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Abstract: Synchrosqueezing transform (SST) can effectively improve time-frequency precision and
resolution by squeezing time-frequency spectra via instantaneous frequencies, and it has been ap-
plied in many diverse disciplines; however, the precision of estimated instantaneous frequencies
during SST is usually affected by the time-sample interval of the inputted signal; this usually leads to
low-precision or inaccurate SST results and limits its further application. To obtain high-precision
and high-resolution SST results with high efficiency, we propose a high-precision and high-resolution
SST via time-frequency instantaneous phases (HSST); in HSST, time-frequency instantaneous phases
with period-jumps removal are used for high-precision instantaneous frequencies estimation and
SST. Two synthetic signal examples show that HSST can minimize the impact of the time-sample
interval to achieve high-precision and high-resolution SST results with high efficiency. A real 3D
seismic data application demonstrates that HSST has fantastic performance in time-frequency pre-
cision and resolution enhancement, and it can be widely used in digital signals processing and
interpretation fields.

Keywords: synchrosqueezing transform; instantaneous frequency; time-sample interval; instantaneous
phase; period-jumps; high-precision; high-resolution

1. Introduction

The classical time-frequency methods, such as short-time Fourier transform (STFT) [1],
wavelet transform [2,3], S transform [4,5], generalized S transform [6], modified short-time
Fourier transform (MSTFT) [7–9], synchrosqueezing transform (SST) [10–21], and so on,
have been developed into a mature set of techniques for non-linear and non-stationary
digital signals analysis, processing, and interpretation.

Compared with these classical time-frequency methods [1–9], SST can effectively
improve time-frequency precision and resolution by time-frequency spectra reassignment
via instantaneous frequencies, and this makes SST more suitable for non-linear and non-
stationary signals. However, precisions of estimated instantaneous frequencies during SST
are decreased with the increasing time-sample interval of the inputted signal; this usually
leads to low-precision or inaccurate SST results [15,18,19,21] and limits its further application.

To obtain high-precision and high-resolution SST results, Oberlin et al. proposed a
second-order SST via STFT [15], Huang et al. proposed a second-order SST via S trans-
form [18], Pham and Meignen proposed a high-order SST via STFT [19]. In second-order
SST, instantaneous phases of the inputted signal are considered second-order functions of
time and expressed by second-order Taylor expansion, and second-order partial derivatives
of time-frequency spectra with respect to time and frequency are used for instantaneous
frequency estimation; whereas in high-order SST, instantaneous phases are considered
high-order functions of time and expressed by high-order Taylor expansion, and high-order
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partial derivatives of time-frequency spectra with respect to time and frequency are used
for instantaneous frequency estimation. The second or high-order functions cannot well
match complex instantaneous phases or complex signals, and second or high-order SST
has low processing efficiency due to multiple times partial derivative operations. In order
to minimize the impact of the time-sample interval to obtain desirable high-precision and
high-resolution SST results, Zhang et al. proposed an adaptive resampled high-resolution
SST [21], which is referred to as ASST. In ASST, the resampled time-sample interval is
inversely proportional to the highest frequency in the effective frequency band [9,21] of the
inputted signal, it can minimize the impact of time-sample interval to obtain high-precision
and high-resolution SST results but at the expense of processing efficiency.

In this paper, we propose a high-efficiency, high-precision, and high-resolution SST
via time-frequency instantaneous phases (instantaneous phases [22,23] of time-frequency
spectra) with period-jumps removal, which is referred to as HSST; in HSST, time-frequency
instantaneous phases with period-jumps removal are used for high-precision instantaneous
frequencies estimation and SST. Synthetic signals and real 3D seismic data examples
demonstrate that HSST can be widely used for seismic signal [8,9,13,16], microseismic
signal [24,25], gear vibration signal [6], gravitational-wave signal [19], and other non-
stationary digital signals processing and interpretation.

2. Principles and Methods
2.1. Conventional SST (CSST)

If complex numbers G(t, f ) denote the time-frequency spectra of the inputted signal
g(t), then SST results can be expressed as

S1(t, v) =
∫

G(t, f )d f , i f V1(t, f ) ∈ [v− ∆v, v + ∆v] (1)

and

V1(t, f ) = Re
[

1
2πi

1
G(t, f )

∂G(t, f )
∂t

]
(2)

where v and f are both frequencies; ∆v is the frequency increment; Re[ ] takes the real
part of a complex number; V1(t, f ) denote the instantaneous frequencies of the time-
frequency spectra G(t, f ), which are referred to as time-frequency instantaneous frequen-
cies; i =

√
−1. If 

x(t, f ) = Re[G(t, f )]

y(t, f ) = Im[G(t, f )]

G(t, f ) = x(t, f ) + iy(t, f )

(3)

where Im[ ] takes an imaginary part of a complex number, respectively, then

V1(t, f ) =
1

2π

x(t, f ) ∂y(t, f )
∂t − y(t, f ) ∂x(t, f )

∂t
x2(t, f ) + y2(t, f )

. (4)

For actual discrete signals, Equation (4) should be modified as (see Appendix A)

V2(t, f ) =
1

2π∆t
x(t− ∆t, f )y(t, f )− y(t− ∆t, f )x(t, f )

[x2(t, f ) + y2(t, f )]
(5)

where ∆t is the time-sample interval of the inputted signal g(t); and V2(t, f ) can be consid-
ered the estimated time-frequency instantaneous frequencies of G(t, f ); correspondingly,
Equation (1) can be rewritten as

S2(t, v) =
∫

G(t, f )d f , i f V2(t, f ) ∈ [v− ∆v, v + ∆v] (6)

which is considered conventional SST (CSST).
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Precisions of V2(t, f ) are inversely proportional to the time-sample interval, this
usually leads to inaccurate SST results [21]. To minimize the impact of the time-sample
interval, Zhang et al. proposed ASST [21], which can minimize the impact of the time-
sample interval to obtain high-precision and high-resolution SST results, but at the expense
of processing efficiency.

Figure 1a–c show time-frequency instantaneous amplitudes (modulus of time-frequency
spectra) of a 50 Hz harmonic signal obtained by MSTFT, CSST, and ASST with ∆t = 2 mil-
liseconds (ms), respectively; Figure 1d–f show time-frequency instantaneous amplitudes of
the 50 Hz harmonic signal obtained by MSTFT, CSST, and ASST with ∆t = 4 ms, respectively;
Table 1 shows the time consuming of MSTFT, CSST, and ASST for the 50 Hz harmonic
signal with 4 s length. The peak frequencies in Figure 1a–f are 50, 48, 50, 50, 37, and 50 Hz,
respectively; we can see that CSST obtains incorrect SST results, and ASST obtains higher
precision and resolution results than MSTFT but with lower processing efficiency.

Figure 1. Time-frequency instantaneous amplitudes of a 50 Hz harmonic signal obtained by MSTFT with (a) ∆t = 2 ms and
(d) ∆t = 4 ms; CSST with (b) ∆t = 2 ms and (e) ∆t = 4 ms; ASST with (c) ∆t = 2 ms and (f) ∆t = 4 ms.

Table 1. Time consuming of MSTFT, CSST, and ASST for the 50 Hz harmonic signal with 4 s length.

Time-Sample Intervals ∆t = 2 ms ∆t = 4 ms

Methods MSTFT CSST ASST MSTFT CSST ASST

Time consuming (s) M1 = 16.0 C1 = 16.2 A1 = 33.2 M2 = 9.7 C2 = 9.8 A2 = 20.1
Ratios A1/M1 = 2.08; A1/C1 = 2.05 A2/M2 = 2.07; A2/C2 = 2.05
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2.2. High-Precision and High-Resolution SST via Time-Frequency Instantaneous Phases (HSST)

According to Appendix B, we can use instantaneous phases of G(t, f ) for high-
precision time-frequency instantaneous frequency estimation and finally obtain high-
precision and high-resolution SST results with high efficiency.

If θ(t, f ) and θ(t, f ) ∈ (−∞,+∞) denote the argument angles of G(t, f ), θ1(t, f ) and
θ1(t, f ) ∈ [0, 2π] denote the principal argument angles of G(t, f ), then we have{

θ(t, f ) = 2kπ + θ1(t, f )

θ(t2, f ) > θ(t1, f ), i f t2 > t1
(7)

where k denote integer numbers; θ(t, f ) can be considered time-frequency instantaneous
phases of G(t, f ); θ1(t, f ) can be considered time-frequency principal instantaneous phases
of G(t, f ) given by

θ1(t, f ) =



0.5π, i f x(t, f ) = 0, y(t, f ) ≥ 0

1.5π, i f x(t, f ) = 0, y(t, f ) < 0

θ0(t, f ), i f x(t, f ) > 0, y(t, f ) ≥ 0

π + θ0(t, f ),i f x(t, f ) < 0, y(t, f ) ≥ 0

π + θ0(t, f ),i f x(t, f ) < 0, y(t, f ) < 0

2π + θ0(t, f ),i f x(t, f ) > 0, y(t, f ) < 0

(8)

and
θ0(t, f ) = arctan

[
x−1(t, f ) · y(t, f )

]
∈ (−0.5π, 0.5π) (9)

According to Equations (A6) and (A16), the time-frequency instantaneous frequencies
of G(t, f ) can be given by [22]

V1(t, f ) =
1

2π

∂θ(t, f )
∂t

=
1

2π
lim

∆t→0

[
θ(t, f )− θ(t− ∆t, f )

∆t

]
(10)

but parameter k in Equation (7) cannot be determined; thus, θ(t, f ) cannot be used for
time-frequency instantaneous frequencies estimation.

If θ0(t, f ) are used for time-frequency instantaneous frequencies estimation, according
to Equations (A16)–(A19), V1(t, f ) in Equation (10) can be obtained by computing the
derivative of the arctangent function itself to avoid period-jumps of θ0(t, f ) as

V3(t, f ) =
1

2π

∂θ0(t, f )
∂t

=
1

2π

∂arctan
[
x−1(t, f ) · y(t, f )

]
∂t

(11)

and

V3(t, f ) =
1

2π

x(t, f ) ∂y(t, f )
∂t − y(t, f ) ∂x(t, f )

∂t
x2(t, f ) + y2(t, f )

= V1(t, f ). (12)

Then, the estimated time-frequency instantaneous frequencies can be given by

V4(t, f ) =
1

2π∆t
x(t− ∆t, f )y(t, f )− y(t− ∆t, f )x(t, f )

x2(t, f ) + y2(t, f )
= V2(t, f ) (13)

Thus, according to [21] and Figure 1, it avoids period-jumps of θ0(t, f ), but it cannot
avoid the impact of the time-sample interval.

If θ1(t, f ) is used for instantaneous frequencies estimation, then according to Equa-
tion (A21), the estimated time-frequency instantaneous frequencies can be given by

V5(t, f ) =
1

2π

θ1(t, f )− θ1(t− ∆t, f )
∆t

=
1

2π

∆θ1(t, f )
∆t

(14)
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and the corresponding SST results can be expressed as

S3(t, v) =
∫

G(t, f )d f , i f V5(t, f ) ∈ [v− ∆v, v + ∆v] (15)

which is considered SST via the time-frequency principal instantaneous phases (PSST);
PSST can avoid the impact of the time-sample interval to obtain high-resolution SST results,
except for time-points corresponding to period-jumps of θ1(t, f ).

According to Equations (A21)–(A27), if we considered

∆θ2(t, f ) =


−∆θ1(t, f )− 2π, i f −2π ≤ ∆θ1(t, f ) < − π
∆θ1(t, f ), i f −π ≤ ∆θ1(t, f ) ≤ π
∆θ1(t, f )− 2π, i f π < ∆θ1(t, f ) ≤ 2π

(16)

then, estimated high-precision time-frequency instantaneous frequencies can be given by

V6(t, f ) =
1

2π

∆θ2(t, f )
∆t

(17)

and corresponding SST results can be expressed as

S4(t, v) =
∫

G(t, f )d f , i f V6(t, f ) ∈ [v− ∆v, v + ∆v] (18)

which is considered HSST; HSST can avoid the impacts of the time-sample interval and
period-jumps of θ1(t, f ) to obtain high-precision and high-resolution SST results with
high-efficiency.

Figure 2a shows the time-frequency principal instantaneous phases of the 50 Hz har-
monic signal; Figure 2b,c show the time-frequency instantaneous amplitudes obtained by
PSST with ∆t = 2 and 4 ms, respectively; Figure 2d,e show the time-frequency instantaneous
amplitudes obtained by HSST with ∆t = 2 and 4 ms, respectively. Table 2 shows the time
consuming of PSST and HSST for the 50 Hz harmonic signal with 4 s length.

Figure 2. Cont.
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Figure 2. 50 Hz harmonic signal: (a) Time-frequency principal instantaneous phases; Time-frequency instantaneous
amplitudes obtained by PSST with (b) ∆t = 2 ms and (c) ∆t = 4 ms. Time-frequency instantaneous amplitudes obtained by
HSST with (d) ∆t = 2 ms and (e) ∆t = 4 ms.

Table 2. Time-consuming of PSST and HSST for the 50 Hz harmonic signal with 4 s length.

Time-Sample Intervals ∆t = 2 ms ∆t = 4 ms

Methods PSST HSST PSST HSST

Time consuming (s) P1 = 16.282 H1 = 16.288 P2 = 9.868 H2 = 9.872
Ratios H1/M1 = 1.019; H1/C1 = 1.004 H2/M2 = 1.019; H2/C2 = 1.004

Comparison of Figures 1 and 2 shows that PSST has higher precision and resolution
than MSTFT and CSST, except for time-points corresponding to period-jumps of time-
frequency principal instantaneous phases; HSST avoids period-jumps during PSST, and it
has higher precision and resolution than MSTFT, CSST, and PSST.

3. Examples

In this section, a synthetic signal and 3D real seismic data are used to demonstrate
the high-precision and high-resolution abilities of HSST with comparisons of CSST, ASST,
and PSST; and the time-frequency spectra for CSST, ASST, PSST, and HSST are obtained by
MSTFT [7] given by

G(t, f ) =
∫ +∞

−∞
z(τ + t)w(τ) exp(−i2π f τ)dτ (19)

and

w(τ) =
a| f |b√

2π
exp

[
− a2| f |2b

2
τ2

]
(20)

where z(t) is the analytic signal [22] of the inputted signal g(t); a > 0 and b ≥ 0.

3.1. Synthetic Signal Example

We consider a synthetic signal as

g(t) = cos(180πt + 30× sin 4πt), (21)

and its instantaneous frequencies can be expressed as

f (t) = 90 + 60× cos 4πt. (22)
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Figure 3a,b show the synthetic signal and its instantaneous frequencies, respectively.
Figure 4a–e show time-frequency instantaneous amplitudes obtained by MSTFT, CSST,
ASST, PSST, and HSST with ∆t = 1 ms, respectively; Figure 4f shows the differences
between Figure 4d,e. We can see that the peak frequencies in Figure 4a,c,e are almost
equal to the instantaneous frequencies shown in Figure 3b, whereas the peak frequencies in
Figure 4b show some deviations from the instantaneous frequencies shown in Figure 3b,
and these deviations become more obvious with the increasing instantaneous frequencies.
A comparison of Figure 4a–c,e shows that Figure 4c,e are almost the same and both have
higher precisions and resolutions than Figure 4a; Figure 4b obtains incorrect SST results.

Figure 3. (a) Synthetic signal; (b) Instantaneous frequencies.

Figure 4. Cont.
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Figure 4. Time-frequency instantaneous amplitudes obtained by (a) MSTFT; (b) CSST; (c) ASST; (d) PSST; (e) HSST;
(f) Differences between (d,e).

Figure 4d has the same results as Figure 4e, except for time-points corresponding to
period-jumps of time-frequency principal instantaneous phases; thus, Figure 4e has higher
precision and better continuity than Figure 4d. Above all, HSST has higher precision and
resolution than MSTFT, CSST, and PSST, and almost the same results as ASST.

3.2. 3D Field Seismic Data Example

We applied MSTF, CSST, PSST, and HSST to a 3D field seismic data with ∆t = 2 ms.
Figure 5a–c show amplitudes, instantaneous amplitudes, and principal instantaneous

phases of crossline 1 extracted from the field 3D seismic data, respectively.

Figure 5. Crossline 1: (a) Amplitudes; (b) Instantaneous amplitudes; (c) Principal instantaneous phases.

Figure 6a shows time-frequency instantaneous principal instantaneous phases of the
10th trace in Figure 5a, which are obtained by MSTFT; Figure 6b–e show time-frequency
instantaneous amplitudes of the 10th trace in Figure 5a obtained by MSTFT, CSST, PSST,
and HSST, respectively; Figure 6f show differences between Figure 6d,e. Figure 6g–i
show zoomed-in views of yellow rectangles in Figure 6c–e, respectively. We can see that
Figure 6c–e have higher resolutions than Figure 6b, and Figure 6d,e have higher preci-
sions than Figure 6b,c; in addition, Figure 6c,e have better continuities than Figure 6d, as
indicated by green arrows.
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Figure 6. (a) Time-frequency instantaneous principal instantaneous phases of the 10th trace in Figure 5a obtained by MSTFT;
Time-frequency instantaneous amplitudes of the 10th trace in Figure 5a obtained by: (b) MSTFT; (c) CSST; (d) PSST; (e) HSST.
(f) Differences between Figure 6d,e; (g) Zoomed-in views of yellow rectangle in Figure 6c; (h) Zoomed-in views of yellow
rectangle in Figure 6d; (i) Zoomed-in views of yellow rectangle in Figure 6e.

Figure 7a–c show 30 Hz time-frequency instantaneous amplitudes of crossline 1
obtained by MSTFT, PSST, and HSST, respectively; Figure 7d–f show 50 Hz time-frequency
instantaneous amplitudes of crossline 1 obtained by MSTFT, PSST, and HSST, respectively;
Figure 7g shows the differences between Figure 7b,c, and Figure 7h shows the differences
between Figure 7e,f. Figure 7b,c have higher resolutions than Figure 7a, and Figure 7e,f
have higher resolutions than Figure 7d; Figure 7c has higher precision and better continuity
than Figure 7b, and Figure 7f has higher precision and better continuity than Figure 7e.

Figure 8a shows a time slice extracted from the field 3D seismic data; Figure 8b,c
show the same time slices of instantaneous amplitudes and principal instantaneous phases,
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respectively, obtained by Hilbert transform [22]. As shown in Figure 8b,c, the main channels
are represented but with low resolution.

Figure 7. The 30 Hz time-frequency instantaneous amplitudes of crossline 1 in Figure 5a obtained by (a) MSTFT; (b) PSST;
(c) HSST. The 50 Hz time-frequency instantaneous amplitudes of crossline 1 in Figure 5a obtained by (d) MSTFT; (e) PSST;
(f) HSST. (g) Differences between Figure 7b,c; (h) Differences between Figure 7e,f.

Figure 9a, b,c show the same time slices of 30 Hz time-frequency instantaneous
amplitudes obtained by MSTFT, PSST, and HSST, respectively; Figure 9d,e,f show the
same time slices of 50 Hz time-frequency instantaneous amplitudes obtained by MSTFT,
PSST, and HSST, respectively; Figure 9g shows the differences between Figure 9b,c, and
Figure 9h shows the differences between Figure 9e,f, which are false structures caused by
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period-jumps of time-frequency principal instantaneous phases during PSST. Figure 9b,c
have higher resolutions than Figure 9a, and Figure 9e,f have higher resolutions than Figure 9d;
in addition, Figure 9c has higher precisions and better continuities than Figure 9b, and
Figure 9f has higher precision and better continuity than Figure 9e.
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Thus, HSST has higher precisions and resolutions than MSTFT, CSST and PSST, and it
achieves desirable high-precision and high-resolution SST results.

4. Conclusions

To obtain high-precision and high-resolution SST results with high-efficiency, we
propose a high-precision and high-resolution SST via time-frequency instantaneous phases,
which is referred to as HSST. Compared with CSST, ASST, and PSST, HSST avoids the
impact of the time-sample interval during CSST and period-jumps of time-frequency prin-
cipal instantaneous phases during PSST, and finally, it obtains desirable high-precision and
high-resolution SST results with high efficiency. Synthetic signal and field 3D seismic data
examples indicate that HSST can be extensively applied in non-linear and non-stationary
digital signals analysis, processing, and interpretation fields.

Author Contributions: Writing—original draft preparation, Y.L.; Methodology, G.Z.; Writing—review
and editing, G.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The National Natural Science Foundation of China (Grant No. 41874168), the Sichuan
Science and Technology Program for Distinguished Young Scholars (Grant No. 2019JDJQ0053), the
National Key R&D Program of China (2018YFA0702505), the National Natural Science Foundation of
China- Sinopec Joint Key Project (U19B6003-004), and the National Science and Technology Major
Project (2017ZX05005-004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Conventional Instantaneous Frequencies Estimation Method

For a complex signal
c(t) = x(t) + iy(t) (A1)

where x(t) and y(t) are both real signals; if A(t) and A(t) ∈ [0,+∞) denote argument
amplitudes of c(t), θ(t) and θ(t) ∈ (−∞,+∞) denote argument angles of c(t),θ1(t) and
θ1(t) ∈ [0, 2π] denote principal argument angles of c(t); then

c(t) = A(t)exp[iθ(t)] (A2)

and 
A(t) =

√
x2(t) + y2(t)

θ(t) = 2kπ + θ1(t)

θ(t2) > θ(t1), i f t2 > t1

(A3)

where k denote integer numbers and θ(t) denotes monotonically increasing continuous
function; A(t) and θ(t) can be considered instantaneous amplitudes and phases of c(t),
respectively; θ1(t) can be considered as principal instantaneous phases of c(t) given by

θ1(t) =



θ0(t), i f x(t) > 0, y(t) ≥ 0
0.5π, i f x(t) = 0, y(t) ≥ 0
π + θ0(t), i f x(t) < 0, y(t) ≥ 0
π + θ0(t), i f x(t) < 0, y(t) < 0
1.5π, i f x(t) = 0, y(t) < 0
2π + θ0(t), i f x(t) > 0, y(t) < 0

(A4)

and
θ0(t) = arctan

[
x−1(t) · y(t)

]
∈ (−0.5π, 0.5π) (A5)

where arctan[] denotes arctangent function.
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As principal periods (or period-jumps) of θ0(t) and θ1(t) are π and 2π, respectively;
thus, θ0(t) and θ1(t) are both discontinuous functions, and their derivatives do not exist.
Therefore, instantaneous frequencies of c(t) can be given by [22,23]

v(t) =
1

2π

∂θ(t)
∂t

(A6)

If taking natural logarithm to Equation (A2), we have

iθ(t) = ln[c(t)]− ln[A(t)]. (A7)

Then, Equation (A6) can be expressed as

v(t) = Re
[

1
2πi

1
c(t)

∂c(t)
∂t

]
=

1
2π

x(t) ∂y(t)
∂t − y(t) ∂x(t)

∂t
x2(t) + y2(t)

. (A8)

Usually, x(t) and y(t) are both implicit, and we cannot directly obtain their derivatives;
but, if Fourier transform [22] results of c(t), x(t), and y(t) all exist, we can use them to
obtain the corresponding derivatives; it means that if{

0 ≤
∫ +∞
−∞ x2(t)dt < +∞

0 ≤
∫ +∞
−∞ y2(t)dt < +∞

(A9)

then 
∂c(t)

∂t = c0(t)
∂x(t)

∂t = x0(t) = Re[c1(t)]
∂y(t)

∂t = y0(t) = Re[c2(t)]

(A10)

and 
c0(t) =

∫
[i2πη · C(η)] · exp[i2πηt]dη

c1(t) =
∫
[i2πη · X(η)] · exp[i2πηt]dη

c2(t) =
∫
[i2πη ·Y(η)] · exp[i2πηt]dη

(A11)

where Re[ ] takes the real part of a complex number; c0(t),c1(t), and c2(t) are derivatives
of c(t),x(t), and y(t), respectively; η is the frequency; C(η), X(η), and Y(η) denote the
Fourier transform results of c(t), x(t), and y(t), respectively; thus, Equation (A8) can be
rewritten as

v(t) = Re
[

1
2πi

c0(t)
c(t)

]
=

1
2π

x(t) · y0(t)− y(t) · x0(t)
x2(t) + y2(t)

. (A12)

Due to impacts of dynamic range [9,21] and amplitude amplified scale factor 2πη,
background noises beyond effective bandwidths [9,21] of C(η), X(η), and Y(η) will se-
riously affect the stabilities of c0(t), c1(t), and c2(t), respectively, and finally reduce the
stabilities and precisions of v(t). Usually, we can replace derivatives c0(t), c1(t), and c2(t)
in Equation (A12) with their corresponding differences; thus, estimated instantaneous
frequencies can be expressed as

v1(t) = Re
[

1
2πi

d0(t)
c(t)

]
=

1
2π

x(t) · d2(t)− y(t) · d1(t)
x2(t) + y2(t)

(A13)

and 
d0(t) =

c(t)−c(t−∆t)
∆t

d1(t) =
x(t)−x(t−∆t)

∆t

d2(t) =
y(t)−y(t−∆t)

∆t

(A14)

where ∆t denotes the time-sample interval.
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If x(t) and y(t) do not meet the requirements expressed in Equation (A9), such as
x(t) = t2 and so on, then x(t) and y(t) do not have Fourier transform results; therefore, we
cannot obtain derivatives c0(t), c1(t), and c2(t), but we can replace them in Equation (A12)
with their corresponding differences. Correspondingly, the estimated instantaneous fre-
quencies can be expressed as Equations (A13) and (A14).

Above all, the estimated instantaneous frequencies can be expressed as

v1(t) = Re
[

1
2π∆t

c(t)− c(t− ∆t)
i · c(t)

]
=

1
2π∆t

x(t− ∆t)y(t)− x(t)y(t− ∆t)
x2(t) + y2(t)

(A15)

which is considered the conventional instantaneous frequencies estimation method (CIF).
Equation (A15) shows that the estimated instantaneous frequencies are affected by the time-
sample interval, and precisions of estimated instantaneous frequencies are decreased with
the increasing time-sample interval [21]; thus, CIF may lead to inaccurate instantaneous
frequency estimation results.

Appendix B. High-Precision Instantaneous Frequencies Estimation Methods via
Principal Instantaneous Phases

Equation (A6) can be rewritten as

v(t) =
1

2π

∂θ(t)
∂t

=
1

2π
lim

∆t→0

[
θ(t)− θ(t− ∆t)

∆t

]
(A16)

as parameter k in Equation (A3) cannot be determined, thus, θ(t) cannot be directly used
for instantaneous frequencies estimation; but if we can avoid period-jumps of θ0(t) and
θ1(t), then they can be both directly used for instantaneous frequencies estimation.

If θ0(t) is used for instantaneous frequencies estimation, then according to Equation
(A16), the estimated instantaneous frequencies can be obtained by computing the derivative
of arctangent function itself as [23]

p1(t) =
1

2π

∂θ0(t)
∂t

=
1

2π

∂arctan
[
x−1(t) · y(t)

]
∂t

(A17)

and

p1(t) =
1

2π

x(t) ∂y(t)
∂t − y(t) ∂x(t)

∂t
x2(t) + y2(t)

= v(t). (A18)

Therefore, according to Equations (A9)–(A14), the estimated instantaneous frequencies
can be expressed as

p2(t) =
1

2π∆t
x(t− ∆t)y(t)− x(t)y(t− ∆t)

x2(t) + y2(t)
= v1(t), (A19)

and it means that this method can avoid phase period-jumps, but it cannot avoid the
impact of the time-sample interval and may lead to inaccurate instantaneous frequencies
estimation results.

If θ1(t) is used for instantaneous frequencies estimation, then according to Equa-
tion (A16), the estimated instantaneous frequencies can be given by

p3(t) =
1

2π

θ1(t)− θ1(t− ∆t)
∆t

(A20)

and it avoids the impact of the time-sample interval to obtain high-precision instantaneous
frequencies, except for time-points corresponding to period-jumps of θ1(t).

If we consider
∆θ1(t) = θ1(t)− θ1(t− ∆t) (A21)
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then
− 2π ≤ ∆θ1(t) ≤ 2π. (A22)

Based on Equation (A21), if we consider

∆θ(t) = θ(t)− θ(t− ∆t) = 2π × ∆t× v(t), (A23)

then according to the sampling theorem [26,27], there should be

− π ≤ ∆θ(t) ≤ π. (A24)

Thus, we can modify ∆θ1(t) into ∆θ2(t) to meet the requirement expressed in
Equation (A24) as

∆θ2(t) =


−∆θ1(t)− 2π, i f −2π ≤ ∆θ1(t) < − π
∆θ1(t), i f −π ≤ ∆θ1(t) ≤ π
∆θ1(t)− 2π, i f π < ∆θ1(t) ≤ 2π

. (A25)

Then
− π ≤ ∆θ2(t) ≤ π (A26)

and estimated high-precision instantaneous frequencies can be given by

h1(t) =
1

2π

∆θ2(t)
∆t

(A27)

and it avoids impacts of time-sample interval and period-jumps of θ1(t).
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