends on the daily maximum Tmax and minimum Tmin tem-
peratures for a day D given in ◦C. Bristow and Campbell concluded that the minimum tem-
perature averages of two consecutive days reduces the effect from hot or cold air masses, in
turn, avoiding overestimated and underestimated solar insolation values. Accordingly, Dos
Santos et al. stated that advection is not a common phenomenon in tropical zones; therefore,
the temperature change ∆T estimation in these regions is ∆T(D) = Tmax(D) − Tmin(D).
Dos Santos et al. also highlighted that this equation is better for sites with high altitudes,
as in the study case [14].

Another weather effect modifying the solar insolation estimation is rain. The effect of
rain decreases, setting ∆T(J) equal to 0.75 times the estimated ∆T(D). If ∆T(D− 1) is less
than ∆T(D− 2) by about 2 ºC, the first factor is multiplied by 0.75 [10]. However, when the
rainy period is long, the relation between solar insolation and ∆T reaches an equilibrium.
Therefore, it does not require adjustments [36].

2.3.3. Models Implemented in Tropical Environments

Knowledge of solar irradiance behavior in tropical zones is a mandatory requirement
for this research study. The analyzed cases are from Africa (Nigeria Abuja, Benin City,
Katsina, Lagos, Nsukka, and Yola), Brazil (Água Branca, Pao de Azucar, Santana do
Ipanema, Palmeira dos Índios, Arapicara, Maceió, Corcuripe, and Sao Jose da Laje), and
Mexico. Due to the fact that Nariño is in a tropical area, the results from these three cases
constitute relevant inputs for the current research.
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Okundamiya and Nzeako (ON) proposed a linear model as follows [37]:

H
H0

= a + bTR + cTmax,

where TR is the monthly average of the ratio between the daily minimum and maximum
temperatures (Tmin/Tmax), and a, b and c are empirical coefficients. The statistical valida-
tion of the model yielded a coefficient of determination between 0.809 and 0.952.

Nwokolo and Ogbulezie reviewed empirical models implemented in West Africa in
order to compute global solar irradiance. They found that the soft computing models have
better accuracy than the empirical models since they can be more easily adapted to several
weather conditions. This is because soft computing models allow more inputs, as models
or variables, to strengthen their reliability [38].

Dos Santos et al. studied the performance of ten temperature-based models in North-
eastern Brazil. They found that the models did not show significant changes after adjusting
them concerning the rainy periods’ effects. Dos Santos et al. also concluded that the HS
model demonstrates better performance in the hinterlands and interior regions, whereas
the BC model showed the best performance in humid and coastal zones [14].

Rivero et al. compared the values of the original empirical coefficients of the HS with
new values generated from the model calibrated for Mexico with local data. A notable
element of that research was the classification of Mexico’s climate zones using the Köppen–
Geiger system. Furthermore, the authors developed another classification based on the
clearness index, as shown in Table 4, to support the AWS data. It is useful to remember that
the clearness index is the ratio between terrestrial solar insolation and extraterrestrial solar
insolation. A relevant conclusion in this respect was that regardless of solar irradiance
peaks during the day, it is possible to obtain similar clearness index values. Another notable
conclusion was that fixed empirical coefficients result in significant error, especially in
zones with a temperature difference below 15 ◦C. The authors proposed the following
equation to overcome the identified issue derived from fixed coefficients [15]:

aHS = a1 + a2(∆T) + a3(∆T)2

where aHS is the Hargreaves and Samani equation coefficient.

Table 4. Daily clearness index classification ranges.

KTRange Day Type

0.00 < KT ≤ 0.20 Cloudy/Overcast
0.20 < KT ≤ 0.60 Partially cloudy
0.60 < KT ≤ 0.75 Sunny
0.75 < KT ≤ 1.00 Very sunny

Source: [15].

2.3.4. Proposed Empirical Model

The proposed model originated from observing the scatter plot between the clear-
ness index and the daily temperature difference in each AWS. We concluded that the
logistic model would offer useful results, because this model has successfully studied
human growth, animal and biological processes, energy use patterns, and atmospheric
applications [39,40]. The logistic regression commonly describes the relationship between
binary variables and a predictor [41]. Although the relationship between extraterrestrial
and terrestrial solar insolation does not offer binary results, it varies in a range between
0 and 1. The use of this technique “arises in estimating relationships in which the dependent
variable is continuous, but is limited in range” [42]. Manning’s statement describes the
relationship between the dependent and independent variables in the proposed model
because solar insolation relationships are continuous, and the temperature range is defined
by the minimum and maximum temperatures. Logistic regression does not assume that
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neither variables nor predictors have a normal distribution; this affirmation was another
criterion to choose this approach [43].

The logistic regression model is part of the Generalized Linear Model (GLM), which
describes the relationship between the mean of the dependent and independent variables
with a more complex relationship than y = a + bx. In logistic regression, which is a
statistical method, the coefficients have a similar meaning to linear regression; namely,
a is the log-odds of success at x = 0, while b is the change in the log-odds of success
corresponding to a one-unit increase in x [44]. This regression also assumes a linear
relationship between the dependent and independent variables’ log-odds [40].

The logistic function came from the logistic model and is represented as follows:

y =
1

1 + e−z ,

where y is the predicted variable, and z is a linear sum a+∑ bixi where xi is the independent
variable, and a and b are constants [41].

y =
1

1 + e−(a+bx)
.

In this case, the temperature change ∆T is the predictor variable. Therefore, the
proposed model is defined as follows.

H
H0

=
1

1 + e−(a+b∆T)

2.4. Statistical Validation

Statistical validation is a mandatory step that allows the comparison of the predictor
model with real measures to determine the suitability of the model. There are five main
validation techniques: subjective assessment, dispersion indicators, overall performance
indicators, distribution similitude indicators, and visual indicators [45,46]. We implement
the second technique, because it is appropriate when the data have the same time frame, lo-
cation, and treatment, among other characteristics. This validation technique measures the
difference between the modeled and real value. Table 5 shows some measured dispersion
indicators, expressed in absolute units or percentages [45].

Table 5. Error measurements.

Measurement Definition

Formula (pi is The Predicted Value, oi
Is the Observed Value, Pm

Is the Mean Predicted Value, Om
Is the Mean Observed

Value, and n Is the Amount of Data)

Mean of percent error (MPE)

Values close to zero indicate a better model
and suggest that the ratio of the standard
deviation of the measured and computed
value is near one.

1
n

n
∑

i=1
(pi − oi)/oi

Mean absolute error (MAE) The average vertical distance between each
predicted and observed point.

1
n

n
∑

i=1
|pi − oi|

Root mean square error (RMSE)
This provides a measure of the error size but
is sensitive to outlier values because the
measure gives more weight to large errors.

[
1
n

n
∑

i=1
(pi − oi)

2
]1/2
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Table 5. Cont.

Measurement Definition

Formula (pi is The Predicted Value, oi
Is the Observed Value, Pm

Is the Mean Predicted Value, Om
Is the Mean Observed

Value, and n Is the Amount of Data)

Mean bias error (MBE)

This measure provides information on the
model’s long-term performance when the
model includes a systematic error that
presents overestimated or underestimated
predictors. Low MBE values are desirable,
although it should be noted that an
overestimated dataset will cancel out another
underestimated dataset.

1
n

n
∑

i=1
(pi − oi)

Standard Deviation of the residual
(SD)

This measure shows the difference between
the standard deviation of the predicted and
observed datasets.

(
100
Om

)
1
n

[
n
∑

i=1
n(pi − oi)

2 −
[

n
∑

i=1
(pi − oi)

]2
] 1

2

Uncertainty at 95% (U95)
This is a measure of certainty confidence; a
lower value is expected. 1.96

(
SD2 + RMSE2)1/2

Source: [7,14,45–47].

3. Results and Discussion

The results and discussion have four subsections. The first subsection presents the
quality control results of global solar irradiance. The second subsection shows the results
of the temperature data validation procedure. The third subsection contains the empir-
ical coefficients of the HS, BC, and NO models and those of the proposed model. The
last subsection comprises the imputation results and the daily solar insolation for the
AWS studied.

Figure 2 shows the scheme followed for implementing the models. We obtained the
raw data of AWS and conducted a quality control process for data cleaning. Subsequently,
we selected the days with at least six measured per day, aggregated the hourly irradiance
to estimate the insolation, and chose the maximum and minimum daily temperature. We
randomly selected 80% of the data of AWS for empirical model calibration and 20% for
statistical validation.
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Figure 2. Scheme for empirical model implementation.

3.1. Quality Control: Global Solar Irradiance and Temperature

A step undertaken prior to the quality control procedure is data adjustment stemming
from the calibration constant. In this case, there was no calibration constant for the Biotopo
AWS affecting the quality of the time series; likewise, this AWS also had the smallest
number of recordings among all AWS. The total amount of data (47,612) for the period
studied corresponded to 34.50% of the total data that should be recorded. The AWS
registered information during 57.59% of the measured period 2005–2017.

Table 6 shows the results of the global solar irradiance validation procedure. The
first step, which evaluated the database structure, presents 5843 recordings on average
with the incorrect structure. The AWS with the most recordings that had an incorrect data
structure was Viento Libre; this step confirmed that 9715 data did not have the database
structure, corresponding to 12.55% of the total data. The AWS with fewer recordings
with the incorrect data structure was Biotopo; this step confirmed that 1055 data did have
the database structure, corresponding to 2.22% of the total. The fixed range validation
discarded 36.71% of data on average. Biotopo lost the most data, corresponding to 47.62%
of the total, whereas Universidad de Nariño lost the fewest data, amounting to about 22.09%
of the total. The flexible range test results reveal information losses of 39.11%. The AWS
with the lowest number of losses was Biotopo, about 15.14%, while Guapi had the highest
number of losses, about 5422%. Although the last test was not mandatory, it is useful
to point out that 44.06% of the recordings did not overcome the time consistency level.
Considering only the mandatory steps, about 35.27% of the data overcame these validation
steps. Universidad de Nariño’s AWS had the most data approving the validation process,
whereas Guapi’s AWS had the fewest data approving the validation process.
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Table 6. Solar irradiance validation results. Each step represents the amount of data that overcome
the validation level.

Name Code Data Step 1 Step 2 Step 3 Step 4

Biotopo 51025060 47,612 46,557 24,385 20,699 12,883
Viento
Libre 52035040 77,424 67,709 40,777 26,835 12,311

Universidad
de Nariño 52045080 98,452 93,338 72,715 37,481 21,033

Cerro
Páramo 52055150 90,440 81,940 57,407 36,661 25,709

La Josefina 52055170 55,909 54,041 29,966 14,183 7427
Botana 52055210 98,928 90,777 51,416 38,327 20,847
El Paraiso 52055220 88,408 82,135 54,371 29,033 14,394
Guapi 53045040 78,773 72,708 49,039 22,452 12,747
Average 79,493 73,651 47,510 28,208 15,919

The first row of Table 7 represents the recorded data number between 06:00 and 18:00.
The subsequent rows show the day numbers with the recorded data amount indicated
in the heading—for instance, Biotopo has 13 days with only one record. The columns
highlighted in gray represent that each day has between 10 and 11 recordings per day.
It is worth noting that only 1.26% of days had complete information, with a maximum
of 4.25% in Cerro Páramo and a minimum of 0.28% in Biotopo. Consequently, the model
implementation only considered the days with at least six recordings during the daytime
period to avoid underestimating the resource—approximately 95.81% of the recordings
that overcame the mandatory validation levels accomplished this requirement.

Table 7. Classification of days according to irradiance recording per day. The rows contain the number of days classified by
the amount of measured data between the 6:00 and 18:00 per day.

Name

Data Number per Day *

1 2 3 4 5 6 7 8 9 10 11 12 13
Total of

Days

Biotopo 13
** 16 15 19 30 49 104 190 350 528 622 207 6 2149

Viento Libre 43 50 77 86 121 175 313 444 702 654 390 119 11 3185
Universidad de Nariño 27 42 56 73 97 173 340 403 730 1014 778 308 63 4104

Cerro Páramo 34 39 42 45 59 83 145 283 483 952 1080 362 160 3767
La Josefina 109 71 22 24 25 57 78 195 293 386 274 134 6 1674

Botana 16 20 26 43 82 142 246 469 798 1066 839 336 14 4097
El Paraiso 55 83 110 137 158 205 285 364 614 787 514 149 13 3474

Guapi 185 193 180 153 111 101 139 239 335 447 549 182 75 2889

* This number represents the amount of data per day. ** This number represents the number of days in all time series with one
measure per day.

The results confirm the importance of improving the maintenance and calibration
procedures of the measurement instruments in order to increase the amount of useful
information, in turn increasing reliability.

We considered the Rivero et al.’s classification and modified the item concerning
partially cloudy days, as Table 8 shows. Table 8 shows that, in the analyzed AWS, on
average, 64.70% of days were classified as partially high cloudiness. This corresponds to
losses between 20% and 40% of extraterrestrial solar irradiance when reaching ground
level. This result is important not only because clouds affect global solar irradiance but also
because, as a variable, it is not easy to model. Consequently, the resource estimation in this
tropical and mountainous environment is more complicated than in other environments.
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Table 8. Days’ classification according to cloudiness.

kt 0.00<kt≤0.20 0.20<kt≤0.40 0.40<kt≤0.60 0.60<kt≤0.75 0.75<kt≤1.00

Name Cloudy

Partially
High

Cloudi-
ness

Partially
Low

Cloudi-
ness

Sunny Very
Sunny

Number
of Days *

Biotopo 760 1188 67 0 0 2015
Viento
Libre 105 1458 1179 0 0 2745

Universidad
de Nariño 243 2611 846 1 0 3701

Cerro
Páramo 1380 1232 137 1 0 2793

La Josefina 88 991 271 1 0 1351
Botana 451 2704 711 2 0 3868

El Paraiso 167 1859 543 1 0 2570
Guapi 130 746 125 0 0 1001

Average 16.99% 64.70% 18.28% 0.03% 0.00% 100%
* Days with ∆T, TR, Tmax , Tmin, and kt complete information.

Table 9 shows the results of the temperature validation procedure. In the first step,
missing information was 8.64% on average. Cerro Páramo AWS missed the most information
amount, with 16.95% missing data. In the fixed range test, Guapi had data missing of about
11.62%. In the step test, about 35.07% of the data did not pass the validation requirement.
Considering the starting values as the base, 57.08% of the data overcame the quality
control procedure.

Table 9. Temperature validation results. Each step presents the amount of data that overcome the
validation level.

Name Code Data Step 1 Step 2 Step 3

Biotopo 51025060 52.848 47.268 46.436 24.385
Viento Libre 52035040 77.424 67.969 67.962 40.777
Universidad
de Nariño 52045080 100.740 94.880 92.886 72.715

Cerro
Páramo 52055150 91.850 76.280 69.410 57.407

La Josefina 52055170 55.728 52.867 52.707 29.966
Botana 52055210 98.952 91.077 91.047 51.416
El Paraiso 52055220 91.699 85.713 84.792 54.371
Guapi 53045040 84.371 81.014 71.598 49.039

Table 10 shows, as Table 7, the record numbers by day. The results indicate that about
57.42% of the days had 88.46% of useful information. Finally, from the total amount of
data that overcame the hourly validation test, only 68.03% of data were suitable for feeding
the models.
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Table 10. Classification of days according to irradiance recording per day. The rows contain the number of days classified
by the amount of data measured between 6:00 and 18:00.

Name
Data Number per Day *

1 2 3 4 5 6 7 8 9 10 11 12
Total of

Days
Biotopo 33

** 9 17 13 26 46 56 85 130 257 605 846 2123

Viento Libre 79 68 91 91 94 120 124 192 264 500 873 696 3192
Universidad de Nariño 74 26 24 31 47 71 113 198 309 599 1170 1379 4041
Cerro Páramo 101 49 58 47 67 86 133 190 348 590 754 701 3124
La Josefina 61 21 36 46 50 78 109 130 197 405 573 558 2264
Botana 38 11 27 46 62 102 147 253 386 679 1114 1221 4086
El Paraiso 74 42 65 67 92 102 155 236 373 541 915 909 3571
Guapi 20 8 10 21 18 21 45 79 168 405 919 1349 3063

* This number represents the amount of data per day. ** This number represents the number of days in all time series with one measure
per day.

3.2. Model Development and Performance
3.2.1. Model Development

By observing the scatter plot from Figures 3–10, we concluded that the logistic model
would offer helpful results because logistic regression commonly describes the relationship
between binary variables and a predictor [40]. Although the relationship between extrater-
restrial and terrestrial solar insolation does not offer binary results, it varies in a range
between 0 and 1. Furthermore, logistic regression does not assume that neither variables
nor predictors have a normal distribution [42].

Figure 3. Daily delta of temperature–clearness index for Biotopo.
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Figure 4. Daily delta of temperature–clearness index for Viento Libre.

Figure 5. Daily delta of temperature–clearness index for Cerro Páramo.
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Figure 6. Daily delta of temperature–clearness index for Universidad de Nariño.

Figure 7. Daily delta of temperature–clearness index for Botana.
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Figure 8. Daily delta of temperature–clearness index for La Josefina.

Figure 9. Daily delta of temperature–clearness index for Paraiso.
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Figure 10. Daily delta of temperature–clearness index for Guapi.

3.2.2. Performance

Figures 3–10 show the relationship between the daily clearness index and daily delta
of temperature for the studied AWS. Figures 3 and 10 show that there is a moderate linear
relationship between the daily clearness index and daily delta of temperature in the Pacific
zone. Figure 5 shows that, in Cerro Páramo, the clearness index and the delta of temperature
possess a moderate linear relationship. In the Andean zone, the clearness index and delta
of temperature exhibited a weak linear relationship.

Table 11 shows the empirical coefficients of the HS, BC, and ON models and those
of the proposed model. The a and b empirical constants of the BC model demonstrated
a growing trend corresponding to altitude, while the c empirical constant showed the
opposite behavior. The empirical coefficients of the HS model did not present a significant
variation among AWS. This means that the AWSs have similar humid conditions, consid-
ering the original values given by [9]. The empirical coefficient of the ON model for the
Bitopo AWS revealed the unique negative value. More studies and data are necessary to
understand this result. However, there were two influencing factors: Biotopo AWS did not
have calibration factor, and the data number was the lowest.

Table 11. Empirical coefficients.

Bristow and Campbell

AWS a b c

Biotopo 0.5075 0.0735 1.1908
Viento Libre 0.5942 0.1499 0.8655

Cerro Páramo 0.5922 0.2595 0.6153
Universidad de Nariño 0.4893 0.3282 0.6568

Botana 0.6288 0.1964 0.6415
Josefina 0.6039 0.2563 0.5350
Paraiso 0.5850 0.3183 0.4818
Guapi 0.4471 0.1156 1.2478
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Table 11. Cont.

Hargreaves and Samani

AWS a

Biotopo 0.0970
Viento Libre 0.1248

Cerro Páramo 0.1340
Universidad de Nariño 0.1263

Botana 0.1169
Josefina 0.1138
Paraiso 0.1199
Guapi 0.1208

Okundamiya and Nzeako

AWS a b c

Biotopo −0.1838 −0.3871 0.0264
Viento Libre 0.0578 −0.2666 0.0168

Cerro Páramo 0.1084 −0.1572 0.0257
Universidad de Nariño 0.2679 −0.2416 0.0112

Botana 0.0621 −0.1547 0.0191
Josefina 0.1770 −0.1589 0.0118
Paraiso 0.2617 −0.1775 0.0100
Guapi 0.0717 −0.5202 0.0228

Proposed model

AWS a b

Biotopo −2.3058 0.1786
Viento Libre −1.3499 0.0912

Cerro Páramo −1.7914 0.1706
Universidad de Nariño −1.2211 0.0747

Botana −1.4489 0.0898
Josefina −1.2299 0.0608
Paraiso −1.1667 0.0607
Guapi −1.8043 0.1495

Table 12 presents the results of seven statistical validation measurements for each
AWS. Considering RMSE, SD, MAE, U95, and MAPE, the proposed model had better
performance than the other models. That said, the BC model had better results for MAE
and MPE. The proposed model showed better results in AWS located at altitudes above
2500 MASL. In contrast, the HS model showed better performance at altitudes below
2500 MASL. However, if the objective is to use a unique model to estimate solar irradiance
from temperature data in the state, the proposed model remains the best.

Table 12. Summary of the empirical model’s statistics results. The best result for each AWS is in bold.

RMSE
[
Wh/m2 day

]
AWS BC HS ON Proposed

Biotopo 1.152,62 993,64 1.155,07 1.113,48
Viento Libre 1.086,47 1.080,72 1.110,62 1.077,35

Cerro Páramo 1.194,57 1.209,76 1.196,56 1.152,72
Universidad de

Nariño 1.032,45 1.083,73 1.032,24 1.019,14

Botana 1.052,42 1.070,23 1.077,17 1.042,68
Josefina 1.009,00 1.066,18 999,28 984,75
Paraiso 930,82 990,32 938,02 921,32
Guapi 965,40 878,75 961,21 915,53

SD

AWS BC HS ON Proposed
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Table 12. Cont.

RMSE
[
Wh/m2 day

]
AWS BC HS ON Proposed

Biotopo 49,90 43,11 50,08 48,29
Viento Libre 29,21 29,05 29,86 28,97

Cerro Páramo 56,04 56,77 56,15 54,08
Universidad de

Nariño 31,89 33,55 31,88 31,47

Botana 34,46 35,05 35,23 34,14
Josefina 31,29 33,06 30,99 30,53
Paraiso 27,82 29,58 28,04 27,54
Guapi 31,75 28,91 31,58 30,12

MBE
[
Wh/m2 day

]
AWS BC HS ON Proposed

Biotopo −77,79 −2,01 −45,24 −37,29
Viento Libre 162,63 163,13 167,77 160,23

Cerro Páramo 37,90 21,29 27,22 33,37
Universidad de

Nariño 90,20 62,04 93,68 93,72

Botana 48,24 42,30 71,63 47,13
Josefina 5,28 −20,58 16,92 22,18
Paraiso −23,17 −42,52 −15,89 −14,98
Guapi −36,98 −16,38 −53,45 −27,50

MAE
[
Wh/m2 day

]
AWS BC HS ON Proposed

Biotopo 916,08 800,52 917,96 885,10
Viento Libre 863,76 861,64 883,10 862,86

Cerro Páramo 940,46 946,29 929,90 887,34
Universidad de

Nariño 845,12 884,48 841,37 833,30

Botana 866,59 881,19 888,56 860,18
Josefina 769,70 830,06 767,58 760,43
Paraiso 757,02 806,64 760,64 748,67
Guapi 753,77 696,35 773,11 733,40

U95
[
Wh/m2 day

]
AWS BC HS ON Proposed

Biotopo 2.261,26 1.949,37 2.266,06 2.184,48
Viento Libre 2.130,26 2.118,99 2.177,61 2.112,38

Cerro Páramo 2.343,94 2.373,74 2.347,83 2.261,82
Universidad de

Nariño 2.024,57 2.125,13 2.024,17 1.998,46

Botana 2.063,85 2.098,79 2.112,40 2.044,75
Josefina 1.978,59 1.941,90 1.959,53 1.931,04
Paraiso 1.825,23 1.941,90 1.839,34 1.806,59
Guapi 1.893,21 1.723,28 1.885,00 1.795,41

MPE

AWS BC HS ON Proposed

Biotopo 16,22% 19,52% 17,93% 18,33%
Viento Libre 15,34% 15,32% 15,39% 15,18%

Cerro Páramo 28,77% 27,90% 27,64% 28,69%
Universidad de

Nariño 13,73% 12,78% 13,82% 13,80%

Botana 14,22% 11,32% 15,08% 14,11%
Josefina 12,24% 20,51% 12,52% 12,70%
Paraiso 8,24% 7,70% 8,59% 8,51%
Guapi 6,82% 7,46% 6,11% 7,12%

MAPE

AWS BC HS ON Proposed

Biotopo 49,13% 44,53% 49,71% 48,13%
Viento Libre 30,09% 29,99% 30,46% 29,94%

Cerro Páramo 56,68% 56,62% 55,00% 53,67%
Universidad de

Nariño 31,44% 32,47% 31,26% 30,97%

Botana 34,42% 32,58% 35,35% 34,07%
Josefina 30,83% 37,42% 30,74% 30,56%
Paraiso 26,75% 28,29% 26,91% 26,47%
Guapi 28,15% 26,14% 28,65% 27,14%

RMSE showed that the lowest value occurred in the Guapi AWS (878, 75Wh/m2day),
while the highest value was in the Cerro Páramo AWS (1.209, 76Wh/m2day); on aver-
age, RMSE was 1.046, 69Wh/m2day. The ON model presented the highest RMSE, with
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1.058, 77Wh/m2day; followed by the BC model, with 1.052, 96Wh/m2day; the HS model,
with 1.046, 66Wh/m2day; and the proposed model, with 1.028, 37Wh/m2day.

The standard deviation showed that Cerro Páramo presented more scattered values
than the other AWSs. By comparing the four models and analyzing the average standard
deviation, the best option is the proposed model. The MBE showed that the BC model made
an underestimation of 77, 79Wh/m2day in Cerro Páramo. All models—ON, HS, BS, and the
proposed model—overestimated the solar resource in Viento Libre by 167, 77Wh/m2day,
163, 13Wh/m2day, 162, 63Wh/m2day, and 160, 23Wh/m2day, respectively.

The MAE showed that the proposed model had the best performance, with an
average error of 821, 41Wh/m2day, while the ON model reached an average error of
8.45, 27Wh/m2day. U95 yielded, on average, the following results: 2.076, 49Wh/m2day
2.065, 11Wh/m2day, 2.034, 13Wh/m2day, and 2.016, 86Wh/m2day for ON, BC, HS, and
proposed models, respectively, thereby confirming that the proposed model performed
better than the other models.

MPE presented the BC model as the best-performing model, with 14.45% on average,
whereas the HS model was the worst-performing, with 15.31% on average. MAPE revealed
the proposed model as the best option, with 35.12% followed by the HS and ON models.
The MAPE results were consistent with the other statistical results.

The proposed model’s empirical coefficients showed a relationship with altitude.
Figure 11 presents the linear adjustment of the empirical coefficients for two altitude
ranges covering the location of AWS. On the left side, the figures represent the relationship
between empirical coefficients and the altitudes below 2500 MASL; on the right side, the
figures show the remaining AWS. Statistical analysis indicated that R2 for the a coefficient
was 0.5262 and 0.5995 in the first and second cases, respectively. R2 for the b coefficient was
0.6069 and 0.8152 in the first and second cases, respectively. This result is remarkable since
solar irradiance and temperature change with respect to altitude. These changes occur
because of higher altitude and fewer molecules and aerosols scattering and absorbing solar
irradiance [47,48].

Figure 11. Coefficients a and b empirical model–altitude relation in the proposed model.
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3.3. Imputation of Daily Solar Insolation Data

According to the AWS location, the imputation process used to estimate the daily solar
insolation data followed the best empirical model based on the research results. Table 13
shows the number of imputed data for each AWS. La Josefina had the most imputed values;
it was necessary to fill in 2870 missing data. Botana had the lowest imputed values, filling
572 missing data. On average, the empirical models allowed imputing about four years
of missing data; therefore, it was necessary to fill these empty gaps by using temperature
data. The time series before and after the daily solar insolation imputation process for each
AWS is presented in Figures 12–19.

Table 13. Imputation by AWS.

AWS Imputation

Biotopo 2241
Viento Libre 1502

Cerro Páramo 749
Universidad de Nariño 686

Botana 585
La Josefina 2872

Paraiso 1369
Guapi 2277

Figure 12. Biotopo imputation. The dark blue points are the estimated values using air temperature information, and the
light blue points are the measured values.
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Figure 13. Viento Libre imputation.

Figure 14. Cerro Páramo imputation.
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Figure 15. Universidad de Nariño imputation.

Figure 16. Botana imputation.
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Figure 17. La Josefina imputation.

Figure 18. Paraiso imputation.
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Figure 19. Guapi imputation.

Figure 20 shows the monthly daily average solar insolation for all analyzed AWSs.
The AWS located in the Pacific zone presented similar behaviors; namely, they registered a
peak in August and September and a lower level in November. Viento Libre was the only
AWS that recorded values close to 4000 Wh/m2 day in August. The Botana and Universidad
de Nariño AWSs in the Andean region showed a peak between October and November. The
Cerro Páramo and Viento Libre AWSs exhibited certain energy complementarity because the
lower level in the first AWS compensates the higher level of the second AWS.

Figure 20. Daily monthly insolation.

4. Conclusions

The validation levels of the global solar irradiance data strongly influenced the results
of the empirical variables. The best evidence was that the results showed that 60.89% of the
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data overcame the mandatory validation steps. From the dataset overcoming the quality
control process, 95.81% corresponded to the days with at least six recordings, and those
days constituted the empirical model’s calibration information. However, this percentage
represented, on average, 33.90% of the total information recorded in the AWS. In addition
to this, only 1.26% of the days had complete information. This result indicates that the
time series quality is not optimum; therefore, it is necessary to improve and increase
maintenance and calibration procedures.

In the state of Nariño, the performance of the AWS is a determining factor when
considering the predominance of partial high cloudiness, representing 64.7% of the total
measured days. Accordingly, in Nariño, high cloudiness complicates the estimation of
solar insolation; therefore, it is fundamental to improve the reliability of measurement
systems. Consequently, it is also essential to regularly establish a plan to carry out these
procedures at a high-quality level and according to widely accepted standards. Installing
more AWSs to increase the sampling points is also recommended.

Regarding temperature measures, only 92.78% of the measures were useful for the
empirical calibration and imputation from the total data that overcame the hourly valida-
tion steps. Additionally, the days with more records had between 11 and 12 data inputs
per day; this means that most of the days used for modeling and filling the database by the
imputation process had 88.46% of the total information on average.

The proposed model showed a linear relationship between the empirical coefficients
and altitude. R2 showed better adjustments between the empirical constants and the
altitude in sites above 2500 MASL than at sites below this altitude. This result is consistent
with the temperature in tropical zones where there is high humidity at low altitudes and
global solar irradiance in high altitudes.

The results from RMSE, SD, MAE, U95, and MAPE statistical tests demonstrated that
the proposed model exhibited better performance in five of the eight evaluated cases (Viento
Libre, Cerro Páramo, Universidad de Nariño, Botana, Josefina, and Paraiso), all of which were in
the Andean and Amazon zones at altitudes above 2500 MASL (see Table 12). The proposed
model was useful for imputing information in the Andean and Amazon AWSs, with a
mean value in RMSE of 1.022, 86 W/m2day for the Andean zone and 1.152, 72 W/m2day
in the Amazon zone. In the Pacific zones’ AWSs, Hargreaves and Samani’s model was the
best option, followed by the model proposed in this study.

The proposed model showed stable performance in the tropical and mountainous
environment of Nariño. However, it is necessary to analyze more information coming
from other locations with the same characteristics. Most importantly, the number of
AWSs and the quality of time series data in tropical and mountainous environments must
be increased.
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Nomenclature

a, b, c Empirical coefficients
H Global horizontal insolation
H0 Daily extraterrestrial solar irradiance
I0 Hourly extraterrestrial solar irradiance
Ics Hourly clear-sky global solar irradiance
Icst Hourly clear-sky global solar irradiance at time t
Imt Global solar irradiance at time t
Isc Solar constant
Kt Clearness index
Th Hourly measured temperature
Tmax Maximum daily temperature
Tmean Mean daily temperature
Tmin Minimum daily temperature
TR Ratio between the daily minimum and maximum temperature
∆T Difference between the daily maximum and minimum temperature
ϕ Latitude
δ Solar declination
ωs Sunset hour angle
D Julian day
β Solar altitude
τ Atmospheric transmittance
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