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Abstract: Our present study concerns the influence of the picosecond rise-time-pulsed electromag-
netic field, and the impact of nanosecond pulsed pressure on the aggregation state of horseradish
peroxidase (HRP) as a model enzyme. The influence of a 640 kV/m pulsed electromagnetic field
with a pulse rise-time of ~200 ps on the activity and aggregation state of an enzyme is studied by the
single-molecule atomic force microscopy (AFM) method. The influence of such a field is shown to
lead to aggregation of the protein and to a decrease in its enzymatic activity. Moreover, the effect
of a shock wave with a pressure front rise-time of 80 ns on the increase in the HRP aggregation is
demonstrated. The results obtained herein can be of use in modeling the impact of electromagnetic
and pressure pulses on enzymes and on whole living organisms. Our results are also important for
taking into account the effect of pulsed fields on the body in the development of drugs, therapeutic
procedures, and novel highly sensitive medical diagnosticums.

Keywords: horseradish peroxidase; atomic force microscopy; protein aggregation; shock wave;
pulsed electromagnetic field

1. Introduction

Biological systems are often subjected to external influences. Electromagnetic fields are
now actively used in both industry and everyday life [1]. Moreover, the use of microwave
electromagnetic radiation for medical applications is discussed [2–5]. High pressure is
another type of external impact, which also takes place in nature, and can thus affect
protein structure [6]. Such external influences are known to be able to affect the protein
structure [6,7]—including the aggregation state—and other physicochemical properties of
proteins. These properties of proteins, in their turn, determine the proper functioning of
the entire organism. This is why studying the effect of electromagnetic and pressure fields
on proteins represents an actual problem of modern life science.

Regarding the aggregation state of proteins, in animals and humans, protein aggre-
gates can have either positive or negative effects. The positive effect consists of providing

Appl. Sci. 2021, 11, 11677. https://doi.org/10.3390/app112411677 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9795-7065
https://orcid.org/0000-0002-5961-7182
https://doi.org/10.3390/app112411677
https://doi.org/10.3390/app112411677
https://doi.org/10.3390/app112411677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411677
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411677?type=check_update&version=1


Appl. Sci. 2021, 11, 11677 2 of 17

proper functioning of the body; for instance, myeloperoxidase functions in dimeric form [8],
formed by functionally independent monomeric units joined by a single disulfide bond at
Cys153 [9]. Another example is glutathione peroxidase, which participates in oxidative
stress regulation and is functionally active in tetrameric form [10].

The negative effect of protein aggregation manifests itself in the form of the develop-
ment of various pathologies in the body caused by the formation of protein aggregates.
Namely, protein aggregation is known to be a cause of cardiovascular diseases [11]. Fur-
thermore, protein aggregation was reported to be associated with cancer in humans:
Xu et al. [12] reported that aggregation processes, which involve mutant p53 protein, are
associated with the development of cancer, which could thus be considered as aggregation-
associated disease. This was confirmed in the research performed by other authors [13–15].
Another well-known fact is that the formation of amyloid aggregates in the brain was
considered to lead to Parkinson’s [16] and Alzheimer’s [16–18] diseases. In this connection,
it should be, however, emphasized that certain proteins in amyloid form are relevant for
proper brain functioning: therefore, in mammals’ brain, FXR1 protein, which regulates
memory and emotions, is functioning in amyloid form [16].

Medicinal agents, intended for the treatment of diseases caused by protein aggregation,
are often non-specifically disrupting the protein aggregates. During such a non-specific
therapy, however, not only the target pathology-associated protein aggregates but also
the ones required for proper body functioning, can be destroyed. In this connection, the
revelation and investigation of factors influencing protein aggregation, the development of
methods for the assessment of this influence, and the development of novel approaches
providing specific correction of protein aggregation, represent important tasks of modern
biomedical research aimed at maintaining human health.

Regarding magnetic (MFs) and electromagnetic fields (EMFs), a lot of attention
is given to these fields with relatively long rise-times. Both extremely low frequency
(20 to 75 Hz [1,19–21]) and microwave frequency EMFs [22–24] are known to influence
protein structure and/or functionality. Regarding protein structure changes, irradiation
in 940 MHz circularly polarized EMF was shown to cause partial unfolding of adult
hemoglobin [22]. Lopes et al. [23] reported that 0.5 h-long microwave irradiation (at a
temperature of 60 ◦C and radiation power of 60 W) of horseradish peroxidase leads to
significant (~80%) loss in its enzymatic activity. Moreover, Latorre et al. have demonstrated
that just 30 s irradiation of a sample containing red beet peroxidase and polyphenoloxidase
in 2450 GHz EMF (at 450 W microwave power) causes a very significant decrease in their
enzymatic activity: namely, these authors observed 15-fold and 100-fold decrease in the
activity of red beet peroxidase and polyphenoloxidase, respectively [24]. The influence
of EMF with extremely low frequency (ELF-EMF) can either stimulate or suppress the
activity of enzymes. Therefore, Morelli et al. found that a number of membrane-associated
enzymes (alkaline phosphatase, acetylcholinesterase from blood cell membranes, acetyl-
cholinesterase from synaptosomes, phosphoglycerate kinase, and adenylate kinase) lose
their activity upon the influence of a 75 Hz ELF-EMF, while other enzymes (CaATPase,
Na/K ATPase, and succinic dehydrogenase) are virtually insensitive to such an influ-
ence [19]. Thumm et al. observed a 2-fold increase in the activity of cAMP-dependent
protein kinase in human skin fibroblasts after 1 h exposure to 20 Hz ELF-EMF (7–8 mT) [20].
Wasak et al. demonstrated that the enzymatic activity of horseradish peroxidase (HRP) can
either increase or decrease after its exposure to an extremely low frequency (1 to 50 Hz)
rotating MF, depending on the MF parameters [25]. Caliga et al. [21] observed a ~2-fold
decrease in the HRP catalytic efficiency after its incubation in a 50 Hz (2.7 mT) ELF-EMF,
while a 100 Hz (5.5 mT) ELF-EMF had virtually no effect on the enzyme. Modulation of
the activity of enzymes by MFs can be explained by the interaction of the MF with the
3D structure of the protein [26]. The number of papers reporting the effects of electric
and/or electromagnetic fields with picosecond rise-times on biological systems is quite
low. Considering the cellular level, Gao et al. [27] reported that an extremely high intensity
pulsed electric field with 150 ps rise-time is able to permeabilize biological cells. In the
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works considering the influence of pulsed electromagnetic fields at the protein level, the
studied range of pulse rise-times is limited to nanoseconds [28]. Application of pulsed
electromagnetic fields (PEMF) with nanosecond rise-times was demonstrated to enhance
the sensitivity of diagnostic systems [29]. Moreover, the possibility of the use of non-
thermal effects of low-power (from 10−5 to 10−3 W/cm2) sub-nanosecond pulsed radiation
(with a rise-time of 200 ps) for cancer therapy was reported [3]. Studies on the application
of microwave imaging for cancer diagnosis are also reported [2,4,5]. In this connection,
studying the effect of pulsed non-thermal electromagnetic radiation on enzymes represents
an important task for both fundamental and applied research, including medical and diag-
nostic applications [3]. Sinusoidal electromagnetic fields of GHz frequency were reported
to influence the activity of heme-containing enzymes [28]. We are, however, not aware of
any studies reporting such an influence from pulsed electromagnetic fields with shorter
(picosecond) rise-times; accordingly, additional research is required to investigate whether
such fields have an influence on enzymes.

Regarding pressure fields, they are also known to influence the structure and func-
tionality of proteins [6] and enzymes [6,30–33]. Similar to electromagnetic radiation, the
mechanical pressure, acting on biological objects, can be constant (hydrostatic) [6,30] or
pulsed. The effects of hydrostatic pressure on enzyme systems were extensively studied
previously. So, G. Hui Bon Hoa et al. [30] studied the impact of a constant 1000 to 3000 bar
pressure on the properties of heme-containing enzymes and demonstrated that such an
impact can lead to a change in their structure and functional activity. The latter case is
very interesting with regard to studying electron transport systems, which participate
in the metabolism of various compounds in the body [30]. In their review, Eisenmerger
and Reyes-De-Corcuera [31] discuss the effect of high (up to hundreds MPa) hydrostatic
pressure on various types of enzymes (oxidoreductases, transferases, hydrolases, and
lyases). These authors emphasize that in general, high pressure can help to stabilize en-
zymes against thermal denaturation, but at the same time, the enzymatic activity can be
either increased or suppressed depending on each specific case. Andreou et al. [32] and
Akazawa et al. [33] demonstrated that the sensitivity to high pressure is the individual
characteristic of each enzyme. In experiments performed by Andreou et al., the enzymatic
activity of polygalacturonase decreased rapidly (down to complete inactivation after 10 min
treatment) upon the action of high (up to 500 MPa) pressure, while pectinmethylesterase
retained ~70% of its initial enzymatic activity even after 20 min treatment at 800 MPa [32].
Akazawa et al. observed a decrease in β-glucosidase and lipase activities at 0.1 MPa
and higher pressures, while α-amylase exhibited higher activity at high (400 MPa) pres-
sure; these authors also demonstrated pressure-induced activation of lumbrokinase at
200 MPa and higher (up to 500 MPa) pressures [33]. Once again, in the above-mentioned
papers [6,30], studies of the pressure impact on proteins are limited to the cases with
constant pressure. In this regard, studying the influence of fast rise-time-pulsed pressure
impacts on proteins represents an actual direction of research.

Peroxidase enzyme systems are known to perform important functions in various
metabolic processes. Peroxidases pertain to heme-containing enzymes, which are well
represented in plant and animal tissues [34]. This provokes a great interest in studying
this class of enzymes. In humans, myeloperoxidase participates in atherogenesis [8] and
in oxidative stress [10]. For these considerations, a peroxidase has been employed in our
present study as a model object. Namely, horseradish peroxidase, which is comprehensively
characterized in the literature, is often employed as a model object in studies of a wide
class of peroxidases. HRP represents a glycoprotein with a molecular weight of about
40 to 44 kDa [35,36], which can form aggregates [37]. HRP catalyzes the oxidation of
many organic and inorganic compounds by hydrogen peroxide [38]. It is known that
HRP represents a D-isomer, whose structure includes 77% α-helices and 12% β-sheets [39];
its macromolecule also includes 18% to 27% of carbohydrate chains, which stabilize the
protein structure [36,40,41]. Accordingly, the structure of this enzyme is chiral (or more
exactly, pseudo-chiral).
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AFM allows one to visualize and measure the functional activity of single enzyme
molecules [42,43], thus representing a very convenient tool for the determination of their
aggregation state. This is quite useful for single-molecule enzymology. For this reason, in
our research, atomic force microscopy (AFM) was employed to study the effect of external
factors on HRP aggregation. Previously, AFM was employed to study the formation of
various protein complexes [44–53]. In parallel, in our present study, a commonly used
spectrophotometry-based technique was employed to estimate the enzymatic activity of
HRP in solution.

Our present work is aimed at the AFM investigation of the influence of short (sub-
nanosecond and nanosecond) electromagnetic (640 kV/m) and pressure (10 atm) pulses
on protein aggregation. The pulse rise-time was ~200 ps in the case of PEMF, and 80 ns
in the case of the pulsed pressure field. In the literature, such pulses were called ultra-
short electromagnetic pulses (USEMP) [54]. The parameters of the electromagnetic field
have been chosen based on the above-discussed factors, since such electromagnetic field
characteristics are interesting from a practical point of view for diagnostic applications
(for instance, for microwave imaging of cancer [4,5]). Accordingly, as discussed above, it
is important to find out whether electromagnetic fields with such characteristics have an
effect on enzymes. And herein we have studied the influence of PEMF using HRP as a
model enzyme.

It has been demonstrated that an increased aggregation of the HRP molecules is
observed after the exposure of its solution to PEMF. Moreover, the enzymatic activity of
HRP also decreased considerably after the irradiation of the enzyme solution in PEMF. We
have also demonstrated that a pressure jump, induced by the action of a fast rise-time (of
the order of 80 ns) shock wave, leads to an aggregation of the protein. The influence of
the pressure jump and the pulsed electromagnetic field on the protein aggregation state is
discussed. It has been considered that, according to the literature [55], protein aggregation
can lead to a change in circular dichroism spectra, i.e., influences stereochemical properties
of the protein molecules. This aspect is interesting due to the fact that chirality and
specific stereochemical properties of biological molecules are commonly occurring in living
organisms, however, the nature of this phenomenon is still unknown.

The results obtained herein can find their application in the development of models
describing the interaction of electromagnetic and pressure fields with enzyme systems and
with whole organisms. The data obtained can also be used in further studies aimed at
the development of safety standards regarding the practical use of electromagnetic fields.
Our results should also be taken into account in the development of novel highly sensitive
diagnosticums, intended for the revelation of diseases associated with protein aggregation,
and new medicinal agents intended for the treatment of these pathologies.

2. Materials and Methods
2.1. Chemicals and Protein

Peroxidase from horseradish (HRP; lyophilized powder) was purchased from Sigma
(St. Louis, MO, USA). 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) was pur-
chased from Sigma. Disodium hydrogen orthophosphate (Na2HPO4), citric acid, and
hydrogen peroxide (H2O2) were purchased from Reakhim (Moscow, Russia). All solutions
were prepared using deionized ultrapure water (with 18.2 MΩ × cm resistivity) obtained
with a Simplicity UV system (Millipore, Molsheim, France).

We performed all our AFM experiments with 0.1 µM (10−7 M) HRP solution in 2 mM
potassium phosphate buffer (pH 7.4). This solution was obtained by sequential tenfold
dilution of 10 µM HRP stock solution; the latter was obtained by dissolving 1 mg of initial
HRP preparation in 2.5 mL of deionized ultrapure water. The solutions under study were
placed into standard 1.5 mL test tubes.
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2.2. Experimental Setup for the Study of the Effect of the PEMF

The experimental setup was analogous to that described in detail by Sokolov et al. [56].
The setup represented an ultra-short electromagnetic pulse emitter, which comprised of a
semiconductor-based high-voltage pulse generator (HVPG; FID GmbH, Burbach, Germany)
and an antenna-feeder device (AFD), based on an array of 500 mm-long transverse elec-
tromagnetic (TEM) horn antennas. The working area, where the samples to be irradiated
were placed, was located within the antenna mouth, as shown in Figure 1A.
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E is the direction of the electric field strength vector, indicated by the thick-end arrow. The

length of the TEM horn antenna is 500 mm.

The USEMP parameters were controlled with an IPPL-L converter of pulsed electric
field strength (VNIIOFI, Moscow, Russia) [57–59].

The HVPG was intended for the excitation of the antenna array. The HVPG output
was matched with the input of the antenna array. The dimensions of the working area were
400 × 500 mm.

In the working area of the emitter, the intensity of the pulsed electric field was measured.
The pulses were recorded with an IPPL-L converter (conversion factor 5.11 × 10−4 V/(V/m),
transient characteristic rise-time 5 ps, transient characteristic duration 4.6 ns), and a strobo-
scopic oscillograph (50 GHz bandpass). Figure 1B displays an oscillogram of the ultra-short
electromagnetic pulses recorded within the antenna mouth in the point, where the test
tube—with the solution to be irradiated—was placed.

A test tube, containing 0.1 µM (10−7 M) HRP solution in 2 mM potassium phosphate
buffer (pH 7.4), was placed within the working area of the emitter (Figure 1A). The strength
of the pulsed electromagnetic field at this point was 640 kV/m, while the pulse repetition
rate was 16 Hz.

The energy supplied to the HRP enzyme solution was calculated using the equa-
tion [3]:

P(t) = [E(t)× H(t)] =
E2(t)
377

(1)

where E(t) and H(t) are the instantaneous values of the strength of the electric and magnetic
fields, respectively. The transition only to the instantaneous value of the electric field
is valid for losses in a medium, where the ratio E/H = 377 (characteristic impedance of
vacuum) is observed. The energy W, supplied to the irradiated object with the area S in
one pulse, is calculated using the following equation:

W = S
∫ T

0

E2(t)
377

dt (2)
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The average power supplied to the area S depends on the pulse repetition rate F as
follows:

<P> = W · F (3)

Based on the calculation technique described in [3], given E = 640 kV/m, one can
obtain that the energy supplied with one pulse makes up 1.3 × 10−4 J, while the average
power for a period at 16 Hz frequency amounts to 2.1 × 10−3 W.

2.3. Experimental Setup for the Study of the Effect of the Shock Wave

The shock wave was generated using an ISTRA conventional stainless steel high-
vacuum shock tube with a diameter of 108 mm, schematically shown in Figure 2 [60,61].
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Figure 2. Schematic representation of an ISTRA conventional shock tube experimental setup. Num-
bers indicate the main elements of the setup: 1 is the high-pressure chamber; 2 is the destructible
copper membrane; 3 is the low-pressure chamber; 4 is the measuring section of the low-pressure
chamber containing pressure sensors; 5 is the sample with a test tube containing a solution of HRP
enzyme placed at the end of the shock tube.

To generate a shock wave in the gas, which turned into a shock compression wave
of a sample containing a test tube with a solution of the enzyme HRP, a conventional
“ISTRA” shock tube made of stainless steel with an inner diameter of 108 mm was used.
The pressure behind the shock wave front was determined by the measured values: the
initial gas pressure, its temperature, and the velocity of the front of the incoming shock
wave, which was measured by four piezo sensors installed at known distances from the
end of the shock tube in its measuring section. The initial gas pressure, its temperature, and
the pressure of rupture of the membrane between the high-pressure chamber and the low-
pressure one were chosen in such a way that the pressure behind the shock wave, reflected
from the sample, was 10 atm, and it lasted about 4 ms before the arrival of the rarefaction
wave. The sample, with the object under study, was placed at the end of the shock tube in
the measuring section. The sample was an assembly of a metal flat cylinder, into which a
test tube with 0.1 µM (10−7 M) HRP solution in 2 mM potassium phosphate buffer (pH 7.4)
was placed, and the free space in the cylinder was filled with cured epoxy resin. The
one-dimensional shock wave propagating in the measuring section interacted with the flat
end face of the sample perpendicular to the normal to its surface. The characteristic profile
of the shock wave front in the gas was measured by the laser Schlieren method [61]. The
pressure rise-time was about 80 to 100 ns.

2.4. AFM Experiments and Sample Preparation

The experiments were carried out by the direct surface adsorption method [45]. In this
method, the protein objects to be studied adsorb onto the AFM substrate surface during
its incubation in the analyzed solution. Herein, mica sheets (SPI, West Chester, PA, USA)
were employed as AFM substrates with a hydrophilic surface. The samples for the AFM
measurements were prepared as follows. A 7 × 15 mm piece of mica sheet was immersed
into 800 µL of the analyzed 0.1 µM (10−7 M) HRP solution in 2 mM potassium phosphate
buffer (pH 7.4), which was either exposed (working experiment) or not exposed to the
field (control experiment). The mica substrate was incubated in the analyzed solution
for 10 min in a shaker (Thermomixer Comfort, Eppendorf, Germany) at 600 rpm and
room temperature. After the incubation, each substrate was first rinsed with the ultrapure
distilled water and then scanned by AFM in air at 60% air humidity. Under such conditions,
biological macromolecules were reported to retain their native structure owing to the
presence of a water layer on the surface of bare mica [62].
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The protein concentration used in the experiments was dictated by inherent limitations
of the AFM-based technique: at higher concentrations the molecules under study formed
continuous layers on the mica substrate, making the identification of individual objects
impossible. It should be emphasized that the concentration studied is still relevant physio-
logically: the concentration of glutathione peroxidase in human plasma was reported to be
~10−7 M [10].

The mica substrate surface with adsorbed HRP was visualized by AFM. AFM allows
one to measure the heights of the visualized biological macromolecules with high (down
to 0.1 nm) resolution [42,43]. At the same time, the lateral dimensions of the AFM images
of the visualized objects can be broadened due to the effect of convolution of the probe
and the objects under study, as the AFM tip has a certain curvature radius [63]. For this
reason, herein, the height of AFM images was used as a criterion for the estimation of
a change in the size of the visualized objects. All AFM experiments were performed in
tapping mode with a Titanium multimode atomic force microscope (NT-MDT, Moscow,
Russia), equipped with NSG10 cantilevers (“TipsNano”, Zelenograd, Russia; 47 to 150 kHz
resonant frequency, 0.35 to 6.1 N/m force constant). The calibration of the microscope by
height was carried out on a TGZ1 calibration grating (NT-MDT, Zelenograd, Russia; step
height 21.4 ± 1.5 nm). The total number of measured particles in each sample was no less
than 200, and the number of frames for each sample was no less than 10. The density of
protein distribution with height, ρ(h), was calculated as:

ρ(h) = (Nh/N) × 100% (4)

where Nh is the number of imaged objects with height h, and N is the total number of
imaged objects [52]. In the protein-free experiments, when the mica substrates were
incubated in protein-free ultrapure water, no objects with a height exceeding 0.5 nm were
visualized.

Similar to [52], to correctly compare the data obtained in different experiments, the
number of objects, visualized in each experiment, was normalized per a 400 µm2 area, and
the number of visualized objects was accordingly calculated using the following equation:

Nnorm = (N × 400) (n × a2) (5)

where Nnorm is the number of objects per 400 µm2, N is the total number of particles
visualized on all n AFM scans obtained in the experiment, and a is the side dimension of
each AFM scan (in our experiments, the area of each scan was 2 × 2 = 4 µm2).

2.5. Estimation of HRP Enzymatic Activity

HRP activity was estimated by conventional spectrophotometry as described in our
previous studies [64,65], following the technique reported by Sanders et al. [66]. Briefly,
ABTS was employed as a reducing substrate. Thirty microliters of 10−7 M HRP solution
was added into a 3 mL quartz cuvette (pathlength 1 cm, Agilent, Technologies Deutschland
GmbH, Waldbronn, Germany) containing 2.96 mL of 0.3 mM ABTS solution in phosphate-
citrate buffer (51 mM Na2HPO4, 24 mM citric acid, pH 5.0) and thoroughly stirred. In this
way, the final HRP concentration in the cuvette was 10−9 M. Finally, 8.5 mL of 3% (w/w)
H2O2 were added into the cuvette. The rate of change in solution absorbance was measured
at 405 nm wavelength with an Agilent 8453 UV-Visible spectrophotometer (Agilent Tech-
nologies Deutschland GmbH, Waldbronn, Germany). Spectrum acquisition was initiated
immediately upon the addition of H2O2.

3. Results

The influence of the electromagnetic field and pressure pulses on the aggregation of
HRP enzyme protein has been studied.
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3.1. AFM Study of the Effect of Pulsed Electromagnetic Field

Figure 3 displays typical AFM images obtained upon AFM scanning of the surface of
mica substrate after its incubation in working and control solutions of HRP, which were
irradiated and not irradiated in the pulsed electromagnetic field, respectively.
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Figure 3. Results of AFM study of the effect of PEMF on the HRP aggregation. (A–D) Typical AFM images (A,C) and
cross-section profiles (B,D) of the surface of mica substrate obtained after its incubation in 0.1 µM aqueous HRP solution,
which was either not irradiated (A,B) or irradiated (C,D) in PEMF. The cross-section profiles correspond to the lines
in the respective AFM images. (E) Distribution plots of the AFM-visualized objects with height ρ(h), obtained for the
PEMF-irradiated (red curve) and for the control HRP solution (black curve).
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Panel (A) displays the image obtained in the control experiment. In this experiment,
no electromagnetic impact on the analyzed enzyme solution was performed. As seen
from Figure 3A,B, in the case of the absence of an electromagnetic field impact on the
protein solution, it adsorbs onto the substrate surface in the form of compact objects, whose
height makes up 1 to 2 nm. After processing the AFM data obtained, a distribution of
the visualized objects with height ρ(h) was plotted. The ρ(h) distribution plot is shown in
Figure 3E (black curve). The ρ(h) distribution curve indicates that the maximum number of
the visualized objects have a height of about (1.0 ± 0.2) nm, while the width at half-height
makes up 0.8 nm.

The molecular weight of HRP is known to be 40 to 44 kDa [35,36]. Moreover, in previ-
ous studies, it was demonstrated that proteins of similar molecular weight—for instance,
monomers of various cytochromes P450—also have a height of about 1 to 2 nm [67,68].
For these considerations, we have concluded that the objects with a height of 1 to 2 nm,
observed during AFM scanning, can be attributed to HRP monomers. At the same time, the
ρ(h) distribution curve has an inflection point near 1.4 nm, which indicates a nonmonotonic
decrease in the ρ(h) function in this area. This indicates a contribution of aggregate objects
to the right wing of the distribution at h > 1.6 nm. Thus, the presence of HRP on the mica
substrate surface is observed in the form of a mixture of monomers and aggregates.

Figure 3C,D displays typical AFM images of the mica surface with HRP molecules,
adsorbed from the solutions irradiated in the pulsed electromagnetic field for 40 min.

As seen from Figure 3C,D, the appearance of objects with 3 to 4 nm height is observed
on the substrate surface after its incubation in HRP solution, which was irradiated in PEMF
for 40 min—in contrast to the case with the control solution. After processing the AFM
data, a ρ(h) distribution was plotted analogously to the case with the control experiment.
The resulting distribution plot is shown in Figure 3E (red curve). The obtained ρ(h) curve
indicates that the maximum number of objects, visualized in the case of PEMF-irradiated
HRP solution, have a height of about (2.8 ± 0.2) nm, while the width at half-height makes
up 3.5 nm. That is, after the irradiation of HRP enzyme solution in PEMF, the shape
of the ρ(h) distribution curve changes significantly—in comparison with that obtained
for the control HRP solution. The objects with heights from 2 to 4.5 nm, visualized on
the surface of the substrate incubated in PEMF-irradiated solution, can be attributed to
HRP aggregate structures. Thus, one can clearly observe an increase in the content of
the aggregate structures adsorbed onto the mica surface from the HRP solution after its
exposure to PEMF.

3.2. AFM Study of the Effect of Pulsed Pressure

AFM images of HRP, adsorbed onto the mica surface from its solutions before and
after the impact of the shock wave, were obtained, and corresponding distributions of the
visualized objects with height were plotted after processing the AFM images.

Figure 4 displays typical AFM images, and the ρ(h) distribution plots obtained for HRP
adsorbed from solutions before and after the impact of the shock wave. The curves shown
in Figure 4 indicate a slight increase in the number of objects with a height from 1.5 to 6 nm
after the shock wave impact—in comparison to the case with control experiments. The
appearance of larger objects indicates that a tendency of HRP protein to adsorb onto mica
with an increase in the degree of aggregation occurs after the impact of the shock wave on
its solution.
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Figure 4. Results of AFM study of the effect of the shock wave impact on the HRP aggregation. Representative AFM images
(A,C) and cross-section profiles (B,D) of the surface of mica substrate obtained after its incubation in 0.1 µM aqueous HRP
solution, which was either not subjected (A,B) or subjected (C,D) to the shock wave impact. The cross-section profiles
correspond to the lines in the respective AFM images. (E) Distribution plots of the AFM-visualized objects with height ρ(h),
obtained for the solution subjected to the shock wave impact (red curve) and for the control HRP solution (black curve).
Experimental conditions: the pressure behind the reflected shock wave was 10 atm for 4 ms, the rise-time of the shock wave
front was about 80 nsec.
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3.3. Spectrophotometry-Based Estimation of the Effect of Pulsed Electromagnetic and Presssure
Field on the Enzymatic Activity of HRP

The enzymatic activity of HRP was estimated by monitoring the time dependencies
of the solution absorbance at 405 nm (A405(t)) upon the reaction of HRP with ABTS sub-
strate employing a technique developed by Sanders et al. [66]. These spectrophotometric
measurements were performed for both the HRP sample, exposed to a 640 kV/m PEMF
with a pulse repetition rate of 16 Hz for 40 min, and the control HRP sample, which was
not exposed to PEMF. That is, the HRP solutions studied by spectrophotometry and those
studied by AFM were treated under the same conditions. Figure 5 displays the obtained
A405(t) curves.
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The A405(t) curves shown in Figure 5 indicate that the enzymatic activity of HRP,
whose solution was irradiated in PEMF for 40 min, decreased significantly (by 46%) in
comparison with the control sample. In the case of shock wave impact, we did not observe
any change in the enzymatic activity of HRP.

4. Discussion

As was noted in the introduction, in the development of novel diagnosticums intended
for the registration of protein aggregation, and medicinal agents, aimed at the regulation of
the aggregation process, it is important to study the factors, which influence the formation
of protein aggregates. In the present research, the influence of pulsed electromagnetic and
pressure fields with a very short rise-time of the front on the HRP enzyme protein has been
investigated. Namely, the effect of a non-thermal sub-nanosecond-pulsed electromagnetic
field on the aggregation state and functional activity of the enzyme has been studied. The
results obtained indicate that a 640 kV/m pulsed electromagnetic field has a certain impact
on the HRP enzyme: namely, an increased aggregation of the enzyme is observed after the
40 min incubation of its solution in this field. The change in the aggregation state of HRP,
adsorbed onto mica from PEMF-irradiated samples, indicates an alteration in the surface
structure of the protein globule, which leads to a change in the interactions between the
HRP macromolecules with the mica surface, and with the solvent upon the adsorption.
Namely, the following interactions take place in the near-surface layer of the AFM substrate
upon adsorption of HRP macromolecules onto mica:
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(1) HRP monomer—HRP monomer;
(2) HRP monomer—mica surface;
(3) HRP monomer—solvent (buffer solution).

In addition, a change in the protein structure leads to an increase in the equilibrium
constants of the above-listed processes. As a result, an increased aggregation of HRP occurs
upon its adsorption onto mica.

Moreover, the changes in the HRP structure, induced by the action of PEMF, influenced
the enzyme’s active site conformation, and thus led to a significant (46%) reduction in the
HRP functional activity.

Moreover, the impact of the pressure jump, induced by a fast rise-time (80 ns) shock
wave with a duration of 4 ms, on the HRP enzyme was studied. It has been observed that
such a pressure jump can cause a slight change in the HRP aggregation, pronounced in the
form of an increase in the number of objects with 2 to 6 nm heights, which have not been
observed in the control samples not exposed to the shock wave. That is, the effect of the
pulsed pressure on the physicochemical properties of proteins has been shown. It should be
noted that in the literature [6,30–33], the effect of a much higher (1000 to 3000 bar) constant
pressure on the stereochemical properties of heme-containing enzymes was demonstrated.
In this way, in [30,69], such studies with the example of cytochrome P450 were reported;
therein, it was shown that, indeed, such an effect takes place, leading to a decrease in the
spin state of heme iron in the substrate-bound enzyme—that is, a change in the enzyme’s
structure near its active site occurs. Analogous studies with the example of HRP were
reported in [30,69], where it was demonstrated that an increased pressure leads to an
increase in the rate of HRP association with carbon monoxide.

In our present study, we investigated the impact of a pressure jump within a narrow
(10 atm) pressure range with a ~80 ns rise-time of the front and a short (~4 ms) duration.
It was demonstrated that even within this pressure range at such short pulse durations,
the pulsed pressure can lead to a change in the physicochemical properties of the enzyme,
causing its tendency to aggregate upon adsorption onto mica.

External physicochemical impacts can also cause stereochemical changes in the struc-
ture of proteins. In particular, in heme-containing proteins, such changes can occur both in
the structure of the globule and in the vicinity of the heme group, accompanying structural
reconfigurations of the enzyme molecules. The study of changes in the stereochemical
properties of molecules of heme-containing enzymes was carried out under such physic-
ochemical impacts, as elevated temperature or addition of various substrates. In the
literature, changes in the circular dichroism spectra of heme-containing proteins, including
HRP, under the temperature and substrate influences during their catalytic cycle, were
reported [70–73]. Namely, temperature variations cause changes in the functional activity
of heme-containing proteins. Moreover, upon the interaction of HRP with a substrate
during its catalytic cycle, even a change in the chirality in the spectral range, corresponding
to the Soret band of the heme at 395 nm (where the positive sign of the circular dichroism
spectrum changes to the negative one) is observed [72]. In our present study, we observed a
significant decrease in the HRP activity after the impact of the picosecond PEMF. This can be
explained by a change in the protein molecules’ structure in the vicinity of the heme group
and, possibly, by a corresponding change in the pseudo-chirality of the protein, expressed
in the form of a change in the general structure of the (protein globule-heme) fold. Here, the
term «pseudo-chirality» is used to define an incomplete mirror alignment of right-handed
and left-handed structures, which is observed in many polymers, including proteins—in
contrast to truly chiral small molecules [74]. This phenomenon is interesting to be studied
in the future. An increase in the degree of aggregation of HRP upon its adsorption onto
mica can also be accompanied by stereochemical changes. It is interesting to point out that
the aggregation of some proteins can lead to a change in their circular dichroism spectra,
as was demonstrated in the recently published paper [55] for lysozyme and chimotrypsin.
Therein [55], a dependence of circular dichroism on the protein concentration—which is
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known to lead to a change in the degree of aggregation of the protein in accordance with
the dissociation constant Kd of the protein oligomerization reaction—was observed.

Regarding pressure impacts, it can cause stereochemical changes, leading to an in-
crease in the binding of horseradish peroxidase with carbon monoxide, and shifting the
spin equilibrium in another heme-containing enzyme, cytochrome P450—that is, causing
structural changes in the heme site, as was reported in the literature [30,69]. In our present
research, a short rise-time pulse of lower pressure leads to a change in protein aggregation,
which also is expected to be connected with a change in the protein structure. As such,
no change in the enzymatic functional activity of the protein is observed. This indicates
an insignificant change in the protein structure away from its active site. Insignificant
changes in the HRP structure, when the enzymatic activity remained unchanged, were also
observed after the impact of weak knotted electromagnetic fields, as was demonstrated in
our recent paper [64].

Our results reported herein indicate the effect of the impact of short pressure and
electromagnetic pulses on the HRP enzyme. This effect consists in an increase in the
degree of aggregation of the HRP enzyme upon its adsorption onto mica. Moreover,
in the case of electromagnetic pulses, even a decrease in the enzymatic activity of HRP
is observed. This can presumably cause stereochemical changes in the HRP structure—
including the heme site, where, according to [72], a change in the pseudo-chirality can
also be expected. Changes in stereochemical properties are planned to be investigated in
future studies by other methods. Free hemin itself is optically inactive; at the same time,
its presence within the protein globule leads to the appearance of chirality, accompanied
by an appearance of a circular dichroism spectrum in the range corresponding to the
Soret band wavelengths [72]. The chirality of proteins was shown to be important for
not only programming the chirality of the globule-prosthetic group structure but also
for programming the chirality of aggregates of protein with nanoparticles, which is not
observed for individual protein-nanoparticle structures, making these aggregate structures
optically active [74]. This opens up new conceptions regarding chirality in nature.

The effect of pulsed pressures and electromagnetic fields on enzymes, revealed with
the example peroxidase solutions, should be taken into account in the development of
models, describing physicochemical properties of proteins (in particular, the aggregation
state) under the impact of external subnanosecond rise-time-pulsed electromagnetic fields
and/or nanosecond rise-time-pulsed pressures. Various proteins, which are only function-
ally active in the oligomeric state, are known to provide proper functioning of the body.
For instance, myeloperoxidase, which participates in inflammation-associated processes,
is functionally active in the dimeric state [8], and destroying these dimers can lead to the
occurrence of pathologies. Moreover, glutathione peroxidase, which participates in the
regulation of oxidative stress in the body, is functionally active in the tetrameric state [10].
Another example is the FXR1 protein, which is involved in the regulation of memory
and emotions [16]. However, protein oligomers are also known to be involved in the
development of pathological processes in the body, such as cardiovascular [11] and onco-
logical [12–15] diseases. This should be taken into account in the development of modern
medical strategies aimed at correcting protein aggregation induced by the above-described
factors. The study of such effects on the aggregation of not only the HRP enzyme but
also other proteins is quite important for modeling pathological processes in the body.
Moreover, protein aggregation can lead to hemodynamic obstructions in small vessels. This
suggests that the influence of pulsed electromagnetic fields and pulsed pressures on the
body should be monitored. The results obtained herein should also be taken into account
in the development of novel highly sensitive diagnostic systems. Moreover, our results
on the influence of pulsed pressure and electromagnetic fields on the interaction of mica
with proteins are important to be taken into account in the development of novel methods
intended for the early diagnosis of oncological diseases in humans.
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5. Conclusions

The effect of picosecond rise-time electromagnetic radiation of non-thermal power
on horseradish peroxidase enzyme has been studied. It has been demonstrated that such
non-thermal-power radiation with a 640 kV/m field strength and a ~200 ps pulse rise-time
can cause increased aggregation of the enzyme. As such, the enzymatic activity of HRP
decreases by about 50%. In addition, it has been demonstrated that a pressure pulse with
an 80 ns rise-time of the front can also lead to a change in the protein aggregation state.
The results obtained herein are important for modeling the impact of pulsed picosecond
electromagnetic radiation and pulsed pressure on the human body, as well as for further the
development of radiation-shielding systems and safety standards regarding the practical
use of these factors. Our results can also be of use in the development of novel highly
sensitive medical diagnostic systems, intended for the early revelation of cancer in humans.
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