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Abstract: The present paper is a study of output-only modal estimation based on the stochastic sub-
space identification technique (SSI) to avoid the restrictions of well-controlled laboratory conditions
when performing experimental modal analysis and aims to develop the appropriate algorithms for
ambient modal estimation. The conventional SSI technique, including two types of covariance-driven
and data-driven algorithms, is employed for parametric identification of a system subjected to sta-
tionary white excitation. By introducing the procedure of solving the system matrix in SSI-COV in
conjunction with SSI-DATA, the SSI technique can be efficiently performed without using the original
large-dimension data matrix, through the singular value decomposition of the improved projection
matrix. In addition, the computational efficiency of the SSI technique is also improved by extracting
two predictive-state matrixes with recursive relationship from the same original predictive-state
matrix, and then omitting the step of reevaluating the predictive-state matrix at the next-time moment.
Numerical simulations and experimental verification illustrate and confirm that the present method
can accurately implement modal estimation from stationary response data only.

Keywords: operational modal analysis; ambient modal analysis; stochastic subspace identification;
singular value decomposition; stationary white noise

1. Introduction

The dynamic characteristics of a structural system, such as natural frequencies, damp-
ing ratios, and mode shapes, can be investigated through numerical and experimental
analysis. The response of a structural system is measured with a known excitation in
modal testing, which is usually performed under well-controlled laboratory conditions.
However, performing experimental modal analysis in real operating conditions may be pos-
sible, even for large and complex mechanical systems with real boundary conditions [1,2].
The modal parameters obtained theoretically under the free boundary condition can be
calculated by mathematical modeling to obtain the characteristics under arbitrary bound-
ary constraints [3]. However, experimental results obtained under specified boundary
conditions cannot be converted to other dynamic characteristics under the constraints
of other boundaries. Therefore, it is difficult to perform modal testing under practical
boundary conditions. The hammer excitation testing method is generally used to measure
the frequency response function of the structural system, and then parametric estimation is
performed to understand the dynamic characteristics of the structural system [4].

The system-identification methods described above are generally used to systemat-
ically determine or improve a mathematical model for a physical system and are imple-
mented by measuring both observed structural excitation and corresponding response
data. However, an obvious difference exists between the operating conditions of realistic
structures in practical work and a controlled-environment laboratory in modal testing [5].
Dynamic characteristics cannot fully represent the system mode under real-world oper-
ating conditions; thus, it is necessary to study how to perform modal identification of
systems in authentic operating environments [6].
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Operational modal analysis [7], which is also called “ambient modal analysis”, or
“output-only modal analysis” [8], is extensively used in modal estimation of large structures
under environmental and operational loads [9], such as vehicle suspension systems [10],
offshore wind power facilities [11], and stadium structures [12]. Many identification
methods have been extensively employed for modal extraction based on ambient response.
In 1993, the so-called natural excitation technique (NExT) was proposed and initially
used for modal estimation of structures in wind engineering, by assuming that ambient
excitation is stationary white noise [13]. It was employed to replace free or impulse
response in conventional modal estimation methods in the time domain. Subsequently, if
ambient excitation can be expressed as a product model of stationary white noise and an
envelope function describing the same variation of time history as excitation amplitude,
the corresponding response of a structural system can be converted approximately into
free response through the correlation technique [14] or random decrement technique [15].
Modal estimation can then be carried out, using the parametric estimation technique in
the time domain. In addition, by introducing the correlation matrix between ambient
response data to the procedure of ERA/DC, the ERA/DC can be effectively applied to
modal identification of structures subjected to stationary white excitation, even to the
practical recorded excitation of an earthquake [16].

In recent years, Stochastic Subspace Identification (SSI), applied with NExT, has been
widely employed to modal estimation of structures under ambient vibration [17]. The SSI
method is a time-domain modal-estimation method under the assumption of stationary
white noise for ambient excitation and can be directly applied to modal estimation from
ambient response records only [18]. There is no need for excitation measurement; thus,
it is suitable for the analysis of ambient vibration. In addition, among the algorithms
for structural health monitoring (SHM) to perform modal identification of structural
systems, SSI is a reliable time-domain technique using extended observability matrices [19].
Numerous studies have specifically concentrated on realistic applications of SSI in recent
years. The SSI-COV method uses the calculation of correlation function through the output
data and then constructs a correlation matrix. The observability matrix can be obtained by
using the singular value decomposition (SVD) of the correlation function matrix, and then
the modal parameters can be estimated. In 1993, SSI-DATA was proposed, based on the
concept of Kalman filter and space-vector projection [18]. Through the projected output
matrix obtained by projecting the output vector of the future into the output vector space
of the past, we substitute the projected output matrix into the original correlation function
matrix. The modal parameters can be estimated from the observability matrix obtained by
SVD of the projected matrix [20].

SSI-DATA is relatively complete in the derivation process under the signal length
limitation of general response data, but there are some cases where the calculation efficiency
is poor. In this study, we introduce correlation function calculations in the SSI-COV system
matrix method into the SSI-DATA algorithm. Through the SVD of the improved projection
matrix, low computational efficiency due to the large matrix dimension can be avoided. By
extracting two predictive-state matrixes with recursive relationships from the same original
predictive-state matrix, the efficiency of computation can be improved, and the step of
reevaluating the predictive-state matrix at the next-time moment can then be omitted.

2. Stochastic Subspace Identification Method

The analysis of the stochastic subspace identification (SSI) method is based on the
framework of the state-space model. To treat the measurement data with the SSI method,
this method is derived from the continuous-time domain to discrete time. Because the
SSI method can be used to process the output-only system, which is different from the
deterministic state space, we consider the input to be a stationary random process that can
be expressed as a random, discrete-time, state-space equation.

Since the identification process of the SSI method can be implemented from the
output measurement data only, the ambient excitation is assumed to be white noise input,
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without considering external force input. Therefore, the external force and the noise can
be combined as white noise. To apply the measurement data to the SSI method, we
can construct a Hankel matrix [H] composed of the measurement data, from which the
relationship between the different measurement channels and different sampling times are
as follows:

[H]2li×j =
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2li×j

=

 [Yp](li)×j
· · · · · · · · · · · ·
[Yf ](li)×j

 = [α]2li×2n[X̂]2n×j (1)

where the upper half of this matrix is called “the past” and denoted [Yp], and the lower
half of the matrix is called “the future” and is denoted [Yf ] [16].

A conditional mean for Gaussian processes can be completely described by its co-
variance. Since the shifted data matrices are also defined as covariance, the projection
can be calculated directly. Note that the state matrix estimated by Kalman filter, and the
state-space model can be constructed by the measured output vector used to estimate the
predictive-state matrix [X̂i]. The projection matrix [Ω] can be expressed as a product of
the observability matrix [α] and the predictive-state matrix [X̂i] of the Kalman filter in the
following [18]:

[Ω] = E
(
[Yf ][Yp]

T
)(

E
(
[Yp][Yp]

T
))⊕

[Yp]

= [α]li×2n[X̂i]2n×j

(2)

where

[α]li×2n =


[C]

[C][A]
. . .

[C][A]i−1


li×2n

(3)

[X̂i]2n×j =
[

x̂i x̂i+1 · · · x̂i+j−1

]
2n×j

(4)

[C] is the output/observation matrix; ⊕ is Moore–Penrose pseudoinverse; [A] is the system
matrix; E[·] is the expectation operator. In the first line of Equation (2), the first four
matrices in the product introduce the covariance between channels at different time delays,
and the last matrix in this product defines the conditions. By using the SVD analysis and
choosing the effective singular-value number, [Ω] can be expressed in minimum order
realization as:

[Ω] = [U][∆][V]T

=
(
[U1] [U2]

)( [∆1]
0

0
[∆2] ≈ 0

)(
[V1]

T

[V2]
T

)
≈ [U1]li×2n[∆1]2n×2n[V1]

T
2n×j

(5)

where [U] and [V] are both unitary matrixes, and [∆] is a matrix containing singular values.
The dimension of [∆1] can, in general, be employed to estimate the system order or number
of poles. However, in practical work, the partial diagonal terms of the singular-value
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matrix [∆] may be nonzero, produced by noise from the procedure of data acquisition and
numerical truncation.

Through the elimination of partial matrix [∆2], consisting of the smaller singular
values, a minimum realization is obtained that results in a minimum order system rep-
resenting the structural system. In Equation (5), we can, therefore, choose the number
of effective singular values to obtain the minimum order realization through the SVD
analysis of [Ω]. From Equations (2) and (5), with appropriate partitioning of [α] and [X̂i],
the following equations can be written:

[α] = [U1][∆1]
s

[X̂i] = [∆1]
t[V1]

T (6)

where s + t = 1. Indeed, one possible choice is [α] = [U1][∆1]
1/2 and [X̂i] = [∆1]

1/2[V1]
T ,

which appears to make both [α] and [X̂i] balanced.
However, poor computational efficiency may occur, caused by relatively large di-

mensions of [Ω]. In this paper, we construct the data matrix [Ω][Ω]T composed of [Ω],
and perform the SVD analysis of [Ω][Ω]T to determine the order of a structural system
to be identified. It can be shown that the eigenvalue of [Ω][Ω]T is the square roots of the
eigenvalues of ([Ω][Ω]T)([Ω][Ω]T), and that the corresponding eigenvectors of [Ω][Ω]T

are the same as those of ([Ω][Ω]T)([Ω][Ω]T). The dimension li× j of [Ω] can be reduced
to the dimension li × li of ([Ω][Ω]T)([Ω][Ω]T), where j >> li. Based on the above, the
efficiency of modal estimation can be improved, and system order can be determined
through the SVD analysis of ([Ω][Ω]T)([Ω][Ω]T).

In addition, to further improve the efficiency of the SSI method, we consider extracting
the predictive-state matrixes [X̂extract1] and [X̂extract2] with a recursive relationship directly
from the original predictive-state matrix [X̂i], as described next. From Equation (2), the
predictive-state matrix [X̂i] can be obtained from the observation matrix [α] in the following:

[X̂i] = [α]⊕[Ω]

=
[

x̂i x̂i+1 · · · x̂i+j−3 x̂i+j−2 x̂i+j−1

]
2n×j

(7)

From the measured stationary responses at n stations on a structure under test, we
define a system matrix [A], such that

[A][X̂extract1] = [X̂extract2] (8)

where [X̂extract1] is a predictive-state matrix of measured response from [X̂i], and [X̂extract2]
is a predictive-state matrix of time-delayed response from [X̂i] as follows

[X̂extract1] =
[

x̂i x̂i+1 · · · x̂i+j−3 x̂i+j−2

]
2n×j−1

[X̂extract2] =
[

x̂i+1 · · · x̂i+j−3 x̂i+j−2 x̂i+j−1

]
2n×j−1

(9)

Therefore, following almost the same procedure as used in Equation (7), the sys-
tem matrix [A] can be obtained through the least-squares method. By extracting the
predictive-state matrixes [X̂extract1] and [X̂extract2] with a recursive relationship directly
from the original predictive-state matrix [X̂i], we can then avoid the step of reevaluating
the predictive-state matrix at the next-time moment in the conventional SSI method, which
can further improve the computational efficiency of the SSI method.

We can further solve the eigenproblem of the system matrix [A] to obtain the dynamic
characteristics of the system, and the characteristic equation can be written as:

[A][Ψ] = [Ψ][Λ] (10)
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where [Ψ] consists of eigenvectors, i.e., mode shapes, and [Λ] contains eigenvalues λi. The
relationship between discrete-time matrix [A] and continuous-time matrix [AS] can be
expressed as:

[A] = e [AS ]∆t ∈ R 2n×2n (11)

Denote the eigenvalues of [A] and [AS] as λi and λsi, respectively. The relationship
between λi and λsi can then be expressed as

λi = eλsi∆t (12)

Through the eigenvalue analysis associated with the continuous-time system matrix,
[AS], the eigenvalues λsi can be obtained as:

λsi = −ωiξi ± jωi

√
1− ξi

2 (13)

Set the eigenvalues λsi of continuous-time system matrix [AS]

λsi = ai + jbi (14)

The natural frequencies ωi and damping ratios ξi of the structural system can be
obtained as:

ωi =
√

ai
2 + bi

2

ξi = − ai√
ai

2+bi
2

(15)

Consequently, the parametric estimation of structures can be implemented through
the eigenvalue analysis associated with the system matrix, [AS], once the system matrix
[AS] is obtained through the least-squares estimate from measured response data.

3. Numerical Simulations and Experimental Verification
3.1. Six DOF Chain Model of a Cantilever Beam

To illustrate and confirm the validity of the proposed method in this paper, we first
consider a numerical example of a chain model with six degrees of freedom (6-DOF) to
simulate a cantilever beam, as shown schematically in Figure 1. The masses m1, m2, m3,
m4, m5, and m6 for the 6-DOF chain model are equal to 2, 2, 2, 2, 3, and 4 kg. The stiffnesses
k1, k2, k3, k4, k5, and k6 are equal to 1, 1, 1, 1, 2, and 3 N/m, respectively. The damping
matrix [C] of the system is in the form of [C] = 0.1[M] + 0.001[K]N·s

m , which indicates that
this structure contains proportional damping because of damping matrix [C], expressed
as the linear combination of the mass matrix [M] and stiffness matrix [K]. The excitation
force is simulated as stationary white noise, which is approximately generated as a zero-
mean band-pass noise [21], whose frequency range is from 0 to 50 Hz, and the standard
deviation, i.e., power spectrum density, is 0.04 N2·s/rad. The sampling interval is chosen
as ∆t = 0.01 s, and the sampling period, as shown in Figure 2, is T = Nt·∆t = 1310.72 s,
where Nt was chosen as 217. The cut-off frequency, ωc is 314.15 rad/s, and the resolution in
frequency domain ∆ω is 4.79 × 10−3 rad/s. The sampling interval is chosen as 0.01 s, and
the sampling period is 150 s. Through Newmark’s method, the displacement responses of
the system are obtained and then employed for modal estimation through the modified SSI
method.
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By introducing the procedure of solving the system matrix in SSI-COV, in conjunction
with SSI-DATA, we can increase the computational efficiency without using the original
large-dimension data matrix, through the singular value decomposition of the improved
projection matrix. To make the number of modes evaluated through the SSI algorithm
equal to or greater than the number of modes to be identified, the dimensions of the Hankel
matrix must be not less than the system order to be identified (li ≥ 2n). Through the
channel expansion technique, we set the number of expansion channels to 20.

In practical engineering analysis, a continuum structure has an infinite number of
degrees of freedom and modes; thus, the dimensions of the Hankel matrix depend on the
number of modes to be identified. The projection matrix, [Ω] is obtained by Hankel matrix
calculation. The SVD analysis of the projection matrix [Ω] can then be performed, and the
number of singular values is employed to determine the order of system to be identified.
In Figures 3 and 4, the distribution of the singular values of [Ω][Ω]T shows a relatively
more obvious drop than those of [Ω] around the singular value number 12 and can be
further employed to estimate the system order and the number of modes to be identified.
In addition, the SVD analysis of [Ω][Ω]T can be employed to reduce a greater number of
calculations, rather than performing the SVD of [Ω] or system matrix [A]. A comparison
of the computational efficiency of SVD between [Ω] and [Ω][Ω]T for different sampling
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points is shown in Table 1, in which we clearly see the computation time of SVD of [Ω] is
much longer than that of [Ω][Ω]T , especially for [Ω] with high dimensions. In addition,
through the stabilization diagram of different polynomial orders constructed by identified
natural frequency, corresponding to eigenvalues from the frequency response function
matrix with different polynomial orders, estimation results can then be sorted as either
structural or fictitious modes. In addition, the number of structural modes can clearly be
seen to be six, as shown in Figure 5.

Table 1. Comparison of computation time of SVD of [Ω] and [Ω][Ω]T for different sampling points
as well as matrix multiplication processing time for [Ω][Ω]T .

Sampling Points
Computation Time (s) of SVD Matrix Multiplication

Processing Time for [Ω][Ω]T[Ω] [Ω][Ω]T

212 0.570 0.000574 0.0003616

213 2.217 0.000760 0.0005376

214 9.074 0.001219 0.0009967

215 37.197 0.003244 0.0029074

216 Out of memory 0.003264 0.0030135

217 Out of memory 0.006189 0.0059404

Central processing unit (CPU) is Intel® Core™ i7-9700K CPU @ 3.60 GHz. Random-access memory (RAM) is
64.0 GB.
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Figure 5. Typical plot of the stabilization diagram of stationary response of first DOF of a 6-DOF chain model of a cantilever
beam.

In the stabilization diagram, a clear “location” of modal frequency obviously exists,
even though no obvious peaks appear among close modes in the frequency response
function because of modal interference. The system matrix, [A], can be obtained from
Equations (9)–(11), and the modal parameters can then be estimated through the eigenvalue
analysis of system matrix, [A], as summarized in Tables 2 and 3, where we clearly see the
well-estimated structural modal parameters through the Modified Stochastic Subspace
Identification (MSSI) method of both [Ω] and [Ω][Ω]T . Note that the MSSI method is a
combination of the conventional SSI method and SVD analysis. A comparison between
the exact and identified mode shapes is shown in Figure 6, and the corresponding Modal
Assurance Criterion (MAC) [22] values evaluated are shown in Figure 7, where good
agreement is observed.
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Table 2. Identification results of 6-DOF chain model through Modified Stochastic Subspace Identifi-
cation (MSSI) method from projection matrix [Ω].

Mode
Natural Frequency (rad/s) Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 5.03 5.04 0.09 1.25 1.38 10.39

2 13.45 13.39 0.41 1.04 1.17 11.73

3 19.80 19.71 0.41 1.24 1.23 0.92

4 26.68 26.56 0.44 1.52 1.47 3.59

5 31.65 31.18 1.48 1.74 1.79 2.78

6 33.72 33.46 0.78 1.84 1.89 3.18

Table 3. Identification results of 6-DOF chain model through Modified Stochastic Subspace Identifi-
cation (MSSI) method from the data matrix [Ω][Ω]T constructed by projection matrix.

Mode
Natural Frequency (rad/s) Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 5.03 5.04 0.08 1.25 1.38 8.97

2 13.45 13.39 0.42 1.04 1.17 10.11

3 19.80 19.71 0.42 1.24 1.23 2.47

4 26.68 26.56 0.47 1.52 1.47 4.88

5 31.65 31.18 1.50 1.74 1.79 1.15

6 33.72 33.46 0.78 1.84 1.89 1.19
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3.2. Six DOF Railway Vehicle Model with Modal Interference

In the previous examples, only a proportionally damped structure is considered.
Actually, the hypothesis of proportional damping, although frequently considered in the
literature, is difficult to be found in practice in real mechanical systems [23,24]. To study the
feasibility and validity of the proposed method for relatively complex structural systems,
we consider a linear 6-DOF railway vehicle model with viscous damping [25], as shown
schematically in Figure 8. The mass matrix M, stiffness matrix K, and the damping matrix
C of the system are given as follows [26]:

M =



1200 0 0 0 0 0
0 850 0 0 0 0
0 0 4125 0 0 0
0 0 0 125000 0 0
0 0 0 0 850 0
0 0 0 0 0 1220

kg
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K =



k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 −k3L 0 0

0 −k3 k3 + k4 k3L− k4L −k4 0
0 −k3L k3L− k4L k3L2 + k4L2 k4L 0
0 0 −k4 k4L k4 + k5 −k5
0 0 0 0 −k5 k5 + k6

N/m

C =



c1 + c2 −c2 0 0 0 0
−c2 c2 + c3 −c3 −c3L 0 0

0 −c3 c3 + c4 c3L− c4L −c4 0
0 −c3L c3L− c4L c3L2 + c4L2 c4L 0
0 0 −k4 c4L c4 + c5 −c5
0 0 0 0 −c5 c5 + c6

N·s/m

in which K1 = 3× 107 N/m, K2 = 106 N/m, K3 = 6× 106 N/m, K4 = 6× 106 N/m,
K5 = 106 N/m, K6 = 3 × 107 N/m, L = 8.53 m, c1 = 0, c2 = 6 × 103 N·s/m, c3 =
1.8× 104 N·s/m, c4 = 1.8× 104 N·s/m, c5 = 6× 103 N·s/m, and c6 = 0. This railway
structural system has the features of relatively high modal damping levels for third and
fourth modes, and a pair of closely spaced fifth and sixth modes. Note that this railway
structure has non-proportional damping, because damping matrix, C, cannot be expressed
as the linear combination of the mass matrix, M, and stiffness matrix, K. The stationary
white noise in the previous numerical example is still used as the excitation force acting
the 6th mass of the railway vehicle system. The sampling interval is set as 0.01 s, and the
sampling period is 110 s. Then, using Newmark’s method, the displacement responses
obtained are employed for modal estimation using the modified SSI method proposed in
this paper.
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It should be noted that the number of modes to be identified serves to determine
the dimensions of the Hankel matrix. Using the channel expansion technique, we set
the number of expansion channels at 20. The dimensions of the Hankel matrix are not
less than the order of the system to be identified, thus satisfying the condition that the
number of modes evaluated in the SSI algorithm is not less than the number of modes
to be identified. The SVD analysis of the projection matrix, which is obtained from the
Hankel matrix calculation, can then be implemented, and the number of singular values is
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employed to determine the order of the system to be identified. Around the 12th singular
value, an obvious drop showed in the distribution of singular values associated with the
data matrix [Ω][Ω]T constructed by projection matrix [Ω] from stationary response data,
as shown in Figure 9. It can be estimated that the order of the system, i.e., the number of
modes to be identified, is 12.
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Figure 9. Distribution of the singular values associated with a data matrix, [Ω][Ω]T , constructed by projection matrix, [Ω],
from stationary responses of a railway vehicle model..

Compared with the efficiency when performing the SVD of the system matrix [A], com-
putation can be reduced by implementing SVD analysis of data matrix [Ω][Ω]T constructed
from the projection matrix [Ω]. As shown in Figure 10, from the stabilization diagram
corresponding to different modal orders, it can be observed that the number of structural
modes to be identified is six, and serious modal interference can be observed between
the last two close modes. The system matrix, [A], can be found using Equations (9)–(11),
and the modal parameters can then be determined through Equations (12)–(15). Table 4
presents the well-implemented modal estimation through eigenvalue analysis of the system
matrix, [A]. A comparison between the exact and identified mode shapes is shown in
Figure 11, and the corresponding MAC values evaluated are shown in Figure 12, where
good agreement is observed.

Table 4. Identification results of railway vehicle through Modified Stochastic Subspace Identification
(MSSI) method.

Mode
Natural Frequency (Hz) Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 2.79 2.79 0.00 4.89 4.89 0.01

2 3.71 3.71 0.00 6.62 6.62 0.01

3 16.55 16.53 0.09 16.65 16.62 0.17

4 19.27 19.25 0.11 18.78 18.74 0.24

5 25.36 25.30 0.21 1.74 1.74 0.42

6 25.57 25.51 0.21 1.75 1.75 0.43
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Figure 10. Typical plot of the stabilization diagram of stationary responses of 1st DOF of a 6-DOF
chain model of a railway vehicle.
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Figure 11. Comparison between the identified mode shapes and the exact mode shapes of 6-DOF
chain model of a railway vehicle subjected to stationary white noise: (a) 1st mode shape; (b) 2nd
mode shape; (c) 3rd mode shape; (d) 4th mode shape; (e) 5th mode shape; (f) 6th mode shape.
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Figure 12. Typical plot of the Modal Assurance Criterion (MAC) for the identified mode shapes and
exact mode shapes of 6-DOF chain model of a railway vehicle.

Due to the experimental restrictions of economic cost and structural geometry in the
practical measurement of structural response, the number of sensors sited on the structures
to record response data is not usually sufficient for the overall degrees of freedom of a
structure to be identified. This may cause problems of incomplete measurement of the
degrees of freedom of the identified mode-shape vector. To address this issue, we also
implement modal estimation from the incomplete modal-information data obtained due
to insufficient measurement channels; thus, only response data of the first, third, and
fifth DOF of the railway system subjected to ambient excitation in the previous numerical
example are employed to implement modal estimation. The modal estimation results are
shown in Table 5. The modal parameters estimated by the proposed method and the exact
results are in good agreement, because the errors in both natural frequencies and damping
ratios are less than 1%. Thus, we confirm the effectiveness of the proposed method under
the likely practical conditions of insufficient measurement information.

Table 5. Identification results of railway vehicle through Modified Stochastic Subspace Identification
(MSSI) method from incomplete modal-information measurement data.

Mode
Natural Frequency (rad/s) [Ω] Damping Ratio (%)

Exact MSSI Error (%) Exact MSSI Error (%)

1 2.79 2.79 0.00 4.89 4.89 0.01

2 3.71 3.71 0.00 6.62 6.62 0.01

3 16.55 16.53 0.09 16.65 16.62 0.16

4 19.27 19.25 0.12 18.78 18.73 0.27

5 25.36 25.30 0.21 1.74 1.74 0.42

6 25.57 25.51 0.21 1.75 1.75 0.42

3.3. Experimental Validation of a Cantilever Beam

To further validate the effectiveness of the method proposed in this paper, an actual
beam structure of free boundary is used for the experiment, as shown in Figure 13. Brüel &
Kjær RT Pro Photon 7.41 data acquisition system, PCB 208C02 force sensor (with a sensitiv-
ity of 112,410 mV/kN, a measurement range of 0.4448 kN, a low frequency response (−5%)
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of 0.001 Hz, and an upper frequency limit of 36,000 Hz), and Polytec OFV-5000 Modular
Vibrometer (having a frequency range of DC-24 MHz with velocities up to ±10 m/s and
displacements from the picometer to meter range) are used for measuring response sig-
nal. The simulated nonstationary excitation through Teledyne LeCroy T3AFG40 signal
generator is imported into the Modal Shop K20070E01 vibration exciter, and the vibration
shaker excites the cantilever beam structure. A typical white noise with an approximately
consistent-power spectral density was synchronized with the shaker voltage time history
and recorded, as shown in Figure 14, as provided from the waveform source panel in the
RT Pro Photon 7.41 data acquisition system. Currently, an OMA-based roving different
directions of sensor head of laser doppler vibrometer is performed to measure the actual
modal properties of the beam structure by the data acquisition device, including four
channels, only twenty measurement positions on the actual aluminum alloy beam were
marked, as shown in Figure 15, and the shaker excitation impacts acted as the third location
of the beam.
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Figure 15. Twenty measurement positions marked on the actual aluminum alloy beam.

The length, width, and height of the beam structure used for this paper are 512.8,
25.5, and 3.0 mm, respectively, the mass is 104.97 g, and the material is 5052-0 aluminum
alloy. In addition, the “exact” modal parameters are obtained from the data of auto power
spectrum of stationary response and cross power spectrum of stationary excitation and
response by using ME’Scope software. Note that “exact” stationary excitation is a built-in
stationary white noise generated from Brüel & Kjær RT Pro Photon 7.41 data acquisition
system is imported into the Modal Shop K20070E01 electrodynamic shaker to excite the
cantilever beam structure. The natural frequencies of the first four modes are about 10.85,
70.32, 176.31, and 290.31 Hz, as listed in Table 6. Finally, the modal parameters obtained
are used to compare the identification results of MSSI, as shown in Table 6 and Figure 16.
It is observed that the frequency errors are less than 15%, Figure 16 shows the identified
mode shapes which are approximately coincident with “exact” mode shapes, and the MAC
values are larger than 0.77. This means that the proposed method is effective on modal
identification in practical application.

Table 6. Identification results of a practical cantilever beam through Modified Stochastic Subspace
Identification (MSSI) method.

Mode
Natural Frequency (rad/s)

MAC
Exact MSSI Error (%)

1 10.85 10.98 1.22 1.00

2 70.32 70.53 0.30 1.00

3 176.31 159.00 9.82 0.95

4 290.31 246.30 15.16 0.77
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4. Conclusions

The topic of this paper was a study of ambient modal analysis based on the stochas-
tic subspace identification technique (SSI). The paper aimed to develop the appropriate
algorithms for output-only modal analysis to overcome difficulties when performing ex-
perimental modal analysis (EMA). As a modification of SSI, we introduced the procedure
of solving the system matrix in SSI-COV in conjunction with SSI-DATA, allowing modal
estimation to be well implemented. A system matrix can, therefore, be obtained directly
from the observability matrix without evaluating the predictive-state matrix, and this will
improve the efficiency of computation.

In addition, we extracted predictive-state matrixes with recursive relationships directly
from the same original predictive-state matrix, and then omitted the step of reevaluating the
predictive-state matrix at the next-time moment to improve the computational efficiency of
the SSI method. In addition, through the SVD analysis of a data matrix [Ω][Ω]T , evaluated
by the projection matrix, [Ω], the modal estimation can be effectively performed, and the
corresponding computational efficiency can be improved.

By solving the system matrix through the observability matrix and constructing a new
predictive-state matrix composed from the original measured data matrix, the procedure of
modal estimation can be simplified, and the modal parameters can be effectively identified,
even for a structural system having closely spaced modes and relatively high damping. Fur-
thermore, the proposed modified SSI algorithm is applicable to the parametric estimation
of structures with incomplete modal information obtained from insufficient measurement
channels. In addition, the computational efficiency of the SSI method can be improved
due to the non-uniqueness of the observability matrix. However, the need for white noise
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excitation is still a main limitation to be resolved in the proposed method from ambient
response, and many mechanical systems are expected to be excited by significantly different
frequency content, in particular, by specific harmonics [27,28]. The actual limitations and
the applicability of the proposed method to real mechanical systems could be considered
for discussion in future work. Through numerical simulations and experimental verifi-
cation, we illustrated and validated the effectiveness of the proposed method for modal
estimation of structural systems from stationary ambient response data only.
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