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Abstract: Overhung rotors are widely used in the industrial field. However, compared with normal
structure rotors, the prediction and control of overhung rotors cannot achieve good performance.
The work aims to investigate the dynamical behaviours of an overhung rotor by means of correlation
analysis, and find its possible application. In this work, based on a real type of rotor, the dynamic
model of the rotor with overhang is established by means of the finite element method. Simulation
of the dynamic model with different input positions and support stiffnesses is conducted. Based
on the methodology of correlation analysis, by introducing a correlation parameter of a proportion
of amplitude of measured signal and imbalance mass, the position which has most effect on the
vibration is found. Meanwhile, an experiment on the same type of overhung rotor is carried out to
validate the results. The numerical results and corresponding experimental results prove that the
overhung node has the most effect on the vibration amplitudes of the measured points. Choosing the
overhung node to add trial weight, the overhung rotor can be easily balanced. The theory provides
an alternative approach to modal analysis which needs more knowledge of the system.

Keywords: overhang; asymmetry rotor; correlation analysis; rotor balancing

1. Introduction

Overhung rotors are found in many industrial applications. Many works on rotors
with overhung design have been reported. For instance, electromagnetic motors [1–4], spin-
dle in ultra-precision machine [5], turbine generator [6–13], compressor [14], and turbine
power rotors [15] are rotor structures which must or may have overhung parts. Taking
the turbine generator rotor as an example, the overhung parts always exist to implement
the field winding. The mass and electromagnetic field of the overhung part would affect
the dynamical behaviours of the rotor system conversely. Although rotors are carefully
designed for fatigue loading and a high level of safety by using high-quality materials
and precise manufacturing techniques, catastrophic failures occur in high-speed rotating
machines, particularly for the overhung rotor which has considerable weight.

Many researchers have modeled and studied the dynamical responses of overhung
rotors using different approaches. Cao et al. [16] studied the nonlinear dynamic behavior
of the bladed overhang rotor system with squeeze film damper, using the lumped mass
method and the Lagrange approach. Koo et al. [17] presented an analytical method
based on transfer relations for an axial flux permanent magnet machine, while taking the
overhang length into account. Gong et al. [18] investigated an overhang rotor with two discs
supported by a couple of tilting-pad journal bearings. In Gong’s work, active lubrication,
based on injecting pressurized oil into the bearing gap through orifices machined in the
bearing sliding surface, is utilized. Kim et al. [19] considered the overhang effect according
to the various rotor types of permanent magnet machine is analyzed by using 3D magneto-
static finite element method. Yu et al. [20] presented a novel outer rotor permanent-
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magnet vernier machine for in-wheel direct-drive application and introduced the overhang
structures of the rotor and flux modulation pole. Seo et al. [21] described the analysis and
design of a spoke-type motor using ferrite permanent magnet. Kim et al. [22] dealt with the
characteristic analysis of the fan motor considering ferrite bonded magnet in an inner-rotor
overhang type Brushless DC motor. Noyes et al. [23] used a downwind configuration
with a coning angle prescribed to allow load alignment for critical conditions to achieve
moment reduction by changing the sign of variables like the overhang. Ma et al. [24]
built an overhung rotor-support system to study the dynamic characteristics of rotor
and support experimental systems under sudden unbalance excitation. Zhao et al. [25]
proposed a permanent magnet vernier machine as a suitable alternative for direct-drive
applications due to its high torque feature at a low operated speed and gave out the
reasons. Tamrakar et al. [26] conducted an experimental comparison of response for a
healthy and cracked overhung rotor system. Tiaki et al. [27] investigated the primary
resonances of a cantilever flexible shaft carrying a rigid disk at its free end (overhung
rotor). Tamrakar et al. [28,29] presented the response of the overhung rotor on isotropic
support and an-isotropic support subject to unbalanced force. All these research works give
beneficial results on overhung rotors. However, it is still difficult to conduct the balancing
of rotors with a long overhang.

In the field of engineering, to connect with the other parts of a whole system the ro-
tor structures usually have overhang parts whose gravity will introduce moment to the
supports. Meanwhile, the nonlinear factors of the rotor system will make this additional
moment introduced vibration more complex, i.e., different lengths and position of the over-
hang will lead to different effects on the vibration of the rotor system. Thus, the motivation
of this work is to tackle the problem by modeling, dynamical analysis, statistical analysis
and experimentation.

In the following, the modeling process by finite element method will be described
in Section 2. Numerical analysis is given in Section 3 and an experimental approach
is presented in Section 4. Finally, based on the theoretical and experimental analysis,
the discussion and conclusions are given.

2. Modeling Process

A rotor with an overhang of 555 mm length is adopted in this work. A schematic
diagram of the rotor with an overhang at the left end support is shown in Figure 1.

Figure 1. Schematic diagram of the rotor.

In this work, the finite element (FE) method is adopted in the modeling process. By
the means of the FE method, the whole system could be meshed into an elements model.
Here, the rotor system is divided into rigid discs, elastic shaft segments, and bearing
supports. Each element’s model can be established separately, then, assembling all the
element’s matrices together, the stiffness matrix, the mass matrix, and the gyro matrix can
be obtained. Based on the FE modeling method, the overhung rotor described by Figure 1
can be discretized into elements with eight nodes, whose positions are given in Figure 2a.
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Figure 2. Modeling of the rotor. (a) Meshed model of the rotor, and (b) assembly of the element matrices.

2.1. Modeling of the Disc

A rigid disk will be considered as a lumped mass point superposed to the corre-
sponding node. Each one has 4 degrees-of-freedom (DOF), including the vertical direction
(x), horizontal direction (y), and the rotating angles along these two directions. Then,
the governing equation of the disk can be written in the form

Mdq̈d −ω ·Gdqd = Qd (1)

where Md, Gd and Qd are the equivalent mass, gyro and general force matrices of the
chosen node whose expressions are

Md =


md 0 0 0
0 md 0 0
0 0 Jd

d 0
0 0 0 Jd

d



Gd =


0 0 0 0
0 0 0 0
0 0 0 −Jd

p
0 0 Jd

p 0


where md is the mass of the disc, Jd

d is the equatorial moment of inertia, Jd
p is the pole

moment of inertia.
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2.2. Modeling of the Shaft Segment

Choosing the i-th elastic beam section, its motion can be described by two nodes with
8 DOFs as

q = [xi, yi, θyi, θxi, xi+1, yi+1, θy(i+1), θx(i+1)]
T

= [qi, qi+1]
T (2)

where qi represents the i-th node’s displacement and rotation angle, and qi+1 represents
the (i + 1)-th node’s.

(Me
T + Me

R)q̈−ω ·Geq̇e + Keqe = Qe (3)

where Me
T and Me

R are mass matrices of the shaft, Ge is the gyro matrix, Ke is the stiffness
matrix and Qe the general force matrix.

The expression of matrices in Equation (3):

Me
T =

ρL
(1 + ϕs)2



MT1
0 MT1
0 −MT4 MT2 symm

MT4 0 0 MT2
MT3 0 0 MT5 MT1

0 MT3 −MT5 0 0 MT1
0 MT5 MT6 0 0 MT4 MT2

−MT5 0 0 MT6 −MT4 0 0 MT2



Me
R =

ρL
(1 + ϕs)2

( rρ

L

)2



MR1
0 MR1
0 −MR4 MR2 symm

MR4 0 0 MR2
−MR1 0 0 −MR4 MR1

0 −MR3 MR4 0 0 MR1
0 −MR4 MR3 0 0 MR4 MR2

MR4 0 0 MR3 −MR4 0 0 MR2



Ge =
ρr2

ρ

15L(1 + ϕs)2



0
G1 0
−G2 0 0 antisymm

0 −G2 G4 0
0 G1 −G2 0 0
−G1 0 0 −G2 G1 0
−G2 0 0 G3 G2 0 0

0 −G2 −G3 0 0 G2 G4 0



Ke
T =

EI
L2



KB1
0 KB1
0 −KB4 KB2 symm

KB4 0 0 KB2
−KB1 0 0 −KB4 KB1

0 −KB1 KB4 0 0 KB1
0 −KB4 KB3 0 0 KB4 KB2

KB4 0 0 KB3 −KB4 0 0 KB2


in which E is the elastic module, I is the area moment of inertia, G is the shear modulus, ρ is
the density, A is the cross-sectional area and L is the length of the shaft segment. Introducing
ϕs = 12EI/(GAL2) and rρ =

√
I/A, parameters can be simplified written as MT1 =

13/35 + 7/10ϕs + 1/3ϕ2
s ; MT2 = (1/105 + 1/60ϕs + 1/120ϕ2

s )L2; MT3 = 9/70 + 3/10ϕs +



Appl. Sci. 2021, 11, 11501 5 of 14

1/6ϕ2
s ; MT4 = (11/210 + 11/120ϕs + 1/24ϕ2

s )L; MT5 = (13/420 + 3/40ϕs + 1/24ϕ2
s )L;

MT6 = −(1/140 + 1/60ϕs + 1/120ϕ2
s )L2; MR1 = 6/5; MR2 = (2/15 + 1/6ϕs + 1/3ϕ2

s )L2;
MR3 = (−1/30− 1/6ϕs + 1/6ϕ2

s )L2; MR4 = (1/10− 1/2ϕs)L; G1 = 36; G2 = 3L− 15Lϕs;
G3 = L2 + 5L2 ϕs − 15L2 ϕ2

s ; G4 = 4L2 + 5L2 ϕs + 10L2 ϕ2
s ; KB1 = 12/(1 + ϕs); KB2 =

L2(4 + ϕs)/(1 + ϕs); KB3 = L2(2− ϕs)/(1 + ϕs) and KB4 = 6L/(1 + ϕs).

2.3. Modeling of the Bearing Force

The simplest way to deal with the bearing element is representing it by a spring-
damper element. Then the boundary condition of the corresponding node can be decided.
However, the nonlinear factors introduced by the bearing force are neglected. To further
consider the nonlinear effects, a nonlinear bearing force model is introduced. In this work,
a sliding bearing model is adopted. Reynolds’ equation is the basic equation for oil film
force analysis.

1
R2 ·

∂

∂ζ
(

h3

12η
· ∂p

∂ζ
) +

∂

∂z
(

h3

12η
· ∂p

∂z
) =

1
2

Ω · ∂h
∂ζ

+
∂h
∂t

(4)

where R is the radius of the journal; ζ is the clockwise angle from vertical direction; h is the
oil film thickness; η is the lubricating oil viscosity and p is the oil film pressure. z indicates
axial-direction which is neglected in this study and t for time.

Capone’s modified oil film force model [30] is applied, and based on which the
Equation (4) can be solved analytically. The oil film forces are then obtained with help from
Capone’s simplification.{

fx
fy

}
=

[(x− 2y′)2 + (y + 2x′)2]1/2

1− x2 − y2 ·
{

3xV(x, y, α)− sin αG(x, y, α)− 2 cos αS(x, y, α)
3yV(x, y, α) + cos αG(x, y, α)− 2 sin αS(x, y, α)

}
(5)

where
V(x, y, α) = 2+(y cos α−x sin α)G(x,y,α)

1−x2−y2

S(x, y, α) = x cos α+y sin α

1−(x cos α+y sin α)2

G(x, y, α) = 2
(1−x2−y2)1/2 [

π
2 + arctan y cos α−x sin α

(1−x2−y2)1/2 ]

α = arctan y+2x′
x−2y′ −

π
2 sgn( y+2x′

x−2y′ )−
π
2 sgn(y + 2x′)

where subscript x indicates the vertical component of the oil film force in the radial direction
and y the horizontal component of the oil film force in radial direction. x, y, x′ and y′ are
the general displacements and velocities of corresponding directions.

2.4. The Governing Equations

By assembling the corresponding matrices of each node, the mass matrix, the gyro
matrix and the stiffness matrix of the whole system can be obtained. The assembled process
is described by Figure 2b.

Linear damping matrix is adopted as

C = a ·M + b ·K (6)

where coefficients a and b can be measured by experiment.
Considering the gravity, unbalanced force and bearing force, the dynamic model of

the rotor support structure shown in Figure 1 can be established into form

Mq̈ + (C + ΩG)q̇ + Kq + Fn = Fu + Fg (7)

where q is the displacement coordinate vector, including the displacements of the two
disks and two sliding bearings along the x-axis and y-axis, respectively; M, C, G and
K are corresponding mass matrix, damping matrix, gyro matrix and stiffness matrix.
Fn is the bearing force vector; Fu is the unbalanced force vector and Fg is the gravity
vector. Ω represents the rotating speed of the rotor which determines the frequency of the
unbalanced force.
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3. Numerical Analysis of the System

Given the dimension of each shaft segment (listed in Table 1) and material properties
(listed in Table 2) of the rotor, the simulation of the system described by Equation (7) is
carried out to find the dynamical behaviours.

Table 1. The shape value of the shaft.

Node 1–2 Node 2–3 Node 3–4 Node 4–5 Node 5–6 Node 6–7 Node 7–8

Length 435 mm 235 mm 1117.5 mm 1117.5 mm 185 mm 420 mm 555 mm
Diameter 235 mm 369 mm 588 mm 588 mm 386 mm 252 mm 126 mm

Table 2. The material parameter.

Parameters Value

Young’s module E 100 × 109 Pa
Density ρ 7.85 × 103 kg/m3

Poisson’s ratio µ 0.211
Axial force H 0

3.1. The Critical Speed of the Rotor with Overhang

In this subsection, the first three orders of the critical speeds of the rotor system with
different stiffnesses are calculated. The common range of the stiffness of the elastic support
structure is from 107 to 109. Thus, here, three represented stiffness values are adopted as
1.5× 107, 1.5× 108 and 1.5× 109 in calculation.

The results are listed in Table 3. From Table 3, we find that the stiffness of the elastic
support substantially affected the first and second orders, while the third-order critical
speed changes little with different stiffnesses. The reason for this is that the frequency of
the rigid body mode introduced by elastic support is near the first-order frequency of the
bending mode of the rotor. These two modes coupled and represented the first two orders
of critical speeds of the rotor.

Table 3. The first three orders critical speed.

Order of Stiffness First-Order Second-Order Third-Order

107 13.5 Hz 28.5 Hz 349.3 Hz
108 39.6 Hz 86.3 Hz 360.9 Hz
109 80.6 Hz 201.8 Hz 416.4 Hz

3.2. The Correlation Analysis of the Rotor with Overhang

In this subsection, correlation analysis is conducted as, in design process or control
process of a rotor, especially when during balancing process of a rotor structure, not all
positions can be measured or adjusted by trial measures. The correlation analysis can
help find which position affects most. In this model, the balancing groves are located at
node #3 and node #5. The position at node #4 has screw holes. The position at the end of
the overhang, which is numbered as node #8, can also be a position to add trial weight.
Two velocity sensors are mounted on the supports (#1 and #7). To see the overhang effect,
additional eddy current sensor could be applied to measure the displacement of the node
#8. The responses of the nodes #1, #7 and #8 in vertical and horizontal directions of the
simulation results with pre-set imbalance at nodes of #3, #4, #5 and #8 are given from
Figures 3–6 separately.
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Figure 3. Responses of the measurable nodes in (a) vertical direction and (b) horizontal direction with pre-set imbalance at
node 3.

Figure 4. Responses of the measurable nodes in (a) vertical direction and (b) horizontal direction with pre-set imbalance at
node 4.
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Figure 5. Responses of the measurable nodes in (a) vertical direction and (b) horizontal direction with pre-set imbalance at
node 5.

Figure 6. Responses of the measurable nodes in (a) vertical direction and (b) horizontal direction with pre-set imbalance at
node 8.
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In the simulation study, the pre-set imbalances lead to harmonic type responses, and
the gravity makes the vertical mean value not equal to zero. From Figures 3–6, the am-
plitudes of the responses of different nodes with different pre-set imbalance positions
are different. In Figures 3–5, the amplitudes of node 1 are larger than those of node 7.
The reason for this phenomenon is that the overhung part has larger effects on node 7. Intro-
ducing a correlation parameter of proportion of amplitude and imbalance, the correlation
parameters of different combinations are given in Table 4.

Table 4. The correlation parameter when support stiffness is 109.

Correlation (m/kg)

3 to 1 3 to 7 3 to 8

x 0.2× 10−5 0.07× 10−5 0.12× 10−5

y 0.22× 10−5 0.06× 10−5 0.13× 10−5

4 to 1 4 to 7 4 to 8

x 0.43× 10−5 0.23× 10−5 0.03× 10−5

y 0.5× 10−5 0.27× 10−5 0.03× 10−5

5 to 1 5 to 7 5 to 8

x 0.57× 10−5 0.38× 10−5 0.14× 10−5

y 0.67× 10−5 0.41× 10−5 0.14× 10−5

8 to 1 8 to 7 8 to 8

x 0.18× 10−5 0.58× 10−5 7.11× 10−5

y 0.22× 10−5 0.67× 10−5 8.0× 10−5

Following the same method, the correlation parameter when the support stiffnesses
are 108 and 107 are given in Tables 5 and 6.

Table 5. The correlation parameter when support stiffness is 108.

Correlation (m/kg)

3 to 1 3 to 7 3 to 8

x 1.9× 10−5 0.65× 10−5 0.19× 10−5

y 1.04× 10−5 0.64× 10−5 0.17× 10−5

4 to 1 4 to 7 4 to 8

x 1.79× 10−5 1.59× 10−5 1.35× 10−5

y 1.98× 10−5 1.74× 10−5 1.42× 10−5

5 to 1 5 to 7 5 to 8

x 2.6× 10−5 2.6× 10−5 2.6× 10−5

y 2.9× 10−5 2.9× 10−5 2.9× 10−5

8 to 1 8 to 7 8 to 8

x 2.7× 10−5 3.4× 10−5 1.0× 10−4

y 3.1× 10−5 3.8× 10−5 1.21× 10−4

Table 6. The correlation parameter when support stiffness is 107.

Correlation (m/kg)

3 to 1 3 to 7 3 to 8

x 6.70× 10−5 6.68× 10−5 6.67× 10−5

y 8.22× 10−5 7.67× 10−5 7.30× 10−5
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Table 6. Cont.

Correlation (m/kg)

4 to 1 4 to 7 4 to 8

x 1.42× 10−4 1.42× 10−4 1.42× 10−4

y 1.36× 10−4 1.36× 10−4 1.36× 10−4

5 to 1 5 to 7 5 to 8

x 2.16× 10−4 2.38× 10−4 2.74× 10−4

y 1.98× 10−4 2.21× 10−4 2.57× 10−4

8 to 1 8 to 7 8 to 8

x 2.83× 10−4 3.42× 10−4 4.72× 10−4

y 2.80× 10−4 3.31× 10−4 4.78× 10−4

4. Experimental Test
4.1. Experiment Descriptions

The experiment is carried out by a real generator rotor. Figure 7 gives the pictures
of the experiment rotor (a) and supports used (b). In Figure 7a, agreeing with the FE
model described in Figure 2a, nodes #1 and #7 are supported by the supports described
by Figure 7b. The #3, #4, #5 and #8 are four nodes where trail weights can be added.
The supports shown in Figure 7b have an equivalent stiffness of 4.5× 108 N/m and have
velocity sensors to test the journal vibration.

Figure 7. The experimental rotor and supports. (a) The rotor and (b) The support pedal. ( #1 and #7 are the nodes where
supported by support shown in (b) and #3, #4, #5 and #8 are nodes where trial weights can be added).

4.2. Experiment Procedure

Figure 8 gives the initial measured results. The Bode diagrams of the responses of the
two support pedals are plotted in Figure 8, where red color lines indicate the curves of the
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root mean square (rms) of the responses with respect to the rotating speed of pedal 1 (#1)
and black lines correspond to pedal 2 (#7). For both colours, the solid line represents the
run-up process and the dotted line the run-down process. The working speed is expected
at 6500 rpm, but the value of vibration amplitude of pedal 2 reaches the safe limit at a
speed of around 5500 rpm. So the first test stops.

Figure 8. Bode diagram of the responses at the nodes of supports when no trail weight is added.

Based on the initial measured result and the traditional rotor balancing method, a 50 g
trail weight on the middle of the rotor (#5) is applied. Figure 9 gives the Bode diagrams of
the responses of pedals 1 and 2 when 50 g trail weight is added. However, the vibrations are
not suppressed, but a little amplified when the rotating speed approaches the second-order
resonance region.

Figure 9. Bode diagram of the responses at the nodes of supports when 50 g trail weight is added on
the #4.

Based on the correlation analysis conducted in the previous section, the trail weight
added on the #5 node has an almost equal effect on measured points. Therefore, it is not
a good position to balance the rotor with an overhang, although it is the first choice for a



Appl. Sci. 2021, 11, 11501 12 of 14

symmetry rotor as it is the peak point of the first-order modal function. Thus, the overhang
part of the rotor is chosen to be the next trial position. A 2 g trail weight is added and the
corresponding Bode diagrams are shown in Figure 10.

Figure 10. Bode diagram of the responses at the nodes of supports when 2 g trail weight is added on the #8.

This time, the peak values of the first-order and second-order main resonance are
suppressed. However, the value of pedal 1 is still beyond the limit at the working speed.
It can be noted that the position has a significant effect. Only the mass of the trail weight
needs to be adjusted further.

Figure 11 gives the Bode diagram of the measured responses with 4 g trail weight.
After a small change in the mass of the trail weight, the responses of the rotor satisfy the
working limits.

Figure 11. Bode diagram of the responses at the nodes of supports when 4 g trail weight is added on the #4.
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5. Discussion and Conclusions

For a rotor without overhang, many balancing methods have been proposed to identify
the imbalance distribution. However, for an overhang rotor, methods are seldom proved
to be suitable. In the field of engineering, rotors with long overhangs are considered
impossible to balance. Most of the time, to suppress the vibration of this kind of rotor,
the rotor structure or the position of support are adjusted. According to the correlation
analysis, a rotor with overhang can be easily balanced. Compared with the modal based
balancing method, the correlation analysis are simple and implementable.

In this work, modeling, dynamical simulation, correlation analysis and experiment of
an overhung rotor are carried out. Based on the rules found, we could conclude that (1)
The critical speeds of the first and the second orders are substantially affected by support
stiffnesses and the coupling effect of the bearing and support stiffnesses, while the third
order is less affected by the reasonable stiffness range; and (2) By introducing a correlation
parameter, which is defined by imbalance mass and amplitude of the particular nodes,
the most influenced nodes can be found. With the rotor model adopted in this work,
the overhung node is most influential.

Based on the findings, by choosing the overhang node to add trial weight, an over-
hung rotor is easily balanced. Through experimental testing, this analysis has significant
meaning in terms of controlling the vibration of the overhang rotor. The theory provides
an alternative approach to modal analysis which needs more knowledge of the system.

Author Contributions: Conceptualization, S.Z. (Shun Zhong), S.Z. (Suxia Zhang); methodology, S.Z.
(Shun Zhong), J.Y. and Y.Z.; software, S.Z. (Shun Zhong); validation, S.Z. (Shun Zhong), J.Y. and Y.Z.;
formal analysis, S.Z. (Shun Zhong); investigation, S.Z. (Shun Zhong), J.Y. and Y.Z.; writing—original
draft preparation, S.Z. (Shun Zhong); writing—review and editing, S.Z. (Shun Zhong); visualization,
S.Z. (Shun Zhong); supervision, S.Z. (Suxia Zhang); project administration, S.Z. (Suxia Zhang);
funding acquisition, S.Z. (Suxia Zhang). All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant nos.
51479136,12102234, 11902184, 11502161),the Project of Tianjin Municipal Transportation Commission
(2019-15), and the Project of Tianjin Natural Science Foundation (17JCYBJC18700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Hebei Ruizhao Laser Remanufacturing Technology Stock Co., Ltd and are available from Yang
Jie with the permission of Hebei Ruizhao Laser Remanufacturing Technology Stock Co., Ltd.

Conflicts of Interest: On behalf of all authors, the corresponding author states that there is no conflict
of interest.

References
1. Shin, H.; Shin, K.; Jang, G.; Cho, S.; Jung, K.; Choi, J. Experimental Verification and 2D Equivalent Analysis Techniques of BLDC

Motor With Permanent Magnet Overhang and Housing-Integrated Rotor Core. IEEE Trans. Appl. Supercond. 2020, 30, 1–5.
[CrossRef]

2. Petukhov, I.; Akinin, K.; Filomenko, A. Influence of the Magnetic Field of the Overhang Parts of the Micromotor Winding on
the Rotor Position Sensor. In Proceedings of the 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP),
Kremenchuk, Ukraine, 21–25 September 2020; pp. 1–4.

3. Lee, J.; Kim, R.; Jung, H.; Yeo, H. Electromagnetic and thermal analyses of surface-mounted permanent magnet motor with
flux-absorbing structure for enhancing overhang effect. IET Electr. Power Appl. 2020, 14, 2037–2043. [CrossRef]

4. Shin, H.; Jang, G.; Choi, J. Quasi-3D electromagnetic analysis and experimental verification of multi-pole magnetization BLDC
motor. AIP Adv. 2020, 10, 015218. [CrossRef]

5. Fedorynenko, D.; Kirigaya, R.; Nakao, Y. Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for
ultra-precision machine tools. Precis. Eng. 2020, 63, 187–196. [CrossRef]

6. Yao, S.; Griffith, D.T.; Chetan, M.; Bay, C.J.; Damiani, R.; Kaminski, M.; Loth, E. A gravo-aeroelastically scaled wind turbine rotor
at field-prototype scale with strict structural requirements. Renew. Energy 2020, 156, 535–547. [CrossRef]

http://doi.org/10.1109/TASC.2020.2972233
http://dx.doi.org/10.1049/iet-epa.2019.0784
http://dx.doi.org/10.1063/1.5130204
http://dx.doi.org/10.1016/j.precisioneng.2020.02.003
http://dx.doi.org/10.1016/j.renene.2020.03.157


Appl. Sci. 2021, 11, 11501 14 of 14

7. Hwang, Y.J.; Jang, J.Y.; Jeon, H. Overhang Effect Analysis of a Homopolar HTS Synchronous Generator Using 3D Finite Element
Method. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [CrossRef]

8. Bak, C.; Forsting, A.M.; Sorensen, N.N. The influence of leading edge roughness, rotor control and wind climate on the loss in
energy production. J. Phys. Conf. Ser. 2020, 1618, 052050. [CrossRef]

9. Shin, K.; Bang, T.; Cho, H.; Choi, J. Design and Analysis of High-Speed Permanent Magnet Synchronous Generator With Rotor
Structure Considering Electromechanical Characteristics. IEEE Trans. Appl. Supercond. 2020, 30, 1–5. [CrossRef]

10. Ludecke, F.D.; Cheng, P.W. Simplified design criteria for drivetrains in direct-drive wind turbines. J. Phys. Conf. Ser. 2020, 1618,
042024. [CrossRef]

11. Ferede, E.; Gandhi, F. Aeroelastic Analysis of a Quad-Rotor Wind Turbine. In Proceedings of the AIAA Scitech 2021 Forum,
Nashville, TN, USA, 11–15 January 2021; p. 0813.

12. Filsoof, O.T.; Hansen, M.H.; Yde, A.; Bottcher, P.; Zhang, X. A novel methodology for analyzing modal dynamics of multi-rotor
wind turbines. J. Sound Vib. 2021, 493, 115810. [CrossRef]

13. Ortolani, A.; Persico, G.; Drofelnik, J.; Jackson, A.; Campobasso, M.S. High-fidelity calculation of floating offshore wind turbines
under pitching motion. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY,
USA, 2020; Volume 84249, p. V012T42A012.

14. Kumar, C.V.S.; Vivek, E.K.; Vignesh, S. Rotordynamic Analysis and Redesign of High-Pressure Turbine Test Rig. In Proceedings of
the 6th National Symposium on Rotor Dynamics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 77–91.

15. Van der Male, P.; Van Schaik, R.; Vergassola, M.; van Dalen, K.N. Tower shadow excitation of a downwind rotor blade of a turbine
with a tubular tower. J. Phys. Conf. Ser. 2020, 1618, 032019. [CrossRef]

16. Cao, D.; Wang, L.; Chen, Y.; Huang, W. Bifurcation and chaos of the bladed overhang rotor system with squeeze film dampers.
Sci. China Ser. E Technol. Sci. 2009, 52, 709–720. [CrossRef]

17. Koo, M.; Choi, J.; Park, Y.; Jang, S. Influence of rotor overhang variation on generating performance of axial flux permanent
magnet machine based on 3-D analytical method. IEEE Trans. Magn. 2014, 50, 1–5. [CrossRef]

18. Gong, X.; Cao, D. Fuzzy proportional-integral-derivative control of an overhang rotor with double discs based on the active
tilting pad journal bearing. J. Vib. Control 2013, 19, 1487–1498. [CrossRef]

19. Kim, K.; Lee, J. Overhang effect analysis of permanent magnet machine according to the rotor types. In Proceedings of the 2006
12th Biennial IEEE Conference on Electromagnetic Field Computation, Miami, FL, USA, 30 April–3 May 2006; pp. 414–414.

20. Yu, D.; Huang, X.; Wu, L.; Fang, Y. Design and Analysis of Outer Rotor Permanent-Magnet Vernier Machines with Overhang
Structure for In-Wheel Direct-Drive Application. Energies 2019, 12, 1238. [CrossRef]

21. Seo, J.; Ro, A. Analysis and Design of Spoke-type Ferrite Permanent Magnet Motor with Rotor Overhang. In Proceedings of the
2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26–30 August 2018;
pp. 512–517.

22. Kim, H.; Jung, T. Analysis of rotor overhang effect considering load torque variance in automobile BLDC fan motor. In
Proceedings of the 2012 IEEE Vehicle Power and Propulsion Conference, Seoul, Korea, 9–12 October 2012; pp. 68–71.

23. Noyes, C.; Qin, C.; Loth, E. Pre-aligned downwind rotor for a 13.2 MW wind turbine. Renew. Energy 2018, 116, 749–754.
[CrossRef]

24. Ma, Y.; Liang, Z.; Zhang, D.; Yan, W.; Hong, J. Experimental investigation on dynamical response of an overhung rotor due to
sudden unbalance. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA,
2015; Volume 56772, p. V07BT32A009.

25. Zhao, F.; Kwon, B. Optimal design of asymmetric rotor overhang lengths in an axial-flux dual-stator permanent magnet vernier
machine. In Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, China, 11–15 May 2015;
p. 1.

26. Tamrakar, R.; Mittal, N.D.; Singh, R.K. Experimental Comparison of Response for Healthy and Cracked Overhung Rotor System.
Arab. J. Sci. Eng. 2021, 46, 11701–11710. [CrossRef]

27. Tiaki, M.M.; Hosseini, S.A.A.; Zamanian, M. Nonlinear forced vibrations analysis of overhung rotors with unbalanced disk. Arch.
Appl. Mech. 2016, 86, 797–817. [CrossRef]

28. Tamrakar, R.; Mittal, N.D. Comparison of response to unbalance of overhung rotor system for different supports. Int. J. Mech.
Eng. Technol. 2017, 8, 56–65.

29. Tamrakar, R.; Mittal, N.D. Crack detection in an overhung rotor system using external harmonic excitation. In Advances in Rotor
Dynamics, Control, and Structural Health Monitoring; Springer: Berlin/Heidelberg, Germany, 2020; pp. 159–169.

30. Capone, G. Analytical description of fluid-dynamic force field in cylindrical journal bearing. L’Energia Elettr. 1991, 3, 105–110.

http://dx.doi.org/10.1109/TASC.2020.2971437
http://dx.doi.org/10.1088/1742-6596/1618/5/052050
http://dx.doi.org/10.1109/TASC.2020.2980536
http://dx.doi.org/10.1088/1742-6596/1618/4/042024
http://dx.doi.org/10.1016/j.jsv.2020.115810
http://dx.doi.org/10.1088/1742-6596/1618/3/032019
http://dx.doi.org/10.1007/s11431-009-0039-y
http://dx.doi.org/10.1109/TMAG.2014.2324576
http://dx.doi.org/10.1177/1077546312447836
http://dx.doi.org/10.3390/en12071238
http://dx.doi.org/10.1016/j.renene.2017.10.019
http://dx.doi.org/10.1007/s13369-021-05661-0
http://dx.doi.org/10.1007/s00419-015-1063-y

	Introduction
	Modeling Process
	Modeling of the Disc
	Modeling of the Shaft Segment
	Modeling of the Bearing Force
	The Governing Equations

	Numerical Analysis of the System
	The Critical Speed of the Rotor with Overhang
	The Correlation Analysis of the Rotor with Overhang

	Experimental Test
	Experiment Descriptions
	Experiment Procedure

	Discussion and Conclusions
	References

