
applied
sciences

Article

Controllability of Fractional-Order Particle Swarm Optimizer
and Its Application in the Classification of Heart Disease

Fu-I Chou 1, Tian-Hsiang Huang 2 , Po-Yuan Yang 3, Chin-Hsuan Lin 1, Tzu-Chao Lin 4, Wen-Hsien Ho 5,6,7,*
and Jyh-Horng Chou 1,5,8,*

����������
�������

Citation: Chou, F.-I.; Huang, T.-H.;

Yang, P.-Y.; Lin, C.-H.; Lin, T.-C.; Ho,

W.-H.; Chou, J.-H. Controllability of

Fractional-Order Particle Swarm

Optimizer and Its Application in the

Classification of Heart Disease. Appl.

Sci. 2021, 11, 11517. https://doi.org/

10.3390/app112311517

Academic Editor: Minvydas

Ragulskis

Received: 14 November 2021

Accepted: 3 December 2021

Published: 5 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung 807, Taiwan; ryan.chou.0110.1111@nkust.edu.tw (F.-I.C.); migratorwing@gmail.com (C.-H.L.)

2 Department of Computer Science and Information Engineering, National Penghu University of Science
and Technology, Penghu 880, Taiwan; huangtx@gmail.com

3 Department of Intelligent Robotics, National Pingtung University, Pingtung 900, Taiwan;
pyyang@mail.nptu.edu.tw

4 Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
prochristy@gmail.com

5 Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University,
Kaohsiung 807, Taiwan

6 Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
7 Department of Mechanical Engineering, National Pingtung University of Science and Technology,

Pingtung 912, Taiwan
8 Department of Mechanical and Computer-Aided Engineering, Feng-Chia University, Taichung 407, Taiwan
* Correspondence: whho@kmu.edu.tw (W.-H.H.); choujh@nkust.edu.tw (J.-H.C.)

Abstract: This study proposes a method to improve fractional-order particle swarm optimizer to
overcome the shortcomings of traditional swarm algorithms, such as low search accuracy in a high-
dimensional space, falling into local minimums, and nonrobust results. In natural phenomena, our
controllable fractional-order particle swarm optimizer can explore search spaces in detail to obtain
high resolutions. Moreover, the proposed algorithm is memorable, i.e., position updates focus on
the particle position of previous and last generations, rendering it conservative when updating
the position, and obtained results are robust. For verifying the algorithm’s effectiveness, 11 test
functions compare the average value, overall best value, and standard deviation of the controllable
fractional-order particle swarm optimizer and controllable particle swarm optimizer; experimental
results show that the stability of the former is better than the latter. Furthermore, the solution position
found by the controllable fractional-order particle swarm optimizer is more reliable. Therefore, the
improved method proposed herein is effective. Moreover, this research describes how a heart disease
prediction application uses the optimizer we proposed to optimize XGBoost hyperparameters with
custom target values. The final verification of the obtained prediction model is effective and reliable,
which shows the controllability of our proposed fractional-order particle swarm optimizer.

Keywords: optimization method; fractional derivative; fractional-order particle swarm optimizer;
XGBoost

1. Introduction

Optimization methods involve automatically finding the best solution in a problem’s
solution space set. When converting a real problem into a mathematical model, simulating
the actual physical characteristics of the problem requires a detailed description of the
conversion process. Moreover, the mathematical model of the problem becomes more
complex. Currently, three methods exist for solving optimization problems: numerical
method, enumerative, and random search.

Numerical methods use the derivative as a technique to find the best value in the
space. For example, the traditional neural network series of algorithms is based on this

Appl. Sci. 2021, 11, 11517. https://doi.org/10.3390/app112311517 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6114-0144
https://orcid.org/0000-0001-6194-0563
https://doi.org/10.3390/app112311517
https://doi.org/10.3390/app112311517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311517
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311517?type=check_update&version=1

Appl. Sci. 2021, 11, 11517 2 of 17

method’s gradient descent to find the best parameters [1]. However, the numerical method
has two shortcomings. First, it searches for the best solution from a local point of view,
so there is no guarantee that the solution found is globally optimal. Second, numerical
methods are not applicable for search spaces that are not smooth or continuous [2,3].
However, because usually many regional optimal solutions exist in a search space that is
not smooth or continuous, it is easy to converge early in the search process and find the
optimal local solution.

The enumeration method, such as grid search, uses the objective function to test all
solutions in the search space at that level when the segmentation level is selected. This
method has a better chance of obtaining the best solution, but it requires considerable
computation time. Therefore, when the search space is ample, the enumeration method
is inefficient. The random search method is currently a commonly used optimization
method, which finds the best solution space by imitating natural or biological behavior,
and particle swarm optimization (PSO) [4] is one of the optimization methods that imitate
biological behavior.

PSO is an intelligent swarm algorithm that observes the behavior of swarm creatures.
This method is used to find the best position in the current space. After PSO was published,
many scholars proposed different methods to improve the algorithm. These methods have
been applied in many fields [5–7].

For example, Shi and Eberhart [8] proposed a constant inertia weight to improve the
moving direction of particles. Different inertial weights make it possible to find a balance
between local and global searches. Thus, the algorithm considers the best solution in the
whole domain. Shi and Eberhart [9] again proposed linearly decreasing inertia weights.
In the same year, Suganthan [10] proposed a linear decrease with dynamic characteristics
applied to individual learning parameters c1 and group learning parameters c2, which
effectively improved global search. Clerc [11,12] put forward the concept of the shrinkage
coefficient, and its idea is to change the moving direction of particles to increase local
search. Shi and Eberhart [13] proposed the maximum speed method to improve search.
Ratnaweera et al. [14] improved the method proposed by Suganthan by changing the
swarm learning parameter from linearly decreasing to linearly increasing. Chatterjee
and Siarry [15] proposed to change inertia weights in a nonlinearly decreasing way. Ko
et al. [16] extended the concept of nonlinear change to individual and group learning
parameters. They changed the individual learning parameters to nonlinear decreasing
individual learning parameters and the group learning parameters to nonlinear increasing
group learning parameters.

With many scholars proposing methods to improve the original algorithm, the par-
ticle swarm algorithm search has been dramatically improved. Since 2002, Clerc and
Kennedy [12] have used the dynamic system notation in control theory to explore the
internal operation of the particle swarm algorithm. Many scholars have also proposed
the stability of particle swarm algorithms under different conditions based on a dynamic
system representation [17–20]. In particular, in 2014, Lin [21] proposed the PSO algorithm
with controllability. The method explores the particle swarm algorithm from the viewpoint
of state controllability in dynamic systems. When the controllable conditions are met,
the particle swarm algorithm’s position and velocity vectors are controlled by its own
best solution position vector and the global best solution position vector; this makes the
convergence better than in the original particle swarm algorithm.

However, the searchability of the integer-order particle swarm algorithm proposed by
Lin [21] is poor and is unstable in high-dimensional or complex spaces. Therefore, this study
suggests combining fractional-order particle swarm optimizer and PSO algorithm with
controllability, which is called “the controllable fractional-order particle swarm algorithm”.
We can use the proposed algorithm to improve the PSO algorithm with controllability such
that it performs better in high-dimensional or complex spaces.

We need to optimize hyperparameters efficiently and systematically for machine
learning algorithms. Therefore, this study applies the “controllable fractional-order particle

Appl. Sci. 2021, 11, 11517 3 of 17

swarm algorithm” to optimize machine learning hyperparameters. We demonstrated how
to efficiently and systematically find hyperparameters in extreme gradient boosting (XG-
Boost) [22] machine learning algorithms using our recommended method. Further, we used
the heart disease data set downloaded from the UCI website. The six best hyperparameters
found using our recommended method and the hyperparameters officially recommended
by XGBoost [23] were trained and tested, and data sets were compared. Experimental re-
sults showed that the recommended method had better performance, and no false-negative
results were produced. This method can help physicians quickly determine whether a
patient has heart disease using the learned model.

2. Materials and Methods

The particle swarm algorithm was initially inspired by Kennedy and Eberhart [4] by
observing the foraging behavior of birds. It is a kind of mimic optimization algorithm with
the concept of swarm intelligence. Suppose there is a flock of birds randomly scattered
in a space where food exists, and there are many food piles of different sizes in the space.
Then, the largest food pile is the best position (Pg) in this space. First, each bird starts to
search for food piles at a random location, searches for routes with its own experience, and
records the largest food pile (Pl

i) that it has ever searched. When a particular bird finds a
better food pile than all the current bird flocks, it will notify the other bird flocks to move
toward the best food pile. Therefore, the following search route of each bird will be affected
by three factors: the direction in its own experience (the direction of its own speed), the
current direction of finding the best food pile position by itself (the direction of its own
best solution), and best food pile position direction found among all the flocks (the best
solution direction in the whole domain).

2.1. Particle Swarm Algorithm

In the theory of particle swarm algorithm, each bird in the space is regarded as a
particle in the “solution space”. The current position of each particle is considered to be a
solution to the optimization problem of the solution space, and each solution corresponds
to an answer, which is called the objective function value or fitness value of the solution
space. Each particle has its own speed (Vi) and uses its own speed direction, the best
solution (pbest) currently found by itself, and the best solution (gbest) found by the current
group to generate a new particle speed. After determining the update speed and direction
of the particles, the conditions are used to generate a new update position. Subsequently,
the value of the objective function is brought into the position of each particle to judge the
pros and cons of the current position. If it is better than the previously searched solution,
replace it. Otherwise, keep the original best solution. We used this mechanism to iteratively
search in the solution space to find the best solution in the space and used the following
Equations (1) and (2) to express the search mechanism for finding the best solution:

Vi(k + 1) = Vi(k) + c1r1

(
Pl

i (k)− pi(k)
)
+ c2r2(Pg(k)− pi(k)) (1)

pi(k + 1) = pi(k) + Vi(k + 1) (2)

where i = 1, 2, . . . , m (m denotes the number of particles); k represents the iteration index;
Vi(k) denotes the velocity vector of the i-th particle in the θ dimension; pi(k) represents
the position of the i-th particle in the θ dimension vector; Pl

i (k) denotes the position vector
of the best solution θ dimension of each iteration; Pg(k) represents the position vector of
the best solution θ dimension of the group; c1 denotes the individual learning parameter;
c2 represents the group learning parameter; r1 and r2 denote random numbers between 0
and 1; θ represents the dimensionality of the search space.

The individual learning parameter c1 and the group learning parameter c2 represent
the acceleration weights of the best solution and the best solution of the group that advances
the particle to each iteration, respectively. When the value of c is small, the particle is
allowed to perform multiple searches near the target area before reaching the best solution

Appl. Sci. 2021, 11, 11517 4 of 17

of its own or the best solution of the group in each iteration. This increases the probability
of finding the best solution in the entire domain but at the cost of more computation
power and time. When the value of c is large, the particles are allowed to reach their own
best solution or the best solution of the group at a faster speed in each iteration. This
will save some unnecessary calculations and time and improve the convergence speed.
Moreover, when the value c1 or c2 is 0, the particle swarm algorithm will have different
characteristics [24].

The first part of Equation (1) is the particle’s previous inertia, i.e., the velocity of its
previous experience. The second part is the “cognition” part, which represents the thinking
of the particle itself. Finally, the third part is the “social” part, which implies that the
information among particles is shared such that the particles can cooperate. Therefore,
the core of the particle swarm algorithm is to use these three parts to update the particle
speed and position in a linear combination and to calculate the fitness value to complete
the problem optimization.

2.2. Fractional-Order Particle Swarm Algorithm

Fractional calculus is derived from traditional calculus [25]. For example, Equation (3)
represents fractional differentiation based on the Grünwald–Letnikov definition, where D
stands for the differential operator, λ denotes a fractional-order power, and Γ is the Euler
function. According to Solteiro Pires et al. [26], if h is expressed in discrete terms, it can be
approximated as Equation (4).

Dλ[x(t)] = lim
h→0

[
1

hλ

+∞

∑
k=0

(−1)kΓ(λ + 1)x(t− kh)
Γ(k + 1)Γ(λ− k + 1)

]
(3)

Dλ[x(t)] =
1

Tλ

r

∑
k=0

(−1)kΓ(λ + 1)x(t− kT)
Γ(k + 1)Γ(λ− k + 1)

(4)

where T denotes the sampling period, and r represents the truncation order.
In contrast to the integer-order derivative as a finite series, the fractional-order deriva-

tive requires an infinite number of terms. This implies that the information obtained using
the fractional order is more global than the integer-order differentiation. Therefore, the
solution space that can be explored for the fraction order is more refined than the integer
order, and it is expected to obtain better solution space accuracy. Further, the fractional dif-
ferentiation allows the particle swarm algorithm to memorize the position. Therefore, the
velocity vector is affected by the positions of the previous and last generations. This makes
the fractional-order particle swarm algorithm more conservative in the search process,
making the solution space results more similar and stable every time.

If r = 4 is used as an example, the speed and position vectors are updated with the
following Equations (5) and (6).

Vi(k + 1) = Vi(k) + c1·r1

[
Pl

i (k)− λ·pi(k)− λ
2 (1− λ)pi(k− 1)

− 1
6 (1− λ)(2− λ)pi(k− 2)− 1

24 (1− λ)(2− λ)(3− λ)pi(k− 3)
]
+ c2·r2

·(Pg(k)− pi(k))

(5)

pi(k + 1) = pi(k) + Vi(k + 1) (6)

To improve the point of the direction from which the particles are searched, Shi
and Eberhart [8] added an inertia weight term ω to the velocity Vi(k) to facilitate the
contribution of the particle itself to the update velocity. When ω is large, the direction of the
update speed will depend on the direction of the previous generation speed. At this time,
the search direction is more stable, which improves the global search ability of the particles
in space. However, when ω is considerably large, overcorrection occurs. Consequently, the

Appl. Sci. 2021, 11, 11517 5 of 17

particle correction speed is excessively large and deviates from the better solution, resulting
in “flying” trajectories.

When ω is small, the update speed direction is dominated by the optimal local solution
and the direction of the global optimal solution. At this time, a local search capability is
provided. However, because the solution searched by the particle is not explored globally,
the obtained solution may not achieve the global best solution due to its locality. Therefore,
Shi and Eberhart [9] once again proposed a solution, changing the “constant inertia weight”
to a “linearly decreasing inertia weight.” When ω is set to a larger value in the initial stage,
the particle swarm has a better ability to expand the search to find the best solution area in
the whole domain. After the number of iterations increases, the value of ω is gradually
reduced. The particle swarm will switch from an extended search to a local search to find a
better solution in the best found so far. The formula for changing the “constant term inertia
weight ω” to “time-varying linear inertia weight ω(k)” is shown in Equation (7).

ω(k) = ωmin +
itermax − k

itermax
× (ωmax −ωmin) (7)

where k denotes the number of iterations; ωmax represents the maximum value of the
inertia weight; ωmin denotes the minimum value of the inertia weight; itermax represents
the maximum number of iterations.

To avoid excessive velocity exceeding the search space during the particle update,
Shi and Eberhart [13] used the maximum velocity method (Vmax Method) to limit particle
velocity and improve particle search capability. Among them, the value of Vmax cannot be
set too large because the particles can have a high speed, which may cause the particles
to fly out of the search range. The value of Vmax cannot be set too small either because
the particle swarm will search the space too slowly and thus will not be able to search
the global space and is limited to the best solution in a local range. The formula of the
maximum speed method is as follows:

Vi(k + 1) =
{

Vmax, Vi(k + 1) > Vmax
−Vmax, Vi(k + 1) < −Vmax

(8)

Among them, this study set Vmax to be 0.2 times of the maximum search range, i.e.,
Vmax = 0.2× Xmax.

2.3. Robust and Controllable

Combine the “linearly decreasing inertia weight” of Equation (7) with Equation (5)
and expand Equation (6) into Equations (9) and (10).

Vi(k + 1) = ω(k)·Vi(k)− (c1·r1·λ + c2·r2)pi(k)− c1·r1· λ2 (1− λ)pi(k− 1)

−c1·r1· λ6 (1− λ)(2− λ)pi(k− 2)− c1·r1· λ
24 (1− λ)(2− λ)(3− λ)pi(k− 3)

+c1·r1·Pl
i (k) + c2·r2·Pg(k)

(9)

pi(k + 1) = ω(k)·Vi(k) + (1− c1·r1·λ− c2·r2)pi(k)

−c1·r1· λ2 (1− λ)pi(k− 1)− c1·r1· λ6 (1− λ)(2− λ)pi(k− 2)

−c1·r1· λ
24 (1− λ)(2− λ)(3− λ)pi(k− 3) + c1·r1·Pl

i (k) + c2·r2·Pg(k)

(10)

Subsequently, rewrite these equations into the state Equation (11):

x(k + 1) = AI ·x(k) + BI ·u(k) (11)

where x(k) =
[
pT

i (k), pT
i (k− 1), pT

i (k− 2), pT
i (k− 3), VT

i (k)
]T ∈ Rn denotes the system

state vector; u(k) =
[

plT
i (k), pgT(k)

]T
∈ Rn represents the control input vector; i =

1, 2, . . . , m (m denotes the number of particles) and n = 5θ, while θ represents the di-

Appl. Sci. 2021, 11, 11517 6 of 17

mension for the search space, and k is the iteration index. AI denotes the system matrix,
and BI represents the input matrix, as shown in the following Equation (12):

AI =

A0 A1 A2 A3 A4
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

A5 A6 A7 A8 A9

 BI =

c1 · r1 · I c2 · r2 · I

0 0
0 0
0 0

c1 · r1 · I c2 · r2 · I

 (12)

where
A0 = (1− c1·r1·λ− c2·r2)·I

A1 = −c1·r1·
λ

2
(1− λ)·I

A2 = −c1·r1·
λ

6
(1− λ)(2− λ)·I

A3 = −c1·r1·
λ

24
(1− λ)(2− λ)(3− λ)·I

A4 = ω(k)·I

A5 = (−c1·r1·λ− c2·r2)·I

A6 = −c1·r1·
λ

2
(1− λ)·I

A7 = −c1·r1·
λ

6
(1− λ)(2− λ)·I

A8 = −c1·r1·
λ

24
(1− λ)(2− λ)(3− λ)·I

A9 = ω(k)·I

and I denotes the θ × θ unit matrix. r1 and r2 denote random numbers between 0 and 1.
Equations (9) and (10) are equivalent to Equation (11) based on Equation (12) and matrix
multiplication rules.

If each pair (AI , BI) is controllable, then the state Equation (11) is said to be robust
and controllable [27]. Suppose that a fixed fractional value λ, an inertial weight constant
reference value ω0, a volume learning parameter constant reference value c10, and a group
learning parameter constant reference value c20 are selected as the nominal values of the
fractional-order particle swarm algorithm. In that case, the equation of state (11) can be
rewritten as an uncertain linear system, i.e., the system will be transformed into a nominal
fractional-order particle swarm optimization (FPSO) combined with uncertain matrices:

x(k + 1) = (AI0 + ∆A)·x(k) + (BI0 + ∆B)·u(k) (13)

where

AI0 =

a0 a1 a2 a3 a4
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
a5 a6 a7 a8 a9

 BI0 =

c10 · I c20 · I

0 0
0 0
0 0

c10 · I c20 · I

 (14)

a0 = (1− c10·λ− c20)·I

a1 = −c10·
λ

2
(1− λ)·I

a2 = −c10·
λ

6
(1− λ)(2− λ)·I

Appl. Sci. 2021, 11, 11517 7 of 17

a3 = −c10·
λ

24
(1− λ)(2− λ)(3− λ)·I

a4 = ω(k)·I

a5 = (−c10·λ− c20)·I

a6 = −c10·
λ

2
(1− λ)·I

a7 = −c10·
λ

6
(1− λ)(2− λ)·I

a8 = −c10·
λ

24
(1− λ)(2− λ)(3− λ)·I

a9 = ω(k)·I

and ∆A and ∆B denote the uncertainty matrices of the (system matrix) AI and (input
matrix) BI , respectively, as shown in the following equation:

∆A =
n

∑
j=1

ε j Aj and ∆B =
n

∑
j=1

ε jBj (15)

In this study, a sufficient condition is proposed to explain that the linear system
with unstructured parametric uncertainties is robust and controllable: assume that the
linear interval system of Equation (11), x(k + 1) = AI ·x(k) + BI ·u(k), is controllable. If the
following conditions are true, Equations (13) and (15) are robust and controllable.

n

∑
j=1

ε j ϕj < 1 (16)

where

ϕj =

µ

(
−S−1UHEjV

[
In2 0n2×n(m−1)

]T
)

, ε j ≥ 0

−µ

(
S−1UHEjV

[
In2 0n2×n(m−1)

]T
)

, ε j < 0

 (17)

In2 denotes the identity matrix of n2 × n2, and n represents the number of uncertain
matrices. The matrices S, Ej are defined as follows:

Ej =

In 0 • • • 0 0 • • • 0 Bj
−Aj In • • • 0 0 • • • Bj 0
• −Aj • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
0 0 • • • In 0 Bj • • 0 0
0 0 • • • −Aj Bj • • • 0 0

(18)

and EI = E0 + ∑n
j=1 ε jEj allows singular value decomposition to become

EI = U
[

S 0n2×n(m−1)

]
VH (19)

where U ∈ Rn2×n2
and V ∈ Rn(2n−1)×n(2n−1) are unitary matrices, S = diag[σ1, σ2, · · · , σn2].

The singular values of EI are σ1 ≥ σ2 ≥ · · · σn2 ≥ 0. The proof of this sufficient condition is
shown in Appendix A.

2.4. Uncertain Parameter Range Corresponds to a Random Number Range

This section uses the sufficient condition proved in Appendix A to analyze the uncer-
tain linear system of the fractional-order particle swarm algorithm for finding the range of

Appl. Sci. 2021, 11, 11517 8 of 17

uncertain parameters corresponding to the range of random numbers. Herein, we selected
the maximum inertia weight ωmax of the fractional-order particle swarm algorithm to be
0.9, the minimum inertia weight ωmin to be 0.4, the individual learning parameter c1 to be 2,
and the group learning parameter c2 also to be 2. Moreover, we set the individual learning
parameter constant value c10 to 1 and the group learning parameter constant value c20 to 1.
Therefore, the following Equation (20) can be obtained:

x(k + 1) =

(
AI0 +

2

∑
j=1

ε j Aj

)
·x(k) +

(
BI0 +

2

∑
j=1

ε jBj

)
·u(k) (20)

where

AI0 =

−λI −(λ/2)(1− λ)I −(λ/6)(1− λ)(2− λ)I −(λ/24)(1− λ)(2− λ)(3− λ) ω(k)I

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

(−λ− 1)I −(λ/2)(1− λ)I −(λ/6)(1− λ)(2− λ)I −(λ/24)(1− λ)(2− λ)(3− λ) ω(k)I

A1 =

λI (λ/2)(1− λ)I (λ/6)(1− λ)(2− λ)I (λ/24)(1− λ)(2− λ)(3− λ)I 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

λI (λ/2)(1− λ)I (λ/6)(1− λ)(2− λ)I (λ/24)(1− λ)(2− λ)(3− λ)I 0

A2 =

I 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
I 0 0 0 0

B1 =

I 0
0 0
0 0
0 0
I 0

B2 =

0 I
0 0
0 0
0 0
0 I

BI0 =

I I
0 0
0 0
0 0
I I

ε1 =

[
−1 1

]
ε2 =

[
−1 1

]
and ω(k) = ωmin + ((itermax − k)/itermax) × (ωmax −ωmin). In this system, the inertia
weight parameter of each generation is a constant value, which does not affect the robust-
ness and controllability of Equation (20).

As the fractional-order particle swarm algorithm generates different values in Equa-
tion (20) based on different values of λ, the ranges of random numbers r1 and r2 corre-
sponding to ε1 and ε2, respectively, are also different. As the value of λ is usually between
0 and 2, this study breaks λ into 20 values and deduces them one by one at the intervals of
0.1. Table 1 shows the r1 and r2 for different λ values according to Equation (20), where
the random number range of r2 is between 0 and 1, and the random number range r1 will

Appl. Sci. 2021, 11, 11517 9 of 17

change as per different λ values. Among them, the range of r1 obtained with λ = 0.3 is the
widest and least conservative. Thus, the final range of r1 and r2 is{

r1 ∈ (0.20874 1]
r2 ∈ [0 1]

. (21)

Table 1. Controllable range of r1 and r2 from different λ values.

λ r1 r2

0.1
[
0.233811 1

] [
0 1

]
0.2

[
0.217891 1

] [
0 1

]
0.3

[
0.208743 1

] [
0 1

]
0.4

[
0.220596 1

] [
0 1

]
0.5

[
0.224792 1

] [
0 1

]
0.6

[
0.238046 1

] [
0 1

]
0.7

[
0.267023 1

] [
0 1

]
0.8

[
0.252359 1

] [
0 1

]
0.9

[
0.280379 1

] [
0 1

]
1

[
0.329923 1

] [
0 1

]
1.1

[
0.284115 1

] [
0 1

]
1.2

[
0.319428 1

] [
0 1

]
1.3

[
0.307748 1

] [
0 1

]
1.4

[
0.333970 1

] [
0 1

]
1.5

[
0.362764 1

] [
0 1

]
1.6

[
0.336742 1

] [
0 1

]
1.7

[
0.340463 1

] [
0 1

]
1.8

[
0.339990 1

] [
0 1

]
1.9

[
0.348875 1

] [
0 1

]
2

[
0.335730 1

] [
0 1

]
The fractional-order particle swarm algorithm using the random number of Equa-

tion (21) is called the controllability fractional-order particle swarm optimizer (CFPSO)
algorithm.

This study quotes Lin [21] when it is time to implement the controllable fractional-
order particle swarm algorithm. If it meets the conditions, it will be executed. The
conditions are as follows:{

‖pbesti(k + 1)− pbesti(k)‖ < epbesti
‖gbest(k + 1)− gbest(k)‖ < egbet

(22)

Among them, epbesti
and egbet are set to 10−4. The execution steps of the controllable

fractional-order particle swarm algorithm are as follows:
Step 1: Set the number of groups, maximum value ωmax, and minimum value ωmin of

the inertia weight of Equation (7). Then, set the individual learning parameter c1, group
learning parameter c2, fractional value λ, function evaluations, and maximum number of
iterations of Equation (7) itermax;

Step 2: Initialize the random particle position pi(0) and initial velocity of Vi(0) to 0;
Step 3: Calculate particle fitness;
Step 4: Update each particle’s best solution and global best solution;
Step 5: Check whether the condition of Equation (22) is satisfied. If it is satisfied, obtain

the controllable random number range according to Equation (21) and update Equations (6)
and (9);

Step 6: Check whether the stop condition is met; if not, go back to Step 3, Step 4, and
Step 5 until the stop condition is met.

Appl. Sci. 2021, 11, 11517 10 of 17

3. XGBoost

The integrated machine learning algorithm combines many “weak learners” into one
“strong learner” and has two integrated methods. One of the methods is “bagging” [28].
Each weak learner will randomly select some samples for independent training. The final
classification result is to calculate the category that all weak learners discriminate the most
times (majority voting). The most representative algorithm is random forest [29]. Another
method is “boosting” [30]. The weak learner has a sequence relationship. The next weak
learner will learn the information that the previous weak learner has not learned. After
repeating N times, the N weak learners are weighted and combined into a strong learner.
The most representative algorithm is the adaptive boost (AdaBoost) algorithm.

Chen and Guestrin [22] proposed the XGBoost algorithm. It combines the advantages
of bagging and boosting and introduces a regularization function to improve the boosting
method, and only optimizes the loss function. The regularization function is mainly used to
limit the complexity of the model. With the regularization function, the model will be less
complicated and is less likely to overfit. XGBoost uses a classification and regression tree
(CART) [31] to classify weak learners. CART can be applied to classification tasks because
CART uses binary segmentation, and features can be reused to generate trees. Further, it
can also be applied to regression tasks. CART uses the maximum Gini index (Gini) as a
method to select features to reduce the number of calculations.

For a given training set S, its Gini index is

Gini(S) = 1−
K

∑
k=1

(
Ck
|S|

)2
(23)

where Ck denotes a subset of samples belonging to the k-th category in S, and K represents
the number of categories. The greater the Gini index, the greater the uncertainty of the data.

CART uses a binary tree as a decision tree and only classifies node features as “yes” or
“no.” Therefore, the decision tree is equivalent to recursively dicing each feature: divide
the feature space into a finite number of units, and determine the prediction probability
distribution on these units. Thus, the overall process comprises two steps: decision tree
generation and pruning. The generating calculation step is to start from the root node
and divide the root node recursively until the stopping conditions are met. The stopping
conditions are as follows: (1) the number of samples in the node is less than the preset
threshold; (2) the Gini index of the sample set is less than the preset threshold; (3) the
depth of the decision tree meets the specified conditions; (4) after the feature is used, it
cannot be divided. The pruning step is to start pruning from the bottom of the decision
tree T0 generated using the decision tree generation algorithm and pruning one node at a
time until the root node of T0 forms a subtree sequence {T0, T1, · · · Tn}. Subsequently, the
cross-validation method predicts the subtree sequence in the verification data set, and the
best subtree Tα is selected from it.

Suppose that when a new tree fn is to be constructed in the n-th iteration, the objective
function is

L(n) =
T̃

∑
i=1

l
(

yi, ŷ(n−1)
i + fn(xi)

)
+ Ω(fn) (24)

Ω(fn) = YT̃ +
1
2

λ‖w‖2 (25)

ŷ(0)i = 0, ŷ(1)i = ŷ(0)i + f1(xi), . . . , ŷ(N)
i = ŷ(N−1)

i + fN(xi) (26)

where l(·) denotes a loss function that is a convex function; Ω(·) represents a regularization
term; ŷ(n)i denotes the model prediction for the n-th round; T̃ represents the number of leaf
nodes; fn denotes the structure of the n-th tree; Y represents the penalty coefficient for the
number of leaf nodes; λ denotes the penalty coefficient for the leaf node score; w represents
the score of each tree leaf node.

Appl. Sci. 2021, 11, 11517 11 of 17

4. Results

According to statistics from the Ministry of Health and Welfare, heart disease is ranked
second among the top 10 causes of death in Taiwan in 2018. The death toll increased by
4.5% from the previous year. Therefore, adjusting the hyperparameters of XGBoost through
the controllable fractional-order particle swarm algorithm is necessary. The trained, reliable
prediction model can assist doctors in quickly discerning whether a patient has heart
disease so that early treatment can reduce the number of deaths caused by heart damage.

4.1. Heart Disease Data Set

The UCI website provides a heart disease data set [32] with no missing data. This data
set offers 13 patient characteristics. There are five continuous features and eight category
features to predict whether the patient has heart disease. Table 2 is an introduction to the
data characteristics.

Table 2. Data characteristics.

Features Features Expression Description

Age Age
Sex Sex Female: 0, Male: 1

Chest Pain Type (Cp) Types of chest pain Typical angina: 0, Atypical angina: 1,
Nonangina: 2, Asymptomatic: 3

Resting Blood Pressure (trestbps) Blood pressure at rest (mmHg)
Serum Cholesterol (chol) Serum cholesterol content (mg/dL)

Fasting Blood Sugar (fbs) Amount of glucose in the blood on an
empty stomach (>120 mg/dL, false: 0, true: 1)

Resting Electrocardiographic
Results (restecg) ECG information at rest Normal: 0, Abnormal ST-T fluctuation: 1,

Left ventricular hypertrophy: 2

Maximum Heart Rate Achieved (thalach) Maximum number of heart beats
per minute

Exercise-Induced Angina (exang) Does angina occur during exercise No: 0, Yes: 1

Old Peak
ST-segment reduction induced by

exercise that is significantly different
from relative rest

Peak Exercise Slope (slope) Slope of the ST phase at peak exercise Rise: 1, Flat: 2, Fall: 3
Number of Major Vessels Colored Using

Fluoroscopy (ca)
Number of major blood vessels that can

be inspected using fluorescence

Thallium Scan (thal)

Information about the distribution of
blood in the blood vessel through

thallium test to check whether the blood
vessel is defective

Normal: 3, Inherent defect: 6,
Repairable defect: 7

4.2. Data Preprocessing

Standard preprocessing methods include sampling, noise reduction, normalization,
data cleaning, and feature engineering. The data preprocessing methods used herein
include standardization and feature engineering.

4.2.1. Standardization

The features in the data have different units, and the distribution ranges are different.
Thus, using original features will cause some machine learning algorithms to only focus
on the features with larger values that cannot accurately train the model. Therefore, the
feature distribution is converted to the same range through a standardized method so that
all features have the same influence when the model is learning. The commonly used
methods are z-score standardization and maximum and minimum standardization. This

Appl. Sci. 2021, 11, 11517 12 of 17

study uses maximum and minimum standardization to scale all unique values to between
0–1. The formula is as follows:

xnew =
xori − xmin
xmax − xmin

(27)

where xori denotes the original feature value; xmin represents the minimum feature value;
and xmax denotes the maximum feature value. The calculated xnew is the new feature value
between 0 and 1 after standardization.

4.2.2. Feature Engineering

In the original data, the values of the feature of discrete data may have no meaning
to each other, but they have serial properties when represented. For example, the display
of chest pain types in the data set is shown in the left half of Figure 1. Therefore, in
the learning process, distance-related algorithms will be affected and lead to erroneous
learning. Thus, through one-hot encoding, the original discrete features are expanded
into mutually independent and exclusive qualities, as shown in the right half of Figure 1.
This will make the features have the same effects on the algorithm. This study uses one-
hot encoding to expand the discrete features (such as Cp) that do not contain sequence
properties in the original features into four independent features (Cp1, Cp2, Cp3, and Cp4).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 19

methods are z-score standardization and maximum and minimum standardization. This
study uses maximum and minimum standardization to scale all unique values to between
0–1. The formula is as follows: 𝑥௪ = 𝑥 − 𝑥𝑥௫ − 𝑥 (27)

where 𝑥 denotes the original feature value; 𝑥 represents the minimum feature value;
and 𝑥௫ denotes the maximum feature value. The calculated 𝑥௪ is the new feature
value between 0 and 1 after standardization.

4.2.2. Feature Engineering
In the original data, the values of the feature of discrete data may have no meaning

to each other, but they have serial properties when represented. For example, the display
of chest pain types in the data set is shown in the left half of Figure 1. Therefore, in the
learning process, distance-related algorithms will be affected and lead to erroneous
learning. Thus, through one-hot encoding, the original discrete features are expanded into
mutually independent and exclusive qualities, as shown in the right half of Figure 1. This
will make the features have the same effects on the algorithm. This study uses one-hot
encoding to expand the discrete features (such as Cp) that do not contain sequence
properties in the original features into four independent features (Cp1, Cp2, Cp3, and Cp4).

Figure 1. Schematic of one-hot encoding.

Moreover, the information that the machine learning model can learn is increased
using derivative features. There are many ways to derive features [33]. This research
regards the results of the “unsupervised learning” K-means algorithm as new features
and incorporates them into the original features for machine learning models to learn.
Among them, we used the “Euclidean distance” as the calculation method of data
grouping and selected the results when the number of groups K = 2, K = 3, and K = 4.
Furthermore, the analysis of the principal components of projecting multidimensional
features to a lower-dimensional feature coordinate system produces new features
orthogonal to each other (which implies that the features are irrelevant). Thus, it is
possible to represent the original data with fewer features but still retain the most
important information. This study regards the projection of the original data to the new
2D coordinates as a derivative feature for the model to learn.

4.3. Application Controllable Fractional-Order Particle Swarm Algorithm
Herein, the number of populations is set to 30 groups, the number of iterations is 100

generations, and six hyperparameters in the XGBoost model are selected. We used CFPSO
to find the best location, i.e., to find the best hyperparameters to minimize the “custom
fitness” and compare the differences with the hyperparameters officially recommended
by XGBoost (XGBoost, 2021). The six types of hyperparameters include “Learning Rate,”
the “Max_depth” that each tree can grow, “lowest segmentation threshold (Gamma)”
when the leaf node is to be divided into two cotyledon nodes, “data sampling
(Subsample)” for the magnification of the data in the training set when each tree is trained,

Figure 1. Schematic of one-hot encoding.

Moreover, the information that the machine learning model can learn is increased
using derivative features. There are many ways to derive features [33]. This research
regards the results of the “unsupervised learning” K-means algorithm as new features and
incorporates them into the original features for machine learning models to learn. Among
them, we used the “Euclidean distance” as the calculation method of data grouping and
selected the results when the number of groups K = 2, K = 3, and K = 4. Furthermore,
the analysis of the principal components of projecting multidimensional features to a
lower-dimensional feature coordinate system produces new features orthogonal to each
other (which implies that the features are irrelevant). Thus, it is possible to represent the
original data with fewer features but still retain the most important information. This study
regards the projection of the original data to the new 2D coordinates as a derivative feature
for the model to learn.

4.3. Application Controllable Fractional-Order Particle Swarm Algorithm

Herein, the number of populations is set to 30 groups, the number of iterations
is 100 generations, and six hyperparameters in the XGBoost model are selected. We
used CFPSO to find the best location, i.e., to find the best hyperparameters to minimize
the “custom fitness” and compare the differences with the hyperparameters officially
recommended by XGBoost (XGBoost, 2021). The six types of hyperparameters include
“Learning Rate,” the “Max_depth” that each tree can grow, “lowest segmentation threshold
(Gamma)” when the leaf node is to be divided into two cotyledon nodes, “data sampling
(Subsample)” for the magnification of the data in the training set when each tree is trained,
“feature sampling (Colsample_bytree)” for the magnification of the data feature of the
training set when each tree is trained, and “L2 regularization parameter (Reg_lambda).”

Appl. Sci. 2021, 11, 11517 13 of 17

Table 3 shows the hyperparameter values and search ranges officially recommended
by XGBoost.

Table 3. Hyperparameters of XGBoost.

Hyper Parameters Official Recommended Value Search Region

Learning Rate 0.3
[
0.1 0.5

]
Max_depth 6

[
3 9

]
Gamma 0

[
0.01 0.2

]
Subsample 1

[
0.5 1

]
Colsample_bytree 1

[
0.5 1

]
Reg_lambda 0

[
0.1 5

]
4.3.1. Custom Fitness

Accuracy is used to evaluate the accuracy of model predictions and is a basis for
assessing the overall credibility of the model. Fβscore evaluates and weighs false positives
and false negatives through precision and recall. Among them, when β > 1, recall is β
times more important than precision. As the model is applied in the medical field, the
false-negative component is more important than the false positive, so this study set β to 2.
The formula is as follows:

Accurancy =
TP + TN

TP + TN + FP + FN
(28)

Fβscore =
1

1
1+β ·

1
Precision + β

1+β ·
1

Recall

=
(1 + β)·Precision·Recall
(β·precision) + Recall

(29)

where Precision = TP
TP+FP and Recall = TP

TP+FN . TP denotes true positive; TN represents
true negative; FP denotes false positive; FN represents false negative.

This study focuses on the accuracy and Fβscore of the validation set but also on the
accuracy and Fβscore of the training set. To prevent the model from learning the model
hyperparameters that happen to be performed better when evaluated on the validation set,
the custom fitness is set using the following equation:

Acc = 0.5·(TrainAcc + ValAcc) (30)

Fβscore = 0.5·
(

TrainFβscore + ValFβscore

)
(31)

CustomFitness =
1

0.5·
(

Acc + Fβscore
) − 1 (32)

Custom fitness is within the range
[
0 ∞

]
. The smaller the value, the better. The

execution steps of the experiment are as follows:
Step 1: Load the heart disease data set;
Step 2: Adjust the data set for preprocessing, such as standardization and one-hot

encoding, to a type that the machine learning model can learn. Use derivative features such
as K-means and PCA’s two-dimensional coordinates as new features for model learning;

Step 3: Divide the data set into three parts: 70% training data set, 15% validation data
set, and 15% test data set;

Step 4: Initialize the controllable fractional-order particle swarm optimizer (CFPSO)
position and use it as the initial input of the model hyperparameters;

Step 5: Use the training set to train the machine learning model according to the
hyperparameter settings and evaluate the accuracy and Fβscore of the model training set
and validation set to integrate into a custom objective function (custom fitness);

Step 6: Update the controllable fractional-order particle swarm algorithm’s own best
solution and global best solution according to the minimum value of the self-defined
objective function;

Appl. Sci. 2021, 11, 11517 14 of 17

Step 7: Repeat Steps 5 and 6 until the stop condition is met;
Step 8: Use the global best solution as the model’s best hyperparameters to train the

model and use the test set as the final evaluation result.

4.3.2. Experimental Results

The experimental results are shown in Table 4, which shows the evaluation index
results of the hyperparameters officially recommended by XGBoost and the best hyperpa-
rameters found by CFPSO on the training and validation sets. Table 5 shows the two results
in the test data set, and Table 6 lists the best hyperparameter values found by CFPSO.

Table 4. Evaluation index results of training and validation sets.

Accuracy Fβscore Custom Fitness

XGBoost officially recommended
hyperparameters 91.4% 89.5% 0.1056

CFPSO best hyperparameters 98.7% 98.9% 0.0120

Table 5. Evaluation index results of the test set.

Accuracy Fβscore Custom Fitness

XGBoost officially recommended
hyperparameters 84.7% 88.2% 0.1559

CFPSO best hyperparameters 91.3% 94.3% 0.0776

Table 6. The best hyperparameters found using CFPSO.

Hyperparameters Best Hyperparameters

Learning Rate 0.265201
Max_depth 7

Gamma 0.194108
Subsample 0.95

Colsample_bytree 0.63
Reg_lambda 4.846424

The experimental results show that the model trained using CFPSO to obtain the best
hyperparameters is better than the model learned using the hyperparameters officially
recommended by XGBoost. Furthermore, the accuracy, Fβscore, and custom fitness are better
than the original hyperparameter model, so CFPSO is more suitable as a reference basis for
assisting doctors in determining whether a patient has heart disease.

5. Conclusions

This study replaced PSO with FPSO. We used the control theory viewpoint to deduce
the CFPSO algorithm, rewrote the system into an uncertain linear system, and proved its
controllability. As the fractional value λ will affect the random number range, this research
disassembled λ into 20 values and deduced them one by one at intervals of 0.1. The range
obtained when λ is 0.3 was the least conservative. Therefore, the random number selected
had a wide range. This study used CFPSO to find the best hyperparameters of the model
when predicting the heart disease data set. The experimental results show that the best
hyperparameters found through CFPSO were better than the hyperparameters officially
recommended by XGBoost. Therefore, CFPSO is more suitable for helping physicians
quickly determine whether a patient has heart disease through the learned model. In
future work, variable-order fractional operators (VOFO) can be involved in this topic for
coping with complicated real-world issues because VOFO can provide the robustness and
flexibility characteristics more in control theory [34–38].

Appl. Sci. 2021, 11, 11517 15 of 17

Author Contributions: Conceptualization, F.-I.C. and T.-H.H.; methodology, P.-Y.Y.; software, C.-H.L.;
validation, P.-Y.Y. and C.-H.L.; formal analysis, W.-H.H.; investigation, J.-H.C.; resources, J.-H.C.; data
curation, T.-C.L.; writing—original draft preparation, F.-I.C.; writing—review and editing, T.-H.H.;
visualization, W.-H.H.; supervision, J.-H.C.; project administration, J.-H.C.; funding acquisition,
J.-H.C. All authors have read and agreed to the published version of the manuscript.

Funding: Publication costs are funded by the Ministry of Science and Technology, Taiwan, under
grants MOST 110-2221-E-992-091-MY3, MOST 110-2221-E-037-005, and MOST 110-2221-E-153-010.
The design and part writing costs of the study are funded by NKUST-KMU JOINT RESEARCH
PROJECT (#NKUSTKMU-110-KK-001) and the “Intelligent Manufacturing Research Center” (iMRC)
from the Featured Areas Research Center Program within the framework of the Higher Education
Sprout Project by the Ministry of Education (MOE) in Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repositoryThe data presented in
this study are openly available in UCI Machine Learning Repository at http://archive.ics.uci.edu/ml,
reference number [32].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix illustrated the proving process to the controllability of the linear system
of Equations (13) and (14).

Proof. Given rank(E) = rank
(
S−1UHEV

)
, the rank of EI (Rank) is equivalent to discussing

the rank of the following Equation (A1):

[
In2 0n2×n(m−1)

]
+

n

∑
j=1

ε jFj (A1)

where Fj = S−1UTEjV, j = 1, 2, · · · n. If the matrix has at least one nonsingular n2 × n2

submatrix, then the matrix whose rank is at least the above formula has a rank of n2 and
the sufficient condition is that the following formula is a nonsingular matrix:

G = In2 +
n

∑
j=1

ε j F̃j (A2)

where F̃j = S−1UTEjV
[

In2 0n2×n(m−1)

]T
.

According to the lemma proposed by Desoer and Vidyasagar [39].
Let ‖·‖ represent the norm of the induction matrix defined on Cn×n. For A ∈ Cn×n,

the following properties of the matrix measure µmeasure(·) are all true:

1. µmeasure(±I) = ±1, for the identity matrix I;
2. −‖A‖ ≤ −µmeasure(−A) ≤ Re(λ(A)) ≤ µmeasure(A) ≤ ‖A‖;
3. µmeasure(A + B) ≤ µmeasure(A) + µmeasure(B), for any two matrices A, B ∈ Cn×n;
4. µmeasure(αA) = αµmeasure(A), ∀α > 0, α ∈ R.

where λ(A) represents the eigenvalues of the matrix A, and Re(λ(A)) represents the
real number of λ(A). The following formula is obtained:

µmeasure

(
−∑n

j=1 ε j F̃j

)
= µmeasure

(
−∑n

j=1 ε j

(
S−1UTEjV

[
In2 0n2×n(m−1)

]))
≤ ∑n

j=1 µmeasure

(
−ε j

(
S−1UTEjV

[
In2 0n2×n(m−1)

]))
= ∑n

j=1 ε j ϕj < 1
(A3)

http://archive.ics.uci.edu/ml

Appl. Sci. 2021, 11, 11517 16 of 17

Therefore, according to the lemma proposed by Lin [40], let A ∈ Cn×n. If µmeasure(−A)
< 1, then det(I + A) 6= 0, and the following formula is obtained:

det(G) = det

(
In2 +

n

∑
j=1

ε j F̃j

)
6= 0 (A4)

Therefore, the matrix of Equation (A1) is nonsingular. It can be observed that the
matrix EI is full rank n2. Furthermore, according to the lemma proposed by Rosenbrock [41],
the uncertain linear systems of Equations (13) and (14) are robust and controllable. End of
proof. �

References
1. Abiodun, O.I.; Kiru, M.U.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana,

U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846.
[CrossRef]

2. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.
Res. 2011, 12, 2121–2159.

3. Tseng, P. Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Program. 2010,
125, 263–295. [CrossRef]

4. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

5. Khan, M.K.; Nystrom, I. A Modified particle swarm optimization applied in image registration. In Proceedings of the 20th
International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2302–2305.

6. Naderi, E.; Narimani, H.; Fathi, M.; Narimani, M.R. A novel fuzzy adaptive configuration of particle swarm optimization to solve
large-scale optimal reactive power dispatch. Appl. Soft Comput. 2017, 53, 441–456. [CrossRef]

7. Yang, C.I.; Chou, J.H.; Chang, C.K. Hybrid Taguchi-based particle swarm optimization for flowshop scheduling problem. Arab. J.
Sci. Eng. 2014, 39, 2393–2412. [CrossRef]

8. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary
Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat “No. 98TH8360”), Anchorage, AK, USA,
4–9 May 1998; pp. 69–73.

9. Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat “No. 99TH8406”), Washington, DC, USA, 6–9 July 1999; pp. 1945–1950.

10. Suganthan, P.N. Particle swarm optimiser with neighbourhood operator. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat “No. 99TH8406”), Washington, DC, USA, 6–9 July 1999; pp. 1958–1962.

11. Clerc, M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In Proceedings of the
1999 Congress on Evolutionary Computation-CEC99 (Cat “No. 99TH8406”), Washington, DC, USA, 6–9 July 1999; pp. 1951–1957.

12. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans.
Evol. Computat. 2002, 6, 58–73. [CrossRef]

13. Shi, Y.; Eberhart, R.C. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001
Congress on Evolutionary Computation (IEEE. Cat “No. 01TH8546”), Seoul, Korea, 27–30 May 2001; pp. 81–86.

14. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying
acceleration coefficients. IEEE Trans. Evol. Computat. 2004, 8, 240–255. [CrossRef]

15. Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper.
Res. 2006, 33, 859–871. [CrossRef]

16. Ko, C.N.; Chang, Y.P.; Wu, C.J. An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution. Appl.
Math. Comput. 2007, 191, 272–279. [CrossRef]

17. Chen, J.; Pan, F.; Cai, T.; Tu, X. Stability analysis of particle swarm optimization without Lipschitz constraint. J. Control. Theor.
Appl. 2003, 1, 86–90. [CrossRef]

18. Emara, H.M.; Fattah, H.A. Continuous swarm optimization technique with stability analysis. In Proceedings of the 2004 American
Control Conference, Boston, MA, USA, 30 June–2 July 2004; pp. 2811–2817.

19. Fan, W.; Cui, Z.; Ceng, J. Inertia weight selection strategy based on Lyapunov stability analysis. In Proceedings of the Ninth
International Conference on Hybrid Intelligent Systems, Shenyang, China, 12–14 August 2009; pp. 504–509.

20. Koguma, Y.; Aiyoshi, E. Statistical stability analysis for particle swarm optimization dynamics with random coefficients. Electron.
Commun. Jpn. 2012, 95, 31–42. [CrossRef]

21. Lin, C.C. Study on the Controllability of Particle Swarm Optimization Algorithm and Its Applications. Master’s Thesis, National
Kaohsiung First University of Science and Technology, Kaohsiung City, Taiwan, 2014.

http://doi.org/10.1109/ACCESS.2019.2945545
http://doi.org/10.1007/s10107-010-0394-2
http://doi.org/10.1016/j.asoc.2017.01.012
http://doi.org/10.1007/s13369-013-0756-1
http://doi.org/10.1109/4235.985692
http://doi.org/10.1109/TEVC.2004.826071
http://doi.org/10.1016/j.cor.2004.08.012
http://doi.org/10.1016/j.amc.2007.02.096
http://doi.org/10.1007/s11768-003-0014-2
http://doi.org/10.1002/ecj.10388

Appl. Sci. 2021, 11, 11517 17 of 17

22. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

23. XGBoost. Available online: https://xgboost.readthedocs.io/en/latest/parameter.html (accessed on 1 September 2021).
24. Ma, R.; Yang, L.; Zhang, Z. Analysis the characteristic of C1, C2 based on the PSO of iterative shift and trajectory of particle. Math.

Comput. 2013, 2, 109–115.
25. Solteiro Pires, E.J.; Tenreiro Machado, J.A.; Moura Oliveira, P.B.; Boaventura Cunha, J.; Mendes, L. Particle swarm optimization

with fractional-order velocity. Nonlinear Dyn. 2010, 61, 295–301. [CrossRef]
26. Solteiro Pires, E.J.; Tenreiro Machado, J.A.; de Moura Oliveira, P.B. Fractional Particle Swarm Optimization. Mathematical Methods in

Engineering; Fonseca Ferreira, N.M., Tenreiro Machado, J.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 47–56.
27. Chen, S.H.; Chou, J.H. Controllability robustness of linear interval systems with/without state delay and with unstructured

parametric uncertainties. Admin. Appl. Anal. 2013, 2013, 1–10. [CrossRef]
28. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
29. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
30. Kearns, M. Thoughts on Hypothesis Boosting. 1988; Unpublished manuscript.
31. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
32. UCI. Heart Disease Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Heart+Disease (accessed on 1 Septem-

ber 2021).
33. Zheng, A.; Casari, A. Feature Engineering for Machine Learning; O’Reilly Media, Inc.: Newton, MA, USA, 2018.
34. Zheng, X.; Wang, H. A Hidden-Memory Variable-Order Time-Fractional Optimal Control Model: Analysis and Approximation.

SIAM J. Control. Optim. 2021, 59, 1851–1880. [CrossRef]
35. Zheng, X.; Wang, H. An Error Estimate of a Numerical Approximation to a Hidden-Memory Variable-Order Space-Time Fractional

Diffusion Equation. SIAM J. Numer. Anal. 2020, 58, 2492–2514. [CrossRef]
36. Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A Math.

Phys. Eng. Sci. 2020, 476, 20190498. [CrossRef]
37. Lorenzo, C.F.; Hartley, T.T. Variable Order and Distributed Order Fractional Operators. Nonlinear Dyn. 2020, 29, 57–98. [CrossRef]
38. Samko, S.G.; Ross, B. Integraton and differentiation to a variable fractional order. Integral. Transform. Spec. Funct. 1993, 1, 277–300.

[CrossRef]
39. Desoer, C.A.; Vidyasagar, M. Feedback Systems: Input-Output Properties; SIAM: Philadelphia, PA, USA, 1975.
40. Lin, C.L. Mathematics of Modern Control Theory; Kaun Tang International Publications Ltd.: Taipei, Taiwan, 2007.
41. Rosenbrock, H.H. State-Space and Multivariable Theory; Thomas Nelson: London, UK, 1970.

https://xgboost.readthedocs.io/en/latest/parameter.html
http://doi.org/10.1007/s11071-009-9649-y
http://doi.org/10.1155/2013/346103
http://doi.org/10.1007/BF00058655
http://doi.org/10.1023/A:1010933404324
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
http://doi.org/10.1137/20M1344962
http://doi.org/10.1137/20M132420X
http://doi.org/10.1098/rspa.2019.0498
http://doi.org/10.1023/A:1016586905654
http://doi.org/10.1080/10652469308819027

	Introduction
	Materials and Methods
	Particle Swarm Algorithm
	Fractional-Order Particle Swarm Algorithm
	Robust and Controllable
	Uncertain Parameter Range Corresponds to a Random Number Range

	XGBoost
	Results
	Heart Disease Data Set
	Data Preprocessing
	Standardization
	Feature Engineering

	Application Controllable Fractional-Order Particle Swarm Algorithm
	Custom Fitness
	Experimental Results

	Conclusions
	
	References

