Halophyte Plants Cultured in Aquaponics Hold the Same Potential for Valorization as Wild Conspecifics from Donor Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Short Description of the Donor Site and Selected Halophyte Species
2.2. Aquaponics System
2.3. Stocking and Sampling of Halophytes
2.4. Fatty Acid Methyl Ester Analysis
2.5. Statistical Analysis
3. Results
3.1. Aquaponic System Characterization
3.2. Halimione portulacoides Fatty Acids Profile
3.3. Salicornia ramosissima Fatty Acids Profile
3.4. Sarcocornia perennis Fatty Acids Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The Millennium Development Goals Report; United Nations: New York, NY, USA, 2015; Available online: https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf (accessed on 25 October 2021).
- United Nations. Progress towards the Sustainable Development Goals; Report of the Secretary-General; United Nations: New York, NY, USA, 2018; Available online: https://digitallibrary.un.org/record/1627573#record-files-collapse-header (accessed on 25 October 2021).
- FAO. The State of World Fisheries and Aquaculture, Opportunities and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; Available online: http://www.fao.org/3/a-i3720e.pdf (accessed on 25 October 2021).
- European Commission. Blue Growth Opportunities for Marine and Maritime Sustainable Growth, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2012; ISBN 978-92-79-25529-8. [Google Scholar] [CrossRef]
- König, B.; Janker, J.; Reinhardt, T.; Villarroel, M.; Junge, R. Analysis of aquaponics as an emerging technological innovation system. J. Clean. Prod. 2018, 180, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Lehman, H.; Clark, E.A.; Weise, S.F. Clarifying the definition ofSustainable agriculture. J. Agric. Environ. Ethic 1993, 6, 127–143. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef] [Green Version]
- Junge, R.; König, B.; Villarroel, M.; Komives, T.; Jijakli, M.H. Strategic Points in Aquaponics. Water 2017, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Alexander, K.; Potts, T.; Freeman, S.; Israel, D.; Johansen, J.; Kletou, D.; Meland, M.; Pecorino, D.; Rebours, C.; Shorten, M.; et al. The implications of aquaculture policy and regulation for the development of integrated multi-trophic aquaculture in Europe. Aquaculture 2015, 443, 16–23. [Google Scholar] [CrossRef]
- Custódio, M.; Villasante, S.; Cremades, J.; Calado, R.; Lillebø, A.I. Unravelling the potential of halophytes for marine integrated multi-trophic aquaculture (IMTA)—A perspective on performance, opportunities and challenges. Aquac. Environ. Interact. 2017, 9, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Glenn, E.P.; Fitzsimmons, K.M.; Smith, S.E. Halophytes for the treatment of saline aquaculture effluent. Aquac. 1999, 175, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.M.; Quintã, R.; Papadimitriou, S.; Norman, L.; Rigby, M.; Thomas, D.N.; Le Vay, L. Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Res. 2012, 46, 5102–5114. [Google Scholar] [CrossRef]
- Shpigel, M.; Ben-Ezra, D.; Shauli, L.; Sagi, M.; Ventura, Y.; Samocha, T.; Lee, J. Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquac. 2013, 412-413, 52–63. [Google Scholar] [CrossRef]
- Marques, B.; Calado, R.; Lillebø, A.I. New species for the biomitigation of a super-intensive marine fish farm effluent: Combined use of polychaete-assisted sand filters and halophyte aquaponics. Sci. Total. Environ. 2017, 599-600, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Isca, V.M.; Seca, A.M.; Pinto, D.C.; Silva, H.; Silva, A.M. Lipophilic profile of the edible halophyte Salicornia ramosissima. Food Chem. 2014, 165, 330–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; Silva, M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Maciel, E.; Lillebø, A.; Domingues, P.; da Costa, E.; Calado, R.; Domingues, M.R.M. Polar lipidome profiling of Salicornia ramosissima and Halimione portulacoides and the relevance of lipidomics for the valorization of halophytes. Phytochemistry 2018, 153, 94–101. [Google Scholar] [CrossRef]
- Khan, W.A.; Chun-Mei, H.; Khan, N.; Iqbal, A.; Lyu, S.-W.; Shah, F. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids. BioMed Res. Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Simopoulos, A. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins Leukot. Essent. Fat. Acids 1999, 60, 421–429. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 Fatty Acids and Antioxidants in Edible Wild Plants. Biol. Res. 2004, 37, 263–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Tasung, A.; Tripathi, S.; Patel, P.B.; Bafna, A.M.; Patil, R.G. Aquaculture Effluent: Effect on Yield, Nutrient Content and Uptake in Salicornia bachiata Roxb. J. Aquac. Res. Dev. 2015, 6, 376. [Google Scholar]
- Webb, J.; Quintã, R.; Papadimitriou, S.; Norman, L.; Rigby, M.; Thomas, D.; Le Vay, L. The effect of halophyte planting density on the efficiency of constructed wetlands for the treatment of wastewater from marine aquaculture. Ecol. Eng. 2013, 61, 145–153. [Google Scholar] [CrossRef]
- Glenn, E.P.; Anday, T.; Chaturvedi, R.; Martinez-Garcia, R.; Pearlstein, S.; Soliz, D.; Nelson, S.G.; Felger, R.S. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ. Exp. Bot. 2013, 92, 110–121. [Google Scholar] [CrossRef]
- Maciel, E.; Leal, M.C.; Lillebø, A.I.; Domingues, P.; Domingues, M.R.; Calado, R. Bioprospecting of Marine Macrophytes Using MS-Based Lipidomics as a New Approach. Mar. Drugs 2016, 14, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Bouchard, V.; Creach, V.; Lefeuvre, J.C.; Bertru, G.; Mariotti, A. Fate of plant detritus in a European salt marsh dominated by Atriplex portulacoides (L.) Aellen. Oceans Rivers Lakes Energy Substance Transf. Interfaces 1998, 373, 75–87. [Google Scholar] [CrossRef]
- Waisel, Y. Biology of Halophytes; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Davy, A.J.; Bishop, G.F.; Mossman, H.; Redondo-Gómez, S.; Castillo, J.M.; Castellanos, E.M.; Luque, T.; Figueroa, M.E. Biological Flora of the British Isles:Sarcocornia perennis(Miller) A.J. Scott. J. Ecol. 2006, 94, 1035–1048. [Google Scholar] [CrossRef]
- Sousa, A.I.; Santos, D.B.; Da Silva, E.F.; de Sousa, L.P.; Cleary, D.F.R.; Soares, A.M.V.M.; Lillebø, A.I. ‘Blue Carbon’ and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal). Sci. Rep. 2017, 7, 41225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanova, A.; Krysanova, V.; Hesse, C.; Lillebø, A.I. Climate change impact assessment on water inflow to a coastal lagoon: The Ria de Aveiro watershed, Portugal. Hydrol. Sci. J. 2015, 60, 1–20. [Google Scholar] [CrossRef]
- Aued-Pimentel, S.; Lago, J.H.G.; Chaves, M.H.; Kumagai, E.E. Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St. Hil. Et Nauds seed oil. J. Chromatogr. A 2004, 1054, 235–239. [Google Scholar] [CrossRef]
- Anderson, M.J. Animal-sediment relationships re-visited: Characterising species’ distributions along an environmental gradient using canonical analysis and quantile regression splines. J. Exp. Mar. Biol. Ecol. 2008, 366, 16–27. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA); Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER V6: User Manual/Tutorial; PRIMER-E: Auckland, New Zealand, 2006; p. 192. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar] [CrossRef]
- Waller, U.; Buhmann, A.K.; Ernst, A.; Hanke, V.; Kulakowski, A.; Wecker, B.; Orellana, J.; Papenbrock, J. Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquac. Int. 2015, 23, 1473–1489. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche-Ksouri, W.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2011, 32, 289–326. [Google Scholar] [CrossRef]
- Barceló-Coblijn, G.; Murphy, E.J. Alpha-linolenic acid and its conversion to longer chain n−3 fatty acids: Benefits for human health and a role in maintaining tissue n−3 fatty acid levels. Prog. Lipid Res. 2009, 48, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Song, J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biol. 2019, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A.J.; Attar-Bashi, N.M.; Li, D. What is the role of α-linolenic acid for mammals? Lipids 2002, 37, 1113–1123. [Google Scholar] [CrossRef]
- He, M.; Ding, N.-Z. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1996, 1301, 7–56. [Google Scholar] [CrossRef]
- Singh, S.P.; Zhou, X.-R.; Liu, Q.; Stymne, S.; Green, A.G. Metabolic engineering of new fatty acids in plants. Curr. Opin. Plant Biol. 2005, 8, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Bertin, R.L.; Gonzaga, L.V.; Borges, G.; Azevedo, M.S.; Maltez, H.F.; Heller, M.; Micke, G.A.; Tavares, L.B.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Gunning, D.; Maguire, J.; Burnell, G. The Development of Sustainable Saltwater-Based Food Production Systems: A Review of Established and Novel Concepts. Water 2016, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: On a Monitoring Framework for the Circular Economy; European Commission: Strasbourg, France, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A29%3AFIN (accessed on 25 October 2021).
Fatty Acids | Aquaponics | |||||
---|---|---|---|---|---|---|
Edible Plant Part | Root | |||||
Spring | Summer | Autumn | Spring | Summer | Autumn | |
16:0 | 1.82 ± 0.11 | 2.35 ± 0.10 | 1.81 ± 0.04 | 1.64 ± 0.12 | 1.49 ± 0.10 | 2.01 ± 0.07 |
18:0 | 0.10 ± 0.01 | 0.15 ± 0.01 | 0.12 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.01 | 0.12 ± 0.01 |
20:0 | 0.06 ± 0.00 | 0.08 ± 0.00 | 0.08 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.12 ± 0.01 |
22:0 | 0.12 ± 0.00 | 0.20 ± 0.01 | 0.26 ± 0.01 | 0.17 ± 0.02 | 0.21 ± 0.02 | 0.38 ± 0.02 |
24:0 | 0.39 ± 0.02 | 0.51 ± 0.09 | 0.57 ± 0.02 | 0.17 ± 0.01 | 0.14 ± 0.01 | 0.28 ± 0.01 |
∑SFA | 2.49 ± 0.14 | 3.29 ± 0.21 | 2.84 ± 0.07 | 2.10 ± 0.15 | 1.97 ± 0.14 | 2.91 ± 0.12 |
16:1n-7 | ND | ND | ND | 0.09 ± 0.01 | 1.29 ± 0.11 | 0.77 ± 0.02 |
16:1n-9 | 0.17 ± 0.01 | 0.20 ± 0.01 | 0.12 ± 0.00 | ND | ND | ND |
18:1n-9 | 0.78 ± 0.03 | 1.10 ± 0.04 | 0.81 ± 0.01 | 0.34 ± 0.02 | 0.45 ± 0.02 | 0.79 ± 0.03 |
18:1n-7 | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.08 ± 0.01 | 0.50 ± 0.03 | 0.34 ± 0.02 |
20:1n-7 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.00 | ND | ND | ND |
∑MUFA | 1.03 ± 0.04 | 1.41 ± 0.05 | 1.04 ± 0.01 | 0.51 ± 0.04 | 2.24 ± 0.16 | 1.90 ± 0.07 |
16:3n-3 | 0.40 ± 0.02 | 0.25 ± 0.01 | 0.14 ± 0.00 | ND | ND | ND |
18:2n-6 | 2.41 ± 0.13 | 2.46 ± 0.12 | 2.25 ± 0.04 | 3.18 ± 0.20 | 1.91 ± 0.09 | 3.42 ± 0.10 |
18:3n-3 | 5.29 ± 0.29 | 7.11 ± 0.33 | 5.10 ± 0.08 | 0.45 ± 0.04 | 0.25 ± 0.01 | 0.71 ± 0.02 |
20:2n-6 | 0.13 ± 0.00 | 0.10 ± 0.00 | 0.10 ± 0.00 | ND | ND | ND |
∑PUFA | 8.23 ± 0.44 | 9.92 ± 0.46 | 7.59 ± 0.12 | 3.63 ± 0.24 | 2.16 ± 0.10 | 4.13 ± 0.12 |
PUFA/SFA | 3.30 | 3.01 | 2.67 | 1.73 | 1.10 | 1.42 |
Fatty Acids | Wild | |||||
---|---|---|---|---|---|---|
Edible Plant Part | Root | |||||
Spring | Summer | Autumn | Spring | Summer | Autumn | |
16:0 | 2.94 ± 0.01 | 0.97 ± 0.02 | 1.52 ± 0.08 | 0.71 ± 0.00 | 0.69 ± 0.10 | 0.46 ± 0.01 |
18:0 | 0.21 ± 0.01 | 0.07 ± 0.00 | 0.10 ± 0.00 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.00 |
20:0 | 0.11 ± 0.00 | 0.06 ± 0.00 | 0.09 ± 0.01 | 0.10 ± 0.00 | 0.10 ± 0.00 | 0.06 ± 0.00 |
22:0 | 0.21 ± 0.01 | 0.16 ± 0.00 | 0.28 ± 0.03 | 0.22 ± 0.01 | 0.39 ± 0.02 | 0.25 ± 0.01 |
24:0 | 0.57 ± 0.03 | 0.50 ± 0.04 | 1.16 ± 0.10 | 0.13 ± 0.02 | 0.19 ± 0.01 | 0.11 ± 0.01 |
∑SFA | 4.04 ± 0.06 | 1.76 ± 0.06 | 3.15 ± 0.22 | 1.21 ± 0.04 | 1.42 ± 0.14 | 0.92 ± 0.03 |
16:1n-7 | ND | ND | ND | 0.03 ± 0.00 | 0.08 ± 0.02 | 0.01 ± 0.00 |
16:1n-9 | 0.23 ± 0.00 | 0.05 ± 0.00 | 0.12 ± 0.01 | ND | ND | ND |
18:1n-9 | 1.57 ± 0.01 | 0.64 ± 0.13 | 0.67 ± 0.03 | 0.43 ± 0.01 | 0.46 ± 0.06 | 0.27 ± 0.01 |
18:1n-7 | 0.10 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.14 ± 0.03 | 0.03 ± 0.00 |
20:1n-7 | 0.07 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.00 | ND | ND | ND |
∑MUFA | 1.97 ± 0.01 | 0.76 ± 0.13 | 0.88 ± 0.04 | 0.50 ± 0.01 | 0.66 ± 0.11 | 0.31 ± 0.01 |
16:3n-3 | 0.34 ± 0.00 | 0.05 ± 0.00 | 0.12 ± 0.01 | ND | ND | ND |
18:2n-6 | 2.91 ± 0.02 | 0.80 ± 0.01 | 1.52 ± 0.07 | 1.43 ± 0.03 | 1.27 ± 0.14 | 0.96 ± 0.01 |
18:3n-3 | 7.32 ± 0.02 | 2.05 ± 0.05 | 4.03 ± 0.19 | 0.34 ± 0.01 | 0.21 ± 0.03 | 0.16 ± 0.00 |
20:2n-6 | 0.15 ± 0.00 | 0.15 ± 0.01 | 0.16 ± 0.02 | ND | ND | ND |
∑PUFA | 10.72 ± 0.04 | 3.05 ± 0.07 | 5.83 ± 0.29 | 1.77 ± 0.04 | 1.48 ± 0.17 | 1.12 ± 0.01 |
PUFA/SFA | 2.65 | 1.73 | 1.85 | 1.46 | 1.04 | 1.22 |
Fatty Acids | Aquaponics | |||||
---|---|---|---|---|---|---|
Edible Plant Part | Root | |||||
Spring | Summer | Autumn | Spring | Summer | Autumn | |
16:0 | 2.84 ± 0.09 | 2.77 ± 0.06 | 2.93 ± 0.07 | 2.98 ± 0.36 | 2.71 ± 0.00 | 1.94 ± 0.08 |
18:0 | 0.31 ± 0.01 | 0.36 ± 0.01 | 0.26 ± 0.01 | 0.13 ± 0.02 | 0.16 ± 0.00 | 0.14 ± 0.01 |
20:0 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.16 ± 0.02 | 0.13 ± 0.00 | 0.16 ± 0.01 |
22:0 | 0.17 ± 0.00 | 0.14 ± 0.00 | 0.22 ± 0.01 | 0.30 ± 0.04 | 0.26 ± 0.01 | 0.34 ± 0.01 |
24:0 | 0.29 ± 0.01 | 0.25 ± 0.00 | 0.33 ± 0.01 | 0.56 ± 0.10 | 0.37 ± 0.01 | 0.35 ± 0.01 |
∑SFA | 3.73 ± 0.11 | 3.63 ± 0.07 | 3.85 ± 0.10 | 4.13 ± 0.55 | 3.63 ± 0.02 | 2.93 ± 0.12 |
16:1n-7 | ND | ND | ND | 0.22 ± 0.03 | 1.11 ± 0.03 | 0.34 ± 0.02 |
16:1n-9 | 0.29 ± 0.01 | 0.12 ± 0.00 | 0.16 ± 0.01 | ND | ND | ND |
18:1n-9 | 0.24 ± 0.00 | 0.25 ± 0.00 | 0.33 ± 0.01 | 0.19 ± 0.03 | 0.27 ± 0.00 | 0.43 ± 0.02 |
18:1n-7 | 0.06 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.26 ± 0.04 | 0.63 ± 0.01 | 0.29 ± 0.01 |
20:1n-7 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.05 ± 0.00 | ND | ND | ND |
∑MUFA | 0.61 ± 0.01 | 0.42 ± 0.00 | 0.57 ± 0.02 | 0.67 ± 0.10 | 2.01 ± 0.04 | 1.06 ± 0.05 |
18:2n-6 | 4.28 ± 0.10 | 3.26 ± 0.05 | 4.84 ± 0.10 | 5.24 ± 0.58 | 2.21 ± 0.03 | 2.85 ± 0.10 |
18:3n-3 | 7.02 ± 0.16 | 9.19 ± 0.15 | 5.66 ± 0.18 | 1.03 ± 0.12 | 0.39 ± 0.01 | 0.66 ± 0.02 |
20:2n-6 | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.07 ± 0.00 | ND | ND | ND |
∑PUFA | 11.34 ± 0.26 | 12.48 ± 0.20 | 10.57 ± 0.28 | 6.27 ± 0.70 | 2.60 ± 0.04 | 3.51 ± 0.12 |
PUFA/SFA | 3.04 | 3.43 | 2.75 | 1.52 | 0.72 | 1.19 |
Fatty Acids | Wild | |||||
---|---|---|---|---|---|---|
Edible Plant Part | Root | |||||
Spring | Summer | Autumn | Spring | Summer | Autumn | |
16:0 | 3.49 ± 0.16 | 2.86 ± 0.05 | 2.74 ± 0.07 | 2.68 ± 0.33 | 1.03 ± 0.03 | 0.57 ± 0.04 |
18:0 | 0.32 ± 0.01 | 0.26 ± 0.00 | 0.16 ± 0.01 | 0.10 ± 0.01 | 0.05 ± 0.00 | 0.03 ± 0.00 |
20:0 | 0.11 ± 0.01 | 0.06 ± 0.00 | 0.08 ± 0.00 | ND | ND | ND |
22:0 | 0.12 ± 0.01 | 0.16 ± 0.00 | 0.26 ± 0.00 | 0.32 ± 0.05 | 0.16 ± 0.00 | 0.13 ± 0.02 |
24:0 | 0.25 ± 0.01 | 0.26 ± 0.01 | 0.32 ± 0.01 | 0.48 ± 0.08 | 0.29 ± 0.01 | 0.23 ± 0.04 |
∑SFA | 4.19 ± 0.20 | 3.60 ± 0.06 | 3.56 ± 0.09 | 3.58 ± 0.47 | 1.53 ± 0.04 | 0.96 ± 0.10 |
16:1n-7 | ND | ND | ND | 0.06 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.00 |
16:1n-9 | 0.29 ± 0.01 | 0.36 ± 0.01 | 0.21 ± 0.00 | ND | ND | ND |
18:1n-9 | 0.38 ± 0.02 | 0.26 ± 0.00 | 0.39 ± 0.01 | 0.32 ± 0.04 | 0.12 ± 0.00 | 0.08 ± 0.01 |
18:1n-7 | 0.05 ± 0.00 | 0.06 ± 0.00 | 0.11 ± 0.00 | 0.08 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.01 |
20:1n-7 | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | ND | ND | ND |
∑MUFA | 0.75 ± 0.03 | 0.74 ± 0.01 | 0.77± 0.01 | 0.46 ± 0.06 | 0.17 ± 0.00 | 0.12 ± 0.02 |
18:2n-6 | 4.31 ± 0.21 | 3.66 ± 0.06 | 4.82 ± 0.11 | 5.28 ± 0.65 | 2.09 ± 0.04 | 1.28 ± 0.09 |
18:3n-3 | 9.18 ± 0.38 | 7.96 ± 0.13 | 5.41 ± 0.12 | 0.75 ± 0.09 | 0.30 ± 0.01 | 0.25 ± 0.02 |
20:2n-6 | 0.03 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.00 | ND | ND | ND |
∑PUFA | 13.52 ± 0.59 | 11.68 ± 0.19 | 10.30 ± 0.22 | 6.03 ± 0.74 | 2.39 ± 0.05 | 1.53 ± 0.11 |
PUFA/SFA | 3.23 | 3.24 | 2.89 | 1.68 | 1.56 | 1.59 |
Fatty Acids | Aquaponics | |||||
---|---|---|---|---|---|---|
Edible Plant Part | Root | |||||
Spring | Summer | Autumn | Spring | Summer | Autumn | |
16:0 | 1.97 ± 0.05 | 2.60 ± 0.07 | 2.53 ± 0.26 | 2.15 ± 0.07 | 2.02 ± 0.05 | 2.40 ± 0.06 |
18:0 | 0.14 ± 0.00 | 0.15 ± 0.01 | 0.14 ± 0.02 | 0.10 ± 0.00 | 0.11 ± 0.00 | 0.19 ± 0.01 |
20:0 | 0.05 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.02 | 0.13 ± 0.01 | 0.13 ± 0.00 | 0.15 ± 0.00 |
22:0 | 0.08 ± 0.00 | 0.13 ± 0.00 | 0.12 ± 0.04 | 0.19 ± 0.01 | 0.23 ± 0.01 | 0.23 ± 0.01 |
24:0 | 0.13 ± 0.00 | 0.16 ± 0.00 | 0.15 ± 0.05 | 0.31 ± 0.02 | 0.29 ± 0.01 | 0.22 ± 0.01 |
∑ SFA | 2.37 ± 0.05 | 3.10 ± 0.08 | 3.00 ± 0.39 | 2.88 ± 0.11 | 2.78 ± 0.08 | 3.19 ± 0.09 |
16:1n-7 | ND | ND | ND | 0.04 ± 0.00 | 0.34 ± 0.01 | 1.28 ± 0.03 |
16:1n-9 | 0.09 ± 0.00 | 0.15 ± 0.00 | 0.22 ± 0.02 | ND | ND | ND |
18:1n-9 | 0.43 ± 0.01 | 0.46 ± 0.01 | 0.37 ± 0.05 | 0.35 ± 0.01 | 0.34 ± 0.01 | 0.49 ± 0.01 |
18:1n-7 | ND | ND | ND | 0.05 ± 0.00 | 0.26 ± 0.01 | 0.52 ± 0.01 |
∑MUFA | 0.52 ± 0.01 | 0.61 ± 0.01 | 0.59 ± 0.07 | 0.44 ± 0.01 | 0.94 ± 0.03 | 2.29 ± 0.05 |
18:2n-6 | 2.17 ± 0.05 | 2.69 ± 0.08 | 3.06 ± 0.31 | 4.75 ± 0.17 | 2.81 ± 0.09 | 3.03 ± 0.07 |
18:3n-3 | 5.49 ± 0.09 | 7.20 ± 0.18 | 6.64 ± 0.50 | 0.75 ± 0.03 | 0.40 ± 0.01 | 0.42 ± 0.01 |
∑ PUFA | 7.66 ± 0.14 | 9.89 ± 0.26 | 9.70 ± 0.81 | 5.50 ± 0.20 | 3.21 ± 0.10 | 3.45 ± 0.08 |
PUFA/SFA | 3.23 | 3.19 | 3.23 | 1.91 | 1.15 | 1.08 |
Fatty Acids | Wild | |||||
---|---|---|---|---|---|---|
Edible Plant Part | Root | |||||
Spring | Summer | Autumn | Spring | Summer | Autumn | |
16:0 | 2.83 ± 0.13 | 2.75 ± 0.17 | 1.54 ± 0.02 | 0.90 ± 0.01 | 0.72 ± 0.01 | 0.76 ± 0.03 |
18:0 | 0.18 ± 0.02 | 0.19 ± 0.02 | 0.18 ± 0.00 | 0.07 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 |
20:0 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.07 ± 0.00 | 0.19 ± 0.00 | 0.14 ± 0.01 | 0.20 ± 0.01 |
22:0 | 0.15 ± 0.01 | 0.15 ± 0.02 | 0.20 ± 0.00 | 0.36 ± 0.01 | 0.26 ± 0.01 | 0.47 ± 0.02 |
24:0 | 0.24 ± 0.02 | 0.23 ± 0.03 | 0.23 ± 0.01 | 0.49 ± 0.05 | 0.32 ± 0.02 | 0.74 ± 0.04 |
∑SFA | 3.48 ± 0.19 | 3.41 ± 0.25 | 2.22 ± 0.03 | 2.01 ± 0.07 | 1.49 ± 0.05 | 2.23 ± 0.10 |
16:1n-7 | ND | ND | ND | ND | ND | ND |
16:1n-9 | 0.24 ± 0.01 | 0.26 ± 0.01 | 0.10 ± 0.00 | ND | ND | ND |
18:1n-9 | 0.48 ± 0.02 | 0.34 ± 0.02 | 0.66 ± 0.03 | 0.34 ± 0.01 | 0.36 ± 0.00 | 0.51 ± 0.02 |
18:1n-7 | ND | ND | ND | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.08 ± 0.00 |
∑MUFA | 0.72 ± 0.03 | 0.60 ± 0.03 | 0.76 ± 0.03 | 0.40 ± 0.01 | 0.40 ± 0.01 | 0.59 ± 0.02 |
18:2n-6 | 3.32 ± 0.13 | 3.21 ± 0.21 | 3.61 ± 0.11 | 1.97 ± 0.04 | 1.49 ± 0.02 | 1.62 ± 0.06 |
18:3n-3 | 6.17 ± 0.27 | 6.19 ± 0.33 | 1.96 ± 0.02 | 0.37 ± 0.01 | 0.34 ± 0.00 | 0.34 ± 0.01 |
∑PUFA | 9.49 ± 0.40 | 9.40 ± 0.54 | 5.57 ± 0.13 | 2.34 ± 0.05 | 1.83 ± 0.02 | 1.96 ± 0.07 |
PUFA/SFA | 2.73 | 2.76 | 2.51 | 1.16 | 1.23 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, B.; Maciel, E.; Domingues, M.R.; Calado, R.; Lillebø, A.I. Halophyte Plants Cultured in Aquaponics Hold the Same Potential for Valorization as Wild Conspecifics from Donor Sites. Appl. Sci. 2021, 11, 11586. https://doi.org/10.3390/app112411586
Marques B, Maciel E, Domingues MR, Calado R, Lillebø AI. Halophyte Plants Cultured in Aquaponics Hold the Same Potential for Valorization as Wild Conspecifics from Donor Sites. Applied Sciences. 2021; 11(24):11586. https://doi.org/10.3390/app112411586
Chicago/Turabian StyleMarques, Bruna, Elisabete Maciel, Maria Rosário Domingues, Ricardo Calado, and Ana Isabel Lillebø. 2021. "Halophyte Plants Cultured in Aquaponics Hold the Same Potential for Valorization as Wild Conspecifics from Donor Sites" Applied Sciences 11, no. 24: 11586. https://doi.org/10.3390/app112411586
APA StyleMarques, B., Maciel, E., Domingues, M. R., Calado, R., & Lillebø, A. I. (2021). Halophyte Plants Cultured in Aquaponics Hold the Same Potential for Valorization as Wild Conspecifics from Donor Sites. Applied Sciences, 11(24), 11586. https://doi.org/10.3390/app112411586