
applied
sciences

Article

Fast-RRT: A RRT-Based Optimal Path Finding Method

Zhenping Wu, Zhijun Meng *, Wenlong Zhao and Zhe Wu

����������
�������

Citation: Wu, Z.; Meng, Z.; Zhao, W.;

Wu, Z. Fast-RRT: A RRT-Based

Optimal Path Finding Method. Appl.

Sci. 2021, 11, 11777. https://doi.org/

10.3390/app112411777

Academic Editor: Alessandro

Gasparetto

Received: 21 October 2021

Accepted: 7 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
wuzp0423@buaa.edu.cn (Z.W.); zhaowenlong@buaa.edu.cn (W.Z.); wuzhe@buaa.edu.cn (Z.W.)
* Correspondence: mengzhijun@buaa.edu.cn

Abstract: As a sampling-based pathfinding algorithm, Rapidly Exploring Random Trees (RRT) has
been widely used in motion planning problems due to the ability to find a feasible path quickly.
However, the RRT algorithm still has several shortcomings, such as the large variance in the search
time, poor performance in narrow channel scenarios, and being far from the optimal path. In this
paper, we propose a new RRT-based path find algorithm, Fast-RRT, to find a near-optimal path
quickly. The Fast-RRT algorithm consists of two modules, including Improved RRT and Fast-Optimal.
The former is aims to quickly and stably find an initial path, and the latter is to merge multiple
initial paths to obtain a near-optimal path. Compared with the RRT algorithm, Fast-RRT shows the
following improvements: (1) A Fast-Sampling strategy that only samples in the unreached space of
the random tree was introduced to improve the search speed and algorithm stability; (2) A Random
Steering strategy expansion strategy was proposed to solve the problem of poor performance in
narrow channel scenarios; (3) By fusion and adjustment of paths, a near-optimal path can be faster
found by Fast-RRT, 20 times faster than the RRT* algorithm. Owing to these merits, our proposed
Fast-RRT outperforms RRT and RRT* in both speed and stability during experiments.

Keywords: path planning; RRT; random expansion; path optimization

1. Introduction

Scientifically, motion planning refers to finding a continuous feasible path, which
starts in the initial state and ends in the target state. Motion planning plays a key role in
many applications such as unmanned aerial vehicles (UAV), self-driving cars, and mobile
robots, thus greatly emerging the development of motion planning algorithms.

In the past few decades, many motion planning algorithms have been proposed. One
of the important categories is graph-based methods such as Dijkstra’s algorithm [1] and
A* algorithm [2]. They discretize the state space of the motion planning problem into a
graph structure and then find a feasible path by using graph search methods. Among them,
Dijkstra’s algorithm is a breadth-first search algorithm, which can find an optimal path.
While the A* algorithm introduces a heuristic function and accelerates the search speed
of the D* algorithm. Extensive efforts were made to improve the performance of the A*
algorithm. For instance, the Jump Point Search algorithm can speed up the A* algorithm by
order of magnitude [3]. Liu et al. [4] further extended the Jump Point Search algorithm from
2D to a 3D environment. By virtue of introducing dynamic constraints, the Hybrid A* [5]
can generate smooth paths to satisfy the robots. The graph-based algorithm is complete
and resolution optimal, which means that if a feasible path exists, the graph-based method
can find an optimal path; otherwise, it will return failure. However, graph-based methods
do not perform well in large-scale problems (e.g., industrial robotic arms) because the
search space obtained by the graph-based discretization of the state space is too large.

The sampling-based planning method is another important type of planning algorithm.
Instead of discretizing the state space, sampling-based planning is to construct a graph
or tree by randomly sampling in the state space. Compared with graph-based planning
algorithms, sampling-based planning algorithms perform better in large-scale problems.

Appl. Sci. 2021, 11, 11777. https://doi.org/10.3390/app112411777 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6929-9141
https://doi.org/10.3390/app112411777
https://doi.org/10.3390/app112411777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411777
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411777?type=check_update&version=2

Appl. Sci. 2021, 11, 11777 2 of 18

The sampling-based planning algorithm is probabilistically complete; thus, the probability
of finding a feasible path approaches 1 when the number of samples tends to infinity.
Probabilistic Roadmaps (PRM) [6] and RRT [7] are two important algorithms of sampling-
based planners. PRM is a multi-query motion planning algorithm, which obtains a graph
representing spatial connectivity through random sampling in the state space, and then
generates a feasible path through graph search. After constructing the graph, the PRM can
be used to search multiple paths. However, it is a time-consuming process to construct a
map of the entire space for a single search. By contrast, as a single-query motion planning
algorithm, the RRT only explores the state space by growing a tree rooted at the start
state and is thus faster than the PRM. The RRT algorithm involves three steps, which first
randomly samples a state in state space, followed by selecting the nearest nodes of the
random tree, and growing from the nearest neighbor sampling point to a random state.
Once the tree reaches the goal region, the search is successful, and RRT will return to a
feasible path.

Although RRT can quickly find an initial path in high-dimensional space, it still has
many disadvantages. For example, owing to the random sampling, the variance of its
search time is so large that it may require a long time to find a feasible path. The RRT
does not perform well in narrow channel scenarios [8]. Moreover, the path found by
RRT may be far away from the optimal path [9] since the path is randomly generated.
Rapidly Exploring Random Tree Star (RRT*) [10] was considered an important extension of
RRT. After finding an initial path, RRT* keeps optimizing the initial path by continuously
sampling [11]. Compared with RRT, RRT* introduces two operations of neighbor search
and rewiring tree to reach the optimal path. It can be proved that the path obtained by
RRT* is optimal when the number of sampling approaches infinity. However, for RRT*,
plenty of time and memory usage are required to reach the optimal path [12]. Similarly,
RRT* also suffers from the problem of the large variance in search time.

Great efforts were devoted to improving the quality of the paths obtained by RRT
and RRT*. For instance, by extending RRT* to kinodynamic systems, corresponding
Kinodynamic RRT* can obtain an optimal trajectory that satisfies dynamic constraints.
Anytime-RRT* can quickly re-plan the path with any point as the initial point. Alternatively,
improving the search efficiency is another focus in RRT algorithm-related work, such as
speeding up the search and minimizing the variance of search time. For instance, RRT-
Connect [13] constructs two trees rooted in the initial state and the target state and makes
the two trees grow toward each other. In [14], a 2D Gaussian mixture model is used to find
a high-quality initial solution quickly. Batch Informed Trees [15] limits the state space to
an incrementally increasing subset and thus quickly finds a feasible path. Unfortunately,
these methods only performed well in certain environments.

Combining RRT with other path search algorithms is an important way to speed
up the search process. In [16], the artificial potential field algorithm is incorporated in
RRT* to accelerate convergence rate, but the planning time may dramatically increase
in complex environments. The A*-RRT* [17] algorithm uses the path generated by the
A* algorithm to guide the sampling procedure of the RRT* planner, which significantly
accelerates the convergence speed. However, quite a long time is required for A* to find
an initial path when it comes to large-scale problems. LM-RRT [18] applies reinforcement
learning methods to guide the growth of trees, but the learning-based methods may not
perform well in the new environment.

Heuristic-biased sampling is another important method. Informed RRT* [19] limits the
sampling area to an ellipsoidal containing a feasible path, thereby returning an approximate
optimal path faster than RRT*. Hybrid-RRT [20] combines RRT-Connect and Informed
RRT* to accelerate the convergence speed of the algorithm. In [21], the obstacle boundary
information is used to ignore bad sampling points. Dynamic-Domain RRTs [22] avoid
the samples that are too far from the current tree. RRT*-Smart [23] uses the initial path to
generate biasing sampling points.

Appl. Sci. 2021, 11, 11777 3 of 18

Recently, learning-based methods have been widely applied in motion planning
research. Neural RRT* [12] uses deep learning to learn a distribution probability for
sampling. RL-RRT [24] explores deep reinforcement learning policy as a local planner and
uses distance function that learns by deep learning to bias tree-growth towards the target
area. In [25], a learning algorithm combining Inverse Reinforcement learning and RRT* is
used to learn the RRT*’s cost function. The DL-P-RRT* algorithm applies deep learning to
the RRT* algorithm using the virtual artificial potential field to learn the artificial potential
field function. Learning-based methods perform well in some environments, but they may
suffer from bad generalization ability in new environments.

In this paper, we propose an RRT-based planning method for optimal motion planning,
called Fast-RRT. Compared with RRT*, Fast-RRT accelerates the search speed of the optimal
path by order of magnitude. To be specific, Fast-RRT divides the search for the optimal path
into two steps. The Improved-RRT algorithm is first used to find a feasible path quickly,
and then the Fast-Optimal algorithm fuses multiple paths to obtain an optimal path.

For Improved RRT, two important improvements were made compared to the RRT
algorithm, such as Fast Sampling and Random Steering. Fast Sampling improves the
search speed of the RRT algorithm by refusing to sample in the explored area and solves
the problem of the large variance in the search time of the RRT algorithm. Random Steering
randomly chooses the direction to expand when the expansion fails, which solves the
problem of poor performance of the RRT algorithm in narrow channel scenarios. By
introducing these two improvements, the Improved-RRT algorithm can quickly find a
feasible solution. Besides, Fast-Optimal can obtain the optimal path by virtue of fusing
multiple paths and has a faster convergence speed as compared to RRT*. After a new
feasible path is searched by Improved-RRT, Fast-Optimal merges it with the current optimal
path to obtain a better path. The fusion operation of Fast-Optimal also consists of two steps,
including path fusion and path fine-tuning. Path fusion can fuse multiple initial paths
to obtain a better path, while path fine-tuning can quickly adjust the fusion path, which
speeds up the search for the optimal path. Due to these advantaged characteristics, the
search speed of Fast-RRT for finding a near-optimal path is 20 times faster than the RRT*
algorithm. Therefore, our Fast-RRT algorithm exhibits great potential in practical motion
planning applications.

The rest of this paper is organized as follows. The formal definition of the motion
planning problem and the necessary background are presented in Section 2. In Section 3,
the proposed Fast-RRT method in this paper is be defined. Section 4 shows the simulation
and evaluation of our experimental results. At last, a brief summary and outlook is be
presented in Section 5.

2. Background

In this section, we present the related backgrounds of this paper. The formal defini-
tion of motion planning problems is first introduced, followed by discussing the related
algorithms such as RRT and RRT*.

2.1. Problem Definition

Two issues of motion planning, including the feasible solution and the optimal prob-
lems, is be discussed and defined in a similar way to [26].

Let X ∈ Rn be the state space of the planning problem, where n ∈ N is the dimen-
sion of the motion planning problem. Xobs ∈ X is the obstacle space, which cannot be
reached due to the collision with obstacles. X f ree = X/Xobs represents the free state space.
xinit ∈ X f ree and xgoal ∈ X f ree are the initial state and the goal state, respectively, and

Xgoal =
{

x ∈ X
∣∣∣‖x− xgoal‖ < r

}
is the goal region. A feasible path is defined as a path

σ : [0 : T]→ X f ree such that σ(0) = xinit and σ(T) ∈ Xgoal .
The feasible problem of motion planning is to find a feasible path if one exists; other-

wise, it should report failure. Problem 1 defines the feasibility problem of path planning.

Appl. Sci. 2021, 11, 11777 4 of 18

Problem 1 (Feasible Path Planning) Given a state space of planning problem X ∈
Rn, a free space X f ree, an initial state xinit and a goal region Xgoal ∈ X f ree, find a path
σ : [0 : T]→ X f ree such that σ(0) = xinit and σ(T) ∈ Xgoal , if one exists. If no feasible path
exists, then report failure.

Path cost is an important concept in motion planning. By defining the cost function,
a feasible path is assigned a non-negative cost. The optimal problem of motion plan-
ning is to find a path with minimal cost. Problem 2 formalizes the optimal problem of
motion planning.

Problem 2 (Optimal Path Planning) Given a state space X ∈ Rn, a free state space
X f ree, an initial state xinit and a goal region Xgoal ∈ X f ree, if a solution to problem1 exists,
find a path σ : [0 : T]→ X f ree such that σ(0) = xinit, and σ(T) ∈ Xgoal and c(σ∗) =
minσ∈∑ f ree c(σ).

The path-find algorithm based on sampling is a time-consuming process refereed
to find an optimal path. Therefore, a near-optimal path is usually obtained through a
certain number of iterations. The near-optimal problem refers to finding a path where the
difference of cost and the optimal path is less than the threshold. Problem 3 formalizes the
near-optimal problem of motion planning.

Problem 3 (Near-Optimal Path Planning) Given a state space X ∈ Rn, a free state
space X f ree, an initial state xinit and a goal region Xgoal ∈ X f ree, if a solution to problem
1 exists, and σ∗ is the solution to Problem 2, find a path σ : [0 : T]→ X f ree such that
σ(0) = xinit, and σ(T) ∈ Xgoal and c(σ) < c(σ∗) ∗ (1 + threshold).

2.2. RRT and RRT*

The RRT algorithm is the basis of the proposed Fast-RRT, while RRT* is an important
method to find the approximate optimal path. Therefore, the RRT and RRT* algorithms are
introduced in Algorithm 1 and Algorithm 2, respectively.

The RRT is a single query search algorithm based on sampling, which can quickly find
a feasible path. In the initialization phase, RRT builds a tree with the initial state xinit as
the node. In each iteration, RRT first randomly samples a state xrand in state space X f ree
and select the nearest vertex xnear. Then, the RRT algorithm will generate xnew through
the steering function, as shown in Figure 1. If the edge of {xnear, xnew} is obstacle-free,
then xnew will be added to the set of nodes, and {xnear, xnew} will be added to the set of
edges. If xnew is located in the target area Xgoal , the search is successful, and this result will
be returned.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19

Let 𝑥 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡(𝑀𝑎𝑝);
Let 𝑥௪ ← 𝑆𝑡𝑒𝑒𝑟(𝑀𝑎𝑝);
Let 𝐸 ← 𝐸𝑑𝑔𝑒(𝑥௪, 𝑥)

 If 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸)
 T.addNode(𝑥௪)
 T.addEdge(𝐸)
 If 𝑥௪ ∈ 𝑋 then
 Success();
 End
 End
End

Algorithm 2 RRT*
Input: 𝑥௧, 𝑥 and 𝑀𝑎𝑝
T.init()
for 𝑖 = 1 … 𝑁 do

Let 𝑥ௗ ← 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝑀𝑎𝑝);
Let 𝑥 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡(𝑀𝑎𝑝);
Let 𝑥௪ ← 𝑆𝑡𝑒𝑒𝑟(𝑀𝑎𝑝);

 If 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑀𝑎𝑝, 𝐸)
 𝑋 ← 𝑁𝑒𝑎𝑟𝐶(𝑇, 𝑥௪);
 𝑥 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑋, 𝑥, 𝑥௪);
 𝑇. 𝑎𝑑𝑑𝑁𝑜𝑑𝑒𝐸𝑑𝑔𝑒(𝑥, 𝑥௪);
 𝑇. 𝑟𝑒𝑤𝑖𝑟𝑒();

Figure 1. Schematic illustration of the expansion steps of the RRT algorithm. The RRT algorithm
performs random sampling in the state space to obtain 𝑞ௗ , and the vertex closest to 𝑞ௗ is
calculated as 𝑞. Then, the random tree of RRT extends a certain distance from 𝑞 to 𝑞ௗ
to obtain 𝑞௪.

3. Method
In this section, we introduce our Fast Rapidly-exploring Random Trees (Fast-RRT)

algorithm. The framework of the proposed method is presented in Section 3.1, which
consists of two modules, including Improved-RRT and Fast-Optimal. The details are
introduced in Sections 3.2–3.3.

3.1. Framework of Fast-RRT
The detailed process of Fast RRT is shown in Algorithm 3, which includes two steps.

The first step, called Improved-RRT, aims to find a feasible path, and the second step,
called Fast-Optimal, aims to merge this feasible path with the current optimal path in
order to obtain a near-optimal path.

For Improved RRT, two important improvements related to the sampling and the
extended strategies were made compared to the baseline RRT algorithm, such as Fast

Figure 1. Schematic illustration of the expansion steps of the RRT algorithm. The RRT algorithm
performs random sampling in the state space to obtain qrand, and the vertex closest to qrand is
calculated as qnear. Then, the random tree of RRT extends a certain distance from qnear to qrand to
obtain qnew.

The path found by RRT may be far away from the optimal path. RRT* overcomes this
problem by introducing a rewire step. If the edge {xnear, xnew} is obstacle-free, then nodes
with a distance less than r around xnew will be calculated to determine the optimal parent
node of xnew. In addition, RRT* not only adds xnew to the tree, but also considers it as a
replacement parent node for existing neighboring nodes. Therefore, as the sampling times
approach infinity, RRT* continuously adjusts the random tree and finally finds an optimal

Appl. Sci. 2021, 11, 11777 5 of 18

path. However, the RRT* is time-consuming and thus is not suitable for applications that
need to find an optimal path quickly.

Algorithm 1. RRT

Input: xinit, xgoal and Map
T.init()
for i = 1 . . . N do

Let xrand ← Uni f ormSample(Map);
Let xnear ← Nearest(Map);
Let xnew ← Steer(Map);
Let Ei ← Edge(xnew, xnear)
If ObstacleFree(Map, Ei)

T.addNode(xnew)
T.addEdge(Ei)

If xnew ∈ Xgoal then
Success();

End
End

End

Algorithm 2. RRT*

Input: xinit, xgoal and Map
T.init()
for i = 1 . . . N do

Let xrand ← Uni f ormSample(Map);
Let xnear ← Nearest(Map);
Let xnew ← Steer(Map);
If ObstacleFree(Map, Ei)

Xnear ← NearC(T, xnew);
xmin ← ChooseParent(Xnear, xnear, xnew);
T.addNodeEdge(xmin, xnew);
T.rewire();

3. Method

In this section, we introduce our Fast Rapidly-exploring Random Trees (Fast-RRT)
algorithm. The framework of the proposed method is presented in Section 3.1, which
consists of two modules, including Improved-RRT and Fast-Optimal. The details are
introduced in Sections 3.2 and 3.3.

3.1. Framework of Fast-RRT

The detailed process of Fast RRT is shown in Algorithm 3, which includes two steps.
The first step, called Improved-RRT, aims to find a feasible path, and the second step, called
Fast-Optimal, aims to merge this feasible path with the current optimal path in order to
obtain a near-optimal path.

For Improved RRT, two important improvements related to the sampling and the ex-
tended strategies were made compared to the baseline RRT algorithm, such as Fast Sampling
and Random Steering. These strategies are introduced in Sections 3.2.1 and 3.2.2, respectively.

Fast-Optimal also consists of two parts, path fusion (Section 3.3.1) and path fine-tuning
(Section 3.3.2). Path fusion can fuse multiple initial paths to obtain a better path, while path
fine-tuning can quickly adjust the fusion path, which speeds up the search for the optimal
path. Thus, our Fast-RRT can quickly find a near-optimal path by fusing multiple paths. By
contrast, the RRT* adjusts the tree to find the near-optimal path, which is a time-consuming
process. The Fast-Optimal algorithm is introduced in Section 3.3.

Appl. Sci. 2021, 11, 11777 6 of 18

Algorithm 3. Fast-RRT Algorithm

Input: xinit, xgoal and Map
Output: A path T from xinit to xgoal
for i = 1 . . . N do

Tinit ← Improved_RRT
(

xinit, Xgoal , Map
)

;

If Tinit Isnot None then
Toptimal ← FastOptimal

(
Toptimal , Tinit

)
3.2. Improved RRT

As an improved pathfinding algorithm, Improved-RRT introduces a fast sampling
strategy and a random expansion strategy. The details of the proposed algorithm are
shown in Algorithm 4. Fast Sampling improves the search speed of the RRT algorithm by
refusing to sample in the explored area and solves the problem of the large variance in the
search time of the RRT algorithm. Random Steering randomly chooses the direction to
expand when the expansion fails, which solves the problem of poor performance of the
RRT algorithm in narrow channel scenarios. By introducing these two improvements, the
Improved-RRT algorithm can quickly find a feasible solution.

Algorithm 4. Improved RRT

Input: xinit, Xgoal and Map
Output: A path P from xinit to xgoal
T.init()
for i = 1 . . . N do

xrand ← FastSample(Map);
xnear ← Near(T, xrand);
xnew ← RandomSteer(xnearest, xrand)
Ei ← Edge(xnew, xnear)
If ObstacleFree(Map, Ei) then

T.addNode(xnew)
T.addNode(Ei)
If xnew ∈ Xgoal then

3.2.1. Fast Sampling

The basic RRT algorithm randomly samples a state in the entire state space and guides
the tree to expand to it. When a new node is expanded by the RRT algorithm, the RRT
calculates the distance d between the node and the target point. If d is less than the set
threshold r, the algorithm then finds the target point until the end of searching; otherwise,
the search continues. Therefore, every time a new node is expanded, the RRT algorithm
detects the area with the node as the center and the distance from the center less than r. We
defined this area as the explored area. The RRT algorithm can finally realize the exploration
of all areas through continuous sampling and growth.

However, this sampling strategy may produce many invalid expansions and result in
a large variance in the search time. An example of invalid expansion is shown in Figure 2.
The blue areas in the figure indicate the explored area of three nodes. xrand is the state
sampled by the RRT algorithm, xnew is the state generated by steering operation, and
then {xnear, xnew} is added to the edge set. However, this expansion is invalid because
the red exploration area of the newly generated node completely falls within the original
exploration area and fails to expand the newly explored area.

To address the above issue, we propose a sampling algorithm called Fast-Sampling.
By refusing to sample in the explored area, Fast-Sampling can avoid a large number of
invalid growths. Figure 3 indicates the principle of Fast-Sampling, where a new vertex
xnew is added to the tree, its surrounding area xaruond =

{
x ∈ X

∣∣∣‖x− xgoal‖ < r
}

is set as
the explored area. As shown in Figure 3, the sampled state xrand1 is located in the explored

Appl. Sci. 2021, 11, 11777 7 of 18

area, the corresponding guided expansion is then invalid. The Fast-Sampling samples
another random state xrand2, which guides the random tree T expand to an unexplored
area. Compared with RRT, Fast-Sampling speeds up the exploration speed and reduces
memory usage. Algorithm 5 presents the detail of Fast-Sampling.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19

then {𝑥, 𝑥௪} is added to the edge set. However, this expansion is invalid because the
red exploration area of the newly generated node completely falls within the original
exploration area and fails to expand the newly explored area.

Figure 2. Schematic illustration of the invalid expansion caused by RRT’s random sampling
strategy. 𝑥ௗ is the randomly sampled point, 𝑥_𝑛𝑒𝑎𝑟 is the nearest neighbor of 𝑥ௗ , and 𝑥௪ is the expansion point. Unfortunately, this step of expansion is invalid because the random tree
is not brought close to the target point or expanded to a new area.

To address the above issue, we propose a sampling algorithm called Fast-Sampling.
By refusing to sample in the explored area, Fast-Sampling can avoid a large number of
invalid growths. Figure 3 indicates the principle of Fast-Sampling, where a new vertex 𝑥௪ is added to the tree, its surrounding area 𝑥௨ௗ = {𝑥 ∈ 𝑋หฮ𝑥 − 𝑥ฮ < 𝑟} is set as
the explored area. As shown in Figure 3, the sampled state 𝑥ௗଵ is located in the
explored area, the corresponding guided expansion is then invalid. The Fast-Sampling
samples another random state 𝑥ௗଶ , which guides the random tree 𝑇 expand to an
unexplored area. Compared with RRT, Fast-Sampling speeds up the exploration speed
and reduces memory usage. Algorithm 5 presents the detail of Fast-Sampling.

Figure 3. Schematic illustration of the Fast-Sampling sampling strategy. The red circle is the
explored area. Since the first sampling point 𝑥ௗଵ falls in the explored area, it is regarded as an
invalid sampling. After re-sampling, the second sampling point 𝑥ௗଶ is obtained. 𝑥ௗଶ
bootstrap tree expansion to obtain 𝑥௪, thus avoiding invalid expansion.

Figure 2. Schematic illustration of the invalid expansion caused by RRT’s random sampling strategy.
xrand is the randomly sampled point, x_near is the nearest neighbor of xrand, and xnew is the expansion
point. Unfortunately, this step of expansion is invalid because the random tree is not brought close to
the target point or expanded to a new area.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19

then {𝑥, 𝑥௪} is added to the edge set. However, this expansion is invalid because the
red exploration area of the newly generated node completely falls within the original
exploration area and fails to expand the newly explored area.

Figure 2. Schematic illustration of the invalid expansion caused by RRT’s random sampling
strategy. 𝑥ௗ is the randomly sampled point, 𝑥_𝑛𝑒𝑎𝑟 is the nearest neighbor of 𝑥ௗ , and 𝑥௪ is the expansion point. Unfortunately, this step of expansion is invalid because the random tree
is not brought close to the target point or expanded to a new area.

To address the above issue, we propose a sampling algorithm called Fast-Sampling.
By refusing to sample in the explored area, Fast-Sampling can avoid a large number of
invalid growths. Figure 3 indicates the principle of Fast-Sampling, where a new vertex 𝑥௪ is added to the tree, its surrounding area 𝑥௨ௗ = {𝑥 ∈ 𝑋หฮ𝑥 − 𝑥ฮ < 𝑟} is set as
the explored area. As shown in Figure 3, the sampled state 𝑥ௗଵ is located in the
explored area, the corresponding guided expansion is then invalid. The Fast-Sampling
samples another random state 𝑥ௗଶ , which guides the random tree 𝑇 expand to an
unexplored area. Compared with RRT, Fast-Sampling speeds up the exploration speed
and reduces memory usage. Algorithm 5 presents the detail of Fast-Sampling.

Figure 3. Schematic illustration of the Fast-Sampling sampling strategy. The red circle is the
explored area. Since the first sampling point 𝑥ௗଵ falls in the explored area, it is regarded as an
invalid sampling. After re-sampling, the second sampling point 𝑥ௗଶ is obtained. 𝑥ௗଶ
bootstrap tree expansion to obtain 𝑥௪, thus avoiding invalid expansion.

Figure 3. Schematic illustration of the Fast-Sampling sampling strategy. The red circle is the explored
area. Since the first sampling point xrand1 falls in the explored area, it is regarded as an invalid
sampling. After re-sampling, the second sampling point xrand2 is obtained. xrand2 bootstrap tree
expansion to obtain xnew, thus avoiding invalid expansion.

Algorithm 5. Fast Sampling

Input: xrand
Let xrand ← Uni f ormSample();
While xrand ∈ Xexplored do

xrand ← Uni f ormSample();

3.2.2. Random Steering

In addition to Fast-Sampling, the Random Steering strategy was also proposed to
solve the problem of poor performance of the RRT algorithm in narrow channel scenarios.
The inferior performance of the RRT algorithm can be attributed to the invalid expansion
introduced in Section 3.2.1, and a large number of failed expansions caused by the narrow

Appl. Sci. 2021, 11, 11777 8 of 18

passages are shown in Figure 4. In order to pass through the narrow passages, the tree T
should expand toward the right state space. While the expansion guided by xrand collides
with an obstacle, resulting in the failed expansions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19

Algorithm 5 Fast Sampling
Input: 𝑥ௗ
Let 𝑥ௗ ← 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑒();
While 𝑥ௗ ∈ 𝑋௫ௗ do
 𝑥ௗ ← 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑆𝑎𝑚𝑝𝑙𝑒();

3.2.2. Random Steering
In addition to Fast-Sampling, the Random Steering strategy was also proposed to

solve the problem of poor performance of the RRT algorithm in narrow channel scenarios.
The inferior performance of the RRT algorithm can be attributed to the invalid expansion
introduced in Section 3.2.1, and a large number of failed expansions caused by the narrow
passages are shown in Figure 4. In order to pass through the narrow passages, the tree 𝑇
should expand toward the right state space. While the expansion guided by 𝑥ௗ collides
with an obstacle, resulting in the failed expansions.

Figure 4. Schematic illustration of invalid expansions in narrow passages. 𝑥ௗଵ and 𝑥ௗଶ are
two randomly sampling points. Since the random tree can only pass through a narrow passage, the
expansions guided by 𝑥ௗଵ and 𝑥ௗଶ both collided with obstacles.

To avoid this problem, we adjusted the expansion algorithm and named it as Fast-
Expand. As shown in Figure 5, if the expansion guided by 𝑥ௗଵ fails, Fast-Expand will
randomly generate a direction 𝜃 for expansion. If edge (𝑥, 𝑥௪ଵ) is obstacle-free,
then they will be added to the tree; otherwise, another random state will be sampled by
Fast-RRT. Fast-Expand enables the random tree of the Fast-RRT algorithm to pass through
the narrow passage quickly. The details of the Fast-Expand algorithm are shown in
Algorithm 6.

Figure 4. Schematic illustration of invalid expansions in narrow passages. xrand1 and xrand2 are
two randomly sampling points. Since the random tree can only pass through a narrow passage, the
expansions guided by xrand1 and xrand2 both collided with obstacles.

To avoid this problem, we adjusted the expansion algorithm and named it as Fast-
Expand. As shown in Figure 5, if the expansion guided by xrand1 fails, Fast-Expand will
randomly generate a direction θ for expansion. If edge (xnear, xnew1) is obstacle-free, then
they will be added to the tree; otherwise, another random state will be sampled by Fast-RRT.
Fast-Expand enables the random tree of the Fast-RRT algorithm to pass through the narrow
passage quickly. The details of the Fast-Expand algorithm are shown in Algorithm 6.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 19

Figure 5. Schematic illustration of random expansion strategy. When the tree T expands towards 𝑥ௗଵ, it randomly samples a direction θ to expand because it collides with an obstacle. In this way,
the Fast-Expand samples another random tree and provides a successful pass through the narrow
channel after getting 𝑥ௗଶ in the next sampling.

Algorithm 6 Fast Expanding
Input: 𝑀𝑎𝑝, 𝑇, 𝑥ௗ
Output: 𝑥௪
Let 𝑥 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡(𝑇, 𝑥ௗ);
Let 𝐸 ← 𝐸𝑑𝑔𝑒(𝑥௪, 𝑥);

if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝐸, 𝑀𝑎𝑝) then
 Return 𝑥௪
Else
 𝜃 ← 𝑅𝑎𝑛𝑑()
 𝑥௪ ← 𝐸𝑥𝑝𝑎𝑛𝑑(𝑥, 𝜃)

3.3. Fast-Optimal
Except for Improved RRT, Fast-Optimal is another important part of our Fast RRT

algorithm. As an optimal pathfinding algorithm, Fast-Optimal is an asymptotically
optimal algorithm that obtains a better path by fusing the new initial path sought with the
current optimal paths. Compared with the RRT* algorithm, Fast-Optimal accelerates the
convergence speed of the algorithm. The Fast-Optimal algorithm consists of two steps
involving path fusion and path fine-tuning. Path fusion can fuse multiple initial paths to
obtain a better path, while path fine-tuning can quickly adjust the fusion path, which
speeds up the search for the optimal path. They are introduced in Sections 3.3.1 and 3.3.2,
respectively.

3.3.1. Path Fusion
Path fusion refers to intercepting a part of each of two paths to combine them into a

better path. In this case, the evaluation index of the path is the path length. Therefore, path
fusion is introduced to fuse multiple initial paths to obtain a better path with a shorter
length than the two paths. Figure 6 illustrates the algorithm flow chart of path fusion. In
each iteration, a random non-optimal path 𝑃௪ is obtained by the Imporved RRT
algorithm. Due to the high efficiency of Fast-RRT, 𝑃௪ can be quickly obtained. Then 𝑃௪ is fused with the current optimal path 𝑃௧ to obtain a more optimal path, thus
being the new 𝑃௧. By continuously generating new paths and fusing them with the
current optimal path, the path fusion algorithm will result in the final optimal path.

Figure 5. Schematic illustration of random expansion strategy. When the tree T expands towards
xrand1, it randomly samples a direction θ to expand because it collides with an obstacle. In this way,
the Fast-Expand samples another random tree and provides a successful pass through the narrow
channel after getting xrand2 in the next sampling.

Appl. Sci. 2021, 11, 11777 9 of 18

Algorithm 6. Fast Expanding

Input: Map, T, xrand
Output: xnew
Let xnear ← Nearest(T, xrand);
Let E← Edge(xnew, xnear);
if ObstacleFree(E, Map) then

Return xnew
Else

θ ← Rand()
xnew ← Expand(xnear, θ)

3.3. Fast-Optimal

Except for Improved RRT, Fast-Optimal is another important part of our Fast RRT
algorithm. As an optimal pathfinding algorithm, Fast-Optimal is an asymptotically optimal
algorithm that obtains a better path by fusing the new initial path sought with the current
optimal paths. Compared with the RRT* algorithm, Fast-Optimal accelerates the conver-
gence speed of the algorithm. The Fast-Optimal algorithm consists of two steps involving
path fusion and path fine-tuning. Path fusion can fuse multiple initial paths to obtain a
better path, while path fine-tuning can quickly adjust the fusion path, which speeds up the
search for the optimal path. They are introduced in Sections 3.3.1 and 3.3.2, respectively.

3.3.1. Path Fusion

Path fusion refers to intercepting a part of each of two paths to combine them into
a better path. In this case, the evaluation index of the path is the path length. Therefore,
path fusion is introduced to fuse multiple initial paths to obtain a better path with a shorter
length than the two paths. Figure 6 illustrates the algorithm flow chart of path fusion. In
each iteration, a random non-optimal path Pnew is obtained by the Imporved RRT algorithm.
Due to the high efficiency of Fast-RRT, Pnew can be quickly obtained. Then Pnew is fused
with the current optimal path Poptimal to obtain a more optimal path, thus being the new
Poptimal . By continuously generating new paths and fusing them with the current optimal
path, the path fusion algorithm will result in the final optimal path.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19

Figure 6. Schematic illustration of the algorithm flow chart of path fusion.

The process of path fusion is shown in Figure 7. It consists of the following steps: the
first step is to find the intersection, and the second step is to select the sub-path. In the first
step, the intersection points of paths 𝑝𝑎𝑡ℎ௪ and 𝑝𝑎𝑡ℎ௦௧ is be calculated and used to
divide the path into multiple sub-paths. Given that the nodes of the two paths do not
completely overlap, if the distance between 𝑝𝑜𝑖𝑛𝑡ଵ and 𝑝𝑜𝑖𝑛𝑡ଶ is less than the set
threshold 𝑟 , they are considered to be overlapped and set the midpoint 𝑝𝑜𝑖𝑛𝑡ௗ as
overlap point. In the second step, we select sub-paths from 𝑝𝑎𝑡ℎ௪ and 𝑝𝑎𝑡ℎ௦௧ to
connect each intersection. As shown in Figure 6, the sub-path of 𝑃௪ connecting 𝑞௦௧௧
and 𝑞 is shorter than the sub-path of 𝑝𝑎𝑡ℎ௦௧ connecting 𝑞௦௧௧ and 𝑞௪. Thus, the
sub-path of 𝑝𝑎𝑡ℎ௦௧ is used to connect 𝑞௦௧௧ and 𝑞 . Similarly, the sub-path of 𝑝𝑎𝑡ℎ௦௧ is used to connect 𝑞 and 𝑞 because it is shorter than that of 𝑝𝑎𝑡ℎ௪. In
this way, the two paths can be combined into a better path than the individual paths. By
continuously fusing the current optimal path 𝑝𝑎𝑡ℎ௦௧ with the newly generated random
path, the algorithm quickly obtains a near-optimal path. The details of the path fusion
algorithm are shown in Algorithm 7.

Figure 7. Schematic illustration of the path fusion process. The green path 𝑝𝑎𝑡ℎ௦௧ is the currently
obtained optimal path, the blue path 𝑝𝑎𝑡ℎ௪ is the newly obtained feasible path, and 𝑞 is the
intersection of the two paths.

Figure 6. Schematic illustration of the algorithm flow chart of path fusion.

The process of path fusion is shown in Figure 7. It consists of the following steps: the
first step is to find the intersection, and the second step is to select the sub-path. In the first
step, the intersection points of paths pathnew and pathbest is be calculated and used to divide
the path into multiple sub-paths. Given that the nodes of the two paths do not completely

Appl. Sci. 2021, 11, 11777 10 of 18

overlap, if the distance between point1 and point2 is less than the set threshold r, they are
considered to be overlapped and set the midpoint pointmid as overlap point. In the second
step, we select sub-paths from pathnew and pathobest to connect each intersection. As shown
in Figure 6, the sub-path of Pnew connecting qstart and qnear is shorter than the sub-path of
pathbest connecting qstart and qnew. Thus, the sub-path of pathbest is used to connect qstart
and qnear. Similarly, the sub-path of pathbest is used to connect qnear and qgoal because it is
shorter than that of pathnew. In this way, the two paths can be combined into a better path
than the individual paths. By continuously fusing the current optimal path pathbest with
the newly generated random path, the algorithm quickly obtains a near-optimal path. The
details of the path fusion algorithm are shown in Algorithm 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19

Figure 6. Schematic illustration of the algorithm flow chart of path fusion.

The process of path fusion is shown in Figure 7. It consists of the following steps: the
first step is to find the intersection, and the second step is to select the sub-path. In the first
step, the intersection points of paths 𝑝𝑎𝑡ℎ௪ and 𝑝𝑎𝑡ℎ௦௧ is be calculated and used to
divide the path into multiple sub-paths. Given that the nodes of the two paths do not
completely overlap, if the distance between 𝑝𝑜𝑖𝑛𝑡ଵ and 𝑝𝑜𝑖𝑛𝑡ଶ is less than the set
threshold 𝑟 , they are considered to be overlapped and set the midpoint 𝑝𝑜𝑖𝑛𝑡ௗ as
overlap point. In the second step, we select sub-paths from 𝑝𝑎𝑡ℎ௪ and 𝑝𝑎𝑡ℎ௦௧ to
connect each intersection. As shown in Figure 6, the sub-path of 𝑃௪ connecting 𝑞௦௧௧
and 𝑞 is shorter than the sub-path of 𝑝𝑎𝑡ℎ௦௧ connecting 𝑞௦௧௧ and 𝑞௪. Thus, the
sub-path of 𝑝𝑎𝑡ℎ௦௧ is used to connect 𝑞௦௧௧ and 𝑞 . Similarly, the sub-path of 𝑝𝑎𝑡ℎ௦௧ is used to connect 𝑞 and 𝑞 because it is shorter than that of 𝑝𝑎𝑡ℎ௪. In
this way, the two paths can be combined into a better path than the individual paths. By
continuously fusing the current optimal path 𝑝𝑎𝑡ℎ௦௧ with the newly generated random
path, the algorithm quickly obtains a near-optimal path. The details of the path fusion
algorithm are shown in Algorithm 7.

Figure 7. Schematic illustration of the path fusion process. The green path 𝑝𝑎𝑡ℎ௦௧ is the currently
obtained optimal path, the blue path 𝑝𝑎𝑡ℎ௪ is the newly obtained feasible path, and 𝑞 is the
intersection of the two paths.

Figure 7. Schematic illustration of the path fusion process. The green path pathobest is the currently
obtained optimal path, the blue path pathnew is the newly obtained feasible path, and qnear is the
intersection of the two paths.

Algorithm 7. Path fusion

Input: Pbest, Pnew
Output: Pbest
Foreach pointnew o f Pnew do

Foreach pointbest o f Pbest do
If d = ‖pointnew, pointbest‖ < Thr then

intersections append (pointnew.index(), pointbest.index())
For k = 1 : size(joints)− 1 do

(startnew, startbest) = intersections(i)
(endnew, endbest) = intersections(i)
Pathopt ← SubPath(Pbest, startnew, endnew)
Pathnew ← SubPath(Pnew, startbest, endbest)
If Cost

(
Pathopt

)
< Cost(Pathnew) then

Pbest[startbest : endbest]← Pnew[startnew : endnew]

3.3.2. Path Fine-Tuning

In order to speed up the path optimization, we also propose a path fine-tuning
strategy that obtains a better path by simply adjusting the path obtained by the path-fusion
algorithm. The process of the path fine-tuning is shown in Figure 8. The path composed of
green points is obtained by the path-fusion algorithm, in which qnear1, qnear2 and qnear3 are
the coincident points of Pnew and Poptimal , respectively.

Appl. Sci. 2021, 11, 11777 11 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19

Algorithm 7 Path fusion
Input: 𝑃௦௧, 𝑃௪
Output: 𝑃௦௧
Foreach 𝑝𝑜𝑖𝑛𝑡௪ 𝑜𝑓 𝑃௪ do
 Foreach 𝑝𝑜𝑖𝑛𝑡௦௧ 𝑜𝑓 𝑃௦௧ do

 If 𝑑 = ‖𝑝𝑜𝑖𝑛𝑡௪, 𝑝𝑜𝑖𝑛𝑡௦௧‖ < 𝑇ℎ𝑟 then
 intersections 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑜𝑖𝑛𝑡௪. 𝑖𝑛𝑑𝑒𝑥(), 𝑝𝑜𝑖𝑛𝑡௦௧. 𝑖𝑛𝑑𝑒𝑥())
For 𝑘 = 1: 𝑠𝑖𝑧𝑒(𝑗𝑜𝑖𝑛𝑡𝑠) − 1 do
 (𝑠𝑡𝑎𝑟𝑡௪, 𝑠𝑡𝑎𝑟𝑡௦௧) = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑖)
 (𝑒𝑛𝑑௪, 𝑒𝑛𝑑௦௧) = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑖)
 𝑃𝑎𝑡ℎ௧ ← 𝑆𝑢𝑏𝑃𝑎𝑡ℎ(𝑃௦௧, 𝑠𝑡𝑎𝑟𝑡௪, 𝑒𝑛𝑑௪)
 𝑃𝑎𝑡ℎ௪ ← 𝑆𝑢𝑏𝑃𝑎𝑡ℎ(𝑃௪, 𝑠𝑡𝑎𝑟𝑡௦௧, 𝑒𝑛𝑑௦௧)
 If 𝐶𝑜𝑠𝑡൫𝑃𝑎𝑡ℎ௧൯ < 𝐶𝑜𝑠𝑡(𝑃𝑎𝑡ℎ௪) then
 𝑃௦௧ሾ𝑠𝑡𝑎𝑟𝑡௦௧: 𝑒𝑛𝑑௦௧ሿ ← 𝑃௪ሾ𝑠𝑡𝑎𝑟𝑡௪: 𝑒𝑛𝑑௪ሿ

3.3.2. Path Fine-Tuning
In order to speed up the path optimization, we also propose a path fine-tuning

strategy that obtains a better path by simply adjusting the path obtained by the path-
fusion algorithm. The process of the path fine-tuning is shown in Figure 8. The path
composed of green points is obtained by the path-fusion algorithm, in which 𝑞ଵ , 𝑞ଶ and 𝑞ଷ are the coincident points of 𝑃௪ and 𝑃௧, respectively.

During the process of path fine-tuning, we try to connect each intersection with a
straight line. The connection between 𝑞ଵ and 𝑞ଶ collides with the obstacle; thus,
the original path is saved. In contrast, the connection between 𝑞ଶ and 𝑞ଷ does not
collide with obstacles, so we can use straight to connect these two points because the direct
connection is shorter than the original polyline connection. Therefore, the path fine-tuning
algorithm can obtain a better path with few turns, which is more convenient for the robots
to execute. The details of fast fine-tuning are shown in Algorithm 8.

Figure 8. Schematic illustration of the process of path fine-tuning. 𝑝𝑜𝑖𝑛𝑡1, 𝑝𝑜𝑖𝑛𝑡2, 𝑝𝑜𝑖𝑛𝑡3 are the
intersection points of path fusion. Since the connection between 𝑝𝑜𝑖𝑛𝑡1 and 𝑝𝑜𝑖𝑛𝑡2 collides with
obstacles, the original path is retained. In contrast, the connection between 𝑝𝑜𝑖𝑛𝑡2 and 𝑝𝑜𝑖𝑛𝑡3 is
unobstructed so that the original path can be replaced by a new straight path.

Figure 8. Schematic illustration of the process of path fine-tuning. point1, point2, point3 are the
intersection points of path fusion. Since the connection between point1 and point2 collides with
obstacles, the original path is retained. In contrast, the connection between point2 and point3 is
unobstructed so that the original path can be replaced by a new straight path.

During the process of path fine-tuning, we try to connect each intersection with a
straight line. The connection between qnear1 and qnear2 collides with the obstacle; thus,
the original path is saved. In contrast, the connection between qnear2 and qnear3 does not
collide with obstacles, so we can use straight to connect these two points because the direct
connection is shorter than the original polyline connection. Therefore, the path fine-tuning
algorithm can obtain a better path with few turns, which is more convenient for the robots
to execute. The details of fast fine-tuning are shown in Algorithm 8.

Algorithm 8. Path fine-tuning

Input: P, intersections, Map
Output: Ptuning
Let Ptuning = []

For k = 1 : size(intersections)− 1 do
idx1← near_list[k]
point1← P[idx1]
idx2← near_list[k + 1]
point2← P[idx2]
if ObstacleFree(point1, point2) then

Subpath← Generate(point1, point2)
Ptuning append Subpath

else
Subpath← P(idx1 : idx2)
Ptuning append Subpath

4. Simulation and Result

In order to evaluate the performance of the proposed algorithm, a series of experiments
are performed. As mentioned above, the Fast-RRT includes two modules, Improved RRT
and Fast-Optimal. The Improved RRT algorithm can quickly find the initial path, while
the Fast-Optimal algorithm can obtain a near-optimal path by combining the initial paths.
Therefore, we first compared Improved-RRT with RRT to prove its efficiency in finding the
initial solution. Then the comparison between Fast-Optimal and RRT is shown to prove
the efficiency of the algorithm in finding the near-optimal solution.

Specifically, three experiments are designed to evaluate the efficiency of the proposed
algorithm. The first experiment is to find a feasible path in a complex environment. The
simulation environment is shown in Figure 9, which contains multiple obstacles of different
shapes. The second experiment is to find a feasible path in a narrow passage scene, which
is difficult for RRT. The simulation environment containing multiple narrow passages is
shown in Figure 10. The third experiment is to find a near-optimal path by using the same

Appl. Sci. 2021, 11, 11777 12 of 18

environment as the first experiment. All experiments were run on a desktop computer,
configured with Intel Core i7-7700k processor, 16 GB RAM, Windows 10, and Matlab R202.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19

Algorithm 8 Path fine-tuning
Input: 𝑃, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠, 𝑀𝑎𝑝
Output: 𝑃௧௨
Let 𝑃௧௨ = ሾሿ
For 𝑘 = 1: 𝑠𝑖𝑧𝑒(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠) − 1 do
 𝑖𝑑𝑥1 ← 𝑛𝑒𝑎𝑟_𝑙𝑖𝑠𝑡ሾ𝑘ሿ
 𝑝𝑜𝑖𝑛𝑡1 ← 𝑃ሾ𝑖𝑑𝑥1ሿ
 𝑖𝑑𝑥2 ← 𝑛𝑒𝑎𝑟_𝑙𝑖𝑠𝑡ሾ𝑘 + 1ሿ
 𝑝𝑜𝑖𝑛𝑡2 ← 𝑃ሾ𝑖𝑑𝑥2ሿ

if 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒(𝑝𝑜𝑖𝑛𝑡1, 𝑝𝑜𝑖𝑛𝑡2) then
 𝑆𝑢𝑏𝑝𝑎𝑡ℎ ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑝𝑜𝑖𝑛𝑡1, 𝑝𝑜𝑖𝑛𝑡2)
 𝑃௧௨ 𝑎𝑝𝑝𝑒𝑛𝑑 𝑆𝑢𝑏𝑝𝑎𝑡ℎ

 else
 𝑆𝑢𝑏𝑝𝑎𝑡ℎ ← 𝑃(𝑖𝑑𝑥1: 𝑖𝑑𝑥2)
 𝑃௧௨ 𝑎𝑝𝑝𝑒𝑛𝑑 𝑆𝑢𝑏𝑝𝑎𝑡ℎ

4. Simulation and Result
In order to evaluate the performance of the proposed algorithm, a series of

experiments are performed. As mentioned above, the Fast-RRT includes two modules,
Improved RRT and Fast-Optimal. The Improved RRT algorithm can quickly find the
initial path, while the Fast-Optimal algorithm can obtain a near-optimal path by
combining the initial paths. Therefore, we first compared Improved-RRT with RRT to
prove its efficiency in finding the initial solution. Then the comparison between Fast-
Optimal and RRT is shown to prove the efficiency of the algorithm in finding the near-
optimal solution.

Specifically, three experiments are designed to evaluate the efficiency of the
proposed algorithm. The first experiment is to find a feasible path in a complex
environment. The simulation environment is shown in Figure 9, which contains multiple
obstacles of different shapes. The second experiment is to find a feasible path in a narrow
passage scene, which is difficult for RRT. The simulation environment containing multiple
narrow passages is shown in Figure 10. The third experiment is to find a near-optimal
path by using the same environment as the first experiment. All experiments were run on
a desktop computer, configured with Intel Core i7-7700k processor, 16 GB RAM,
Windows 10, and Matlab R202.

Figure 9. Schematic illustration of simulation environment 1 containing multiple obstacles of
different shapes. The distance from the state 𝑥௦௧௧ to the target state 𝑥 is 𝑑, and its value is
1000.

Figure 9. Schematic illustration of simulation environment 1 containing multiple obstacles of different
shapes. The distance from the state xstart to the target state xgoal is dgoal , and its value is 1000.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 19

Figure 10. Schematic illustration of simulation environment 2, where three narrow passages are
required from the starting state 𝑥௦௧௧ to the goal state 𝑥_𝑔𝑜𝑎𝑙. The distance from the state 𝑥௦௧௧ to
the target state 𝑥 is 𝑑. The value is set to 1000.

4.1. Find Initial Path
This experiment is to test the algorithm’s ability to find an initial solution, which

refers to finding an obstacle-free path from 𝑥௦௧௧ to 𝑥. The RRT algorithm is used as
a benchmark algorithm to verify the efficiency of the Improved-RRT algorithm. The
simulation environment used for this experiment is shown in Figure 8. The length and
width of the environment are 1200 and 900, respectively. 𝑑 is the distance from the
initial state 𝑥௦௧௧ to the goal state 𝑥, and its value is set to 1000. Different step sizes
affect the complexity of the problem. In our case, we designed multiple sets of experiments
and set the step sizes to 10, 20, 30, 40, and 50, respectively. As the step size decreases,
the searching number required to find a feasible solution increase along with the
complexity of the problem.

The results of the Fast-RRT algorithm and RRT algorithm in a test are shown in
Figure 11. The red points are the random sampling state of the algorithm, the green line
is the random tree generated by the algorithm, and the blue line is the feasible path
obtained by the search. Obviously, the sampling points of the RRT algorithm are
randomly distributed at any position in the state space. By contrast, the sampling points
of the Fast-RRT algorithm are sparsely distributed around the random tree and densely
distributed in the area far from the random tree. Fast-RRT avoids sampling in the area
that the random tree has reached, which is beneficial for guiding the random tree to
expand to the unknown area. At the same time, compared with the RRT algorithm, Fast-
RRT uses fewer nodes to cover the space due to the presence of the abundant random
trees of the RRT algorithm, resulting in more invalid extensions. Finally, Fast-RRT has
multiple random edges near the boundary of the obstacle. Although it increases memory
consumption, the Fast-RRT facilitates the random tree to bypass the obstacles to reach the
target point quickly.

Figure 10. Schematic illustration of simulation environment 2, where three narrow passages are
required from the starting state xstart to the goal state xgoal . The distance from the state xstart to the
target state xgoal is dgoal . The value is set to 1000.

4.1. Find Initial Path

This experiment is to test the algorithm’s ability to find an initial solution, which
refers to finding an obstacle-free path from xstart to xgoal . The RRT algorithm is used
as a benchmark algorithm to verify the efficiency of the Improved-RRT algorithm. The
simulation environment used for this experiment is shown in Figure 8. The length and
width of the environment are 1200 and 900, respectively. dgoal is the distance from the
initial state xstart to the goal state xgoal , and its value is set to 1000. Different step sizes
affect the complexity of the problem. In our case, we designed multiple sets of experiments
and set the step sizes to 10, 20, 30, 40, and 50, respectively. As the step size decreases, the
searching number required to find a feasible solution increase along with the complexity of
the problem.

Appl. Sci. 2021, 11, 11777 13 of 18

The results of the Fast-RRT algorithm and RRT algorithm in a test are shown in Figure 11.
The red points are the random sampling state of the algorithm, the green line is the random
tree generated by the algorithm, and the blue line is the feasible path obtained by the
search. Obviously, the sampling points of the RRT algorithm are randomly distributed at
any position in the state space. By contrast, the sampling points of the Fast-RRT algorithm
are sparsely distributed around the random tree and densely distributed in the area far
from the random tree. Fast-RRT avoids sampling in the area that the random tree has
reached, which is beneficial for guiding the random tree to expand to the unknown area. At
the same time, compared with the RRT algorithm, Fast-RRT uses fewer nodes to cover the
space due to the presence of the abundant random trees of the RRT algorithm, resulting in
more invalid extensions. Finally, Fast-RRT has multiple random edges near the boundary
of the obstacle. Although it increases memory consumption, the Fast-RRT facilitates the
random tree to bypass the obstacles to reach the target point quickly.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 19

(a) (b)

Figure 11. Comparison of the operation results of (a) the improved RRT algorithm and (b) the RRT algorithm. The
sampling points of the Improved RRT algorithm are more densely distributed in the area where the random tree has not
reached, and its random tree is more efficient to achieve the state space. As for the RRT, the sampling points are evenly
distributed throughout the space. Compared with Improved RRT, it uses more nodes to achieve coverage of the state
space.

Finally, the efficiency of the algorithm was evaluated by search time and memory
consumption. Specifically, the number of nodes in the random tree is used to evaluate
memory consumption. The average and variance are used as two indicators for the
characterization of the search time. The average value of the search time represents the
average performance of the algorithm, while the variance indicates its stability, which is
both very important for practical applications (e.g., robots). In our case, RRT and Fast-
RRT were run 100 times, and then the running time and the number of nodes of the
random tree were recorded. The running time of the two algorithms and the average and
variance of the number of nodes were further calculated.

Figure 12 shows the results of the running time. Compared with the RRT algorithm,
the average and variance of the search time of the Fast-RRT algorithm are significantly
reduced. When the step size is set to 50, the average and variance of the search time are
0.016 s and 0.009 s, respectively. By contrast, for the RRT algorithm, the average and
variance of the search time are 0.043 s and 0.043 s, respectively. Correspondingly, the
average search time and the variance within the Fast-RRT algorithm are only 37.2% and 20.9% of the RRT algorithm, respectively. As the step size decreases, the complexity of
the problem increases along with the gap between them. When the step size is set to 10,
the average and variance of the search time of the Fast-RRT algorithm are only 23.5%
and 8.3% of the RRT algorithm.

Figure 11. Comparison of the operation results of (a) the improved RRT algorithm and (b) the RRT algorithm. The sampling
points of the Improved RRT algorithm are more densely distributed in the area where the random tree has not reached,
and its random tree is more efficient to achieve the state space. As for the RRT, the sampling points are evenly distributed
throughout the space. Compared with Improved RRT, it uses more nodes to achieve coverage of the state space.

Finally, the efficiency of the algorithm was evaluated by search time and memory
consumption. Specifically, the number of nodes in the random tree is used to evaluate
memory consumption. The average and variance are used as two indicators for the
characterization of the search time. The average value of the search time represents the
average performance of the algorithm, while the variance indicates its stability, which is
both very important for practical applications (e.g., robots). In our case, RRT and Fast-RRT
were run 100 times, and then the running time and the number of nodes of the random
tree were recorded. The running time of the two algorithms and the average and variance
of the number of nodes were further calculated.

Figure 12 shows the results of the running time. Compared with the RRT algorithm,
the average and variance of the search time of the Fast-RRT algorithm are significantly
reduced. When the step size is set to 50, the average and variance of the search time
are 0.016 s and 0.009 s, respectively. By contrast, for the RRT algorithm, the average and
variance of the search time are 0.043 s and 0.043 s, respectively. Correspondingly, the
average search time and the variance within the Fast-RRT algorithm are only 37.2% and
20.9% of the RRT algorithm, respectively. As the step size decreases, the complexity of the
problem increases along with the gap between them. When the step size is set to 10, the
average and variance of the search time of the Fast-RRT algorithm are only 23.5% and 8.3%
of the RRT algorithm.

Appl. Sci. 2021, 11, 11777 14 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19

Figure 12. Comparison of the search time between RRT algorithm (black) and Improved-RRT
algorithm (red) with different step sizes.

Figure 13 compares the results of the memory consumption of RRT and Fast-RRT
algorithms. Compared with the RRT algorithm, Fast-RRT also shows remarkable
advantages in memory usage. At step sizes of 10, 20, 30, 40, and 50, the average number
of nodes of the random tree is 659.6, 322.9, 207.9, 158.4, and 129.5, respectively. In contrast,
the RRT algorithm has a larger number of nodes of the random tree of 1182.3, 551.9, 323.6,
244.5, and 198.8, respectively. At the same time, the variance of the number of nodes in
the Fast-RRT algorithm random tree is also smaller. When the step size is set to 10, the
variance of the number of nodes in the Fast-RRT random tree (113.9) is only 22.1% of the
RRT algorithm (515.6).

Figure 13. Comparison of the node number of the random tree in the Fast-RRT algorithm and the
RRT algorithm with different step sizes.

Figure 12. Comparison of the search time between RRT algorithm (black) and Improved-RRT
algorithm (red) with different step sizes.

Figure 13 compares the results of the memory consumption of RRT and Fast-RRT al-
gorithms. Compared with the RRT algorithm, Fast-RRT also shows remarkable advantages
in memory usage. At step sizes of 10, 20, 30, 40, and 50, the average number of nodes
of the random tree is 659.6, 322.9, 207.9, 158.4, and 129.5, respectively. In contrast, the
RRT algorithm has a larger number of nodes of the random tree of 1182.3, 551.9, 323.6,
244.5, and 198.8, respectively. At the same time, the variance of the number of nodes in
the Fast-RRT algorithm random tree is also smaller. When the step size is set to 10, the
variance of the number of nodes in the Fast-RRT random tree (113.9) is only 22.1% of the
RRT algorithm (515.6).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19

Figure 12. Comparison of the search time between RRT algorithm (black) and Improved-RRT
algorithm (red) with different step sizes.

Figure 13 compares the results of the memory consumption of RRT and Fast-RRT
algorithms. Compared with the RRT algorithm, Fast-RRT also shows remarkable
advantages in memory usage. At step sizes of 10, 20, 30, 40, and 50, the average number
of nodes of the random tree is 659.6, 322.9, 207.9, 158.4, and 129.5, respectively. In contrast,
the RRT algorithm has a larger number of nodes of the random tree of 1182.3, 551.9, 323.6,
244.5, and 198.8, respectively. At the same time, the variance of the number of nodes in
the Fast-RRT algorithm random tree is also smaller. When the step size is set to 10, the
variance of the number of nodes in the Fast-RRT random tree (113.9) is only 22.1% of the
RRT algorithm (515.6).

Figure 13. Comparison of the node number of the random tree in the Fast-RRT algorithm and the
RRT algorithm with different step sizes.

Figure 13. Comparison of the node number of the random tree in the Fast-RRT algorithm and the
RRT algorithm with different step sizes.

4.2. Narrow Passages Scene

The ability of our proposed Fast-RRT algorithm is also evaluated to find a feasible
path in an environment with narrow passages. The algorithm needs to find an obstacle-free
path from xstart to xgoal . Due to the requirement of a large number of sampling, the RRT
algorithm does not perform well in making the random tree pass through these narrow

Appl. Sci. 2021, 11, 11777 15 of 18

channels. The environment, in this case, is shown in Figure 9. The length and width of
the environment are 1200 and 900, respectively. There are three narrow passages in the
environment, and the width of the channel is set to 80. xstart is the start state and xgoal is
the goal state. dgoal is the distance from xstart to xgoal , which is set to 1000.

The average and variance of the search time are used to evaluate the efficiency of
the Improved RRT algorithm, and the RRT algorithm is used as the benchmark algorithm.
Several groups of experiments were performed with the step sizes set to 10, 20, 30, 40, and
50, respectively. For each experiment, we ran the RRT algorithm and the Improved-RRT
algorithm 100 times, respectively. Then the average and variance of the search time of these
algorithms were calculated, and obtained results are shown in Figure 14.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 19

4.2. Narrow Passages Scene
The ability of our proposed Fast-RRT algorithm is also evaluated to find a feasible

path in an environment with narrow passages. The algorithm needs to find an obstacle-
free path from 𝑥௦௧௧ to 𝑥. Due to the requirement of a large number of sampling, the
RRT algorithm does not perform well in making the random tree pass through these
narrow channels. The environment, in this case, is shown in Figure 9. The length and
width of the environment are 1200 and 900, respectively. There are three narrow passages
in the environment, and the width of the channel is set to 80. 𝑥௦௧௧ is the start state and 𝑥 is the goal state. 𝑑 is the distance from 𝑥௦௧௧ to 𝑥, which is set to 1000.

The average and variance of the search time are used to evaluate the efficiency of the
Improved RRT algorithm, and the RRT algorithm is used as the benchmark algorithm.
Several groups of experiments were performed with the step sizes set to 10, 20, 30, 40, and
50, respectively. For each experiment, we ran the RRT algorithm and the Improved-RRT
algorithm 100 times, respectively. Then the average and variance of the search time of
these algorithms were calculated, and obtained results are shown in Figure 14.

The results show that the average and variance of the search time within the
Improved-RRT algorithm are significantly smaller than those of the RRT algorithm. When
the step size is set to 10, 20, 30, 40, and 50, the average search time of the Improved-RRT
algorithm is 0.567 s, 0.146 s, 0.076 s, 0.047 s, and 0.035 s, respectively. The values are 15.3%,
15.1%, 17.1%, 17.0%, 16.8% of the RRT algorithm, respectively. Moreover, the variance of
search time of the Improved-RRT algorithm is 0.480 s, 0.101 s, 0.056 s, 0.050 s, and 0.032 s,
which are 16.5%, 15.9%, 10.5%, 11.5%, 11.7% of the RRT algorithm, respectively. Therefore,
the Improved-RRT algorithm can find a feasible path faster than the RRT algorithm and
has better stability. Compared with the results of Section 3.1, the difference between the
average and variance of the search time of these two algorithms is further increased,
indicating that the random expansion strategy proposed in this paper has a significant
effect on the pathfinding problem of narrow passage environment.

Figure 14. Comparison of the search time between Fast-RRT algorithm and RRT algorithm in the
narrow passages as a function of different step sizes.

4.3. Find Near-Optimal Path
The algorithm’s ability to find a near-optimal path is also measured. The algorithm

needs to find an obstacle-free path from 𝑥௦௧௧ to 𝑥 , whose length differs from the
optimal path’s length is less than threshold 𝑟. The environment used in this experiment
is the same as Section 3.1, the environment is shown in Figure 8, the length of the

Figure 14. Comparison of the search time between Fast-RRT algorithm and RRT algorithm in the
narrow passages as a function of different step sizes.

The results show that the average and variance of the search time within the Improved-
RRT algorithm are significantly smaller than those of the RRT algorithm. When the step
size is set to 10, 20, 30, 40, and 50, the average search time of the Improved-RRT algorithm
is 0.567 s, 0.146 s, 0.076 s, 0.047 s, and 0.035 s, respectively. The values are 15.3%, 15.1%,
17.1%, 17.0%, 16.8% of the RRT algorithm, respectively. Moreover, the variance of search
time of the Improved-RRT algorithm is 0.480 s, 0.101 s, 0.056 s, 0.050 s, and 0.032 s, which
are 16.5%, 15.9%, 10.5%, 11.5%, 11.7% of the RRT algorithm, respectively. Therefore, the
Improved-RRT algorithm can find a feasible path faster than the RRT algorithm and has
better stability. Compared with the results of Section 3.1, the difference between the average
and variance of the search time of these two algorithms is further increased, indicating
that the random expansion strategy proposed in this paper has a significant effect on the
pathfinding problem of narrow passage environment.

4.3. Find Near-Optimal Path

The algorithm’s ability to find a near-optimal path is also measured. The algorithm
needs to find an obstacle-free path from xstart to xgoal , whose length differs from the optimal
path’s length is less than threshold r. The environment used in this experiment is the same
as Section 3.1, the environment is shown in Figure 8, the length of the environment is 1200,
the width of the environment is 900, and dgoal is 1000. For this environment, the length of
the optimal path is 1035.

Similarly, the average and variance of the search time are applied to evaluate the
efficiency of the algorithm. The differences between the length of the near-optimal path
and the length of the optimal path are set to 5%, 10%, 15%, 20%, and 25%, respectively. At a
threshold of 5%, we need to find a path with a length of less than 1087, as the length of the
optimal path is 1035. The RRT* is used as a control algorithm to verify the efficiency of the

Appl. Sci. 2021, 11, 11777 16 of 18

proposed algorithm. The step size is also set to 30 as the same as the Fast-RRT algorithm.
In each experiment, we ran the Fast-RRT algorithm and the RRT* algorithm 100 times and
recorded the running time. Finally, the average and variance of the search time of these
two algorithms were calculated. The final results are presented in Figure 15.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 19

environment is 1200, the width of the environment is 900, and 𝑑 is 1000. For this
environment, the length of the optimal path is 1035.

Similarly, the average and variance of the search time are applied to evaluate the
efficiency of the algorithm. The differences between the length of the near-optimal path
and the length of the optimal path are set to 5%, 10%, 15%, 20%, and 25%, respectively. At
a threshold of 5%, we need to find a path with a length of less than 1087, as the length of
the optimal path is 1035. The RRT* is used as a control algorithm to verify the efficiency
of the proposed algorithm. The step size is also set to 30 as the same as the Fast-RRT
algorithm. In each experiment, we ran the Fast-RRT algorithm and the RRT* algorithm
100 times and recorded the running time. Finally, the average and variance of the search
time of these two algorithms were calculated. The final results are presented in Figure 15.

Figure 15. Comparison of the time required for Fast-RRT and RRT* algorithms to find an
approximate optimal path when the gap between the approximate optimal path and the theoretical
optimal path is different thresholds. It can be seen that compared with the RRT* algorithm, the Fast-
RRT algorithm has an order of magnitude advantage in search time.

As expected, the average and variance of the search time within the Fast-RRT
algorithm is smaller than those of the RRT* algorithm. At a threshold of 5%, the RRT*
algorithm shows an average and variance of the search time of 13.34 s and 5.75 s,
respectively. Impressively, the average and variance of the search time of the Fast-RRT
algorithm are 0.322 s and 0.207 s, respectively, which is only 2.4% and 3.6% of the RRT*
algorithm. When the threshold is set up to 10%, 15%, 20%, and 25%, the average search
time of the Fast-RRT algorithm is 2.9%, 3.4%, 4.0%, and 6.1% of the RRT* algorithm,
respectively. Therefore, the search speed of the Fast-RRT algorithm is 20 times faster than
the RRT* algorithm. Moreover, the variance of search time within the Fast-RRT algorithm
is 3.4%, 2.4%, 2.0%, and 2.1% of the RRT* algorithm, demonstrating enhanced stability.

Thanks to the superior performance mentioned above, our Fast-RRT possesses great
potential in the design and navigation of robots. After using sensors such as lasers and
depth cameras to build an environment map, our Fast-RRT algorithm can be used to find
a feasible path from the starting point to the target point. Moreover, due to the advantages
of fast search speed and small search time variance, our Fast-RRT can be further applied
to UAV navigation and other path search tasks that require high real-time performance.

Figure 15. Comparison of the time required for Fast-RRT and RRT* algorithms to find an approximate
optimal path when the gap between the approximate optimal path and the theoretical optimal path
is different thresholds. It can be seen that compared with the RRT* algorithm, the Fast-RRT algorithm
has an order of magnitude advantage in search time.

As expected, the average and variance of the search time within the Fast-RRT algo-
rithm is smaller than those of the RRT* algorithm. At a threshold of 5%, the RRT* algorithm
shows an average and variance of the search time of 13.34 s and 5.75 s, respectively. Impres-
sively, the average and variance of the search time of the Fast-RRT algorithm are 0.322 s
and 0.207 s, respectively, which is only 2.4% and 3.6% of the RRT* algorithm. When the
threshold is set up to 10%, 15%, 20%, and 25%, the average search time of the Fast-RRT
algorithm is 2.9%, 3.4%, 4.0%, and 6.1% of the RRT* algorithm, respectively. Therefore,
the search speed of the Fast-RRT algorithm is 20 times faster than the RRT* algorithm.
Moreover, the variance of search time within the Fast-RRT algorithm is 3.4%, 2.4%, 2.0%,
and 2.1% of the RRT* algorithm, demonstrating enhanced stability.

Thanks to the superior performance mentioned above, our Fast-RRT possesses great
potential in the design and navigation of robots. After using sensors such as lasers and
depth cameras to build an environment map, our Fast-RRT algorithm can be used to find a
feasible path from the starting point to the target point. Moreover, due to the advantages
of fast search speed and small search time variance, our Fast-RRT can be further applied to
UAV navigation and other path search tasks that require high real-time performance.

5. Conclusions

In summary, we proposed a new RRT-based path planning algorithm, Fast-RRT, to
improve the speed and stability of finding the initial path. Therefore, two improvements,
such as sampling in the unexplored space and random expansion, were performed. Fur-
thermore, a new algorithm for finding a new near-optimal path was further proposed to
obtain a near-optimal path by combining and adjusting multiple feasible paths.

Compared with the RRT and RRT* algorithms, the proposed that Fast-RRT possesses
remarkable advantages in speed and stability. For instance, within the Fast-RRT algorithm,
the average search time and its variance to find a feasible path significantly reduced
compared to the RRT algorithm. At the same time, the search speed of Fast-RRT for finding
a near-optimal path is 20 times faster than the RRT* algorithm. Therefore, our Fast-RRT

Appl. Sci. 2021, 11, 11777 17 of 18

algorithm exhibits great potential in practical motion planning applications. To further
improve the performance of our algorithm, the combination of the Fast-RRT algorithm and
other algorithms, such as Bidirectional RRT, Kinodynamic RRT*, and Information RRT*,
will also be investigated in the future. At the same time, the application scenarios of our
Fast RRT algorithm will also be extended from two-dimensional to multi-dimensional, as
well as in actual motion planning tasks in future work.

Author Contributions: Conceptualization, Z.W. (Zhenping Wu) and Z.M.; methodology, Z.W. (Zhen-
ping Wu); software, Z.W. (Zhenping Wu) and W.Z.; validation, Z.W. (Zhenping Wu), Z.M. and
W.Z.; formal analysis, Z.W. (Zhenping Wu); investigation, Z.M.; resources, Z.M.; data curation, W.Z.;
writing—original draft preparation, Z.W. (Zhenping Wu); writing—review and editing, Z.W. (Zhen-
ping Wu) and Z.M.; visualization, W.Z.; supervision, Z.M. and Z.W. (Zhe Wu); project administration,
Z.W. (Zhe Wu); funding acquisition, Z.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Natural Science Foundation (NSF) of China
(No.61976014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are available on request from the
first author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
2. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
3. Harabor, D.; Grastien, A. Online graph pruning for pathfinding on grid maps. In Proceedings of the AAAI Conference on Artificial

Intelligence, San Francisco, CA, USA, 7–11 August 2011; AAAI Press: Palo Alto, CA, USA, 2011; Volume 25, pp. 1114–1119.
4. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for

quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [CrossRef]
5. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Ann Arbor

2008, 1001, 18–80.
6. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
7. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report; Computer Science Department, Iowa

State University: Ames, IA, USA, 1998.
8. Lee, J.; Kwon, O.S.; Zhang, L.; Yoon, S.E. SR-RRT: Selective retraction-based RRT planner. In Proceedings of the 2012 IEEE

International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 2543–2550.
9. Shi, Y.; Li, Q.; Bu, S.; Yang, J.; Zhu, L. Research on Intelligent Vehicle Path Planning Based on Rapidly-Exploring Random Tree.

Math. Probl. Eng. 2020, 2020, 1–14. [CrossRef]
10. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
11. Nasir, J.; Islam, F.; Malik, U.; Ayaz, Y.; Hasan, O.; Khan, M.; Muhammad, M.S. RRT*-SMART: A rapid convergence implementation

of RRT. Int. J. Adv. Robot. Syst. 2013, 10, 299. [CrossRef]
12. Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.H. Neural RRT*: Learning-based optimal path planning. IEEE Trans. Autom. Sci.

Eng. 2020, 17, 1748–1758. [CrossRef]
13. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000

ICRA. Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings (Cat. No.
00CH37065), San Francisco, CA, USA, 24–28 April 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 2, pp. 995–1001.

14. Wang, J.; Chi, W.; Shao, M.; Meng, M.Q.H. Finding a high-quality initial solution for the RRTs algorithms in 2D environments.
Robotica 2019, 37, 1677–1694. [CrossRef]

15. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs. In Proceedings of the 2015 IEEE International Conference on Robotics and
Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3067–3074.

16. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robots 2016, 40, 1079–1093.
[CrossRef]

http://doi.org/10.1007/BF01386390
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1109/LRA.2017.2663526
http://doi.org/10.1109/70.508439
http://doi.org/10.1155/2020/5910503
http://doi.org/10.1177/0278364911406761
http://doi.org/10.5772/56718
http://doi.org/10.1109/TASE.2020.2976560
http://doi.org/10.1017/S0263574719000195
http://doi.org/10.1007/s10514-015-9518-0

Appl. Sci. 2021, 11, 11777 18 of 18

17. Brunner, M.; Brüggemann, B.; Schulz, D. Hierarchical rough terrain motion planning using an optimal sampling-based method.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 5539–5544.

18. Wang, W.; Zuo, L.; Xu, X. A learning-based multi-RRT approach for robot path planning in narrow passages. J. Intell. Robot. Syst.
2018, 90, 81–100. [CrossRef]

19. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Hong Kong, China, 31 May–7 June 2014; pp. 2997–3004.

20. Mashayekhi, R.; Idris, M.Y.I.; Anisi, M.H.; Ahmedy, I. Hybrid rrt: A semi-dual-tree rrt-based motion planner. IEEE Access 2020, 8,
18658–18668. [CrossRef]

21. Wang, J.; Li, X.; Meng, M.Q.H. An improved rrt algorithm incorporating obstacle boundary information. In Proceedings of the
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; pp. 625–630.

22. Yershova, A.; Jaillet, L.; Siméon, T.; LaValle, S.M. Dynamic-domain RRTs: Efficient exploration by controlling the sampling
domain. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April
2005; pp. 3856–3861.

23. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. Rrt∗-smart: Rapid convergence implementation of rrt∗ towards optimal solution.
In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012;
pp. 1651–1656.

24. Chiang, H.T.L.; Hsu, J.; Fiser, M.; Tapia, L.; Faust, A. RL-RRT: Kinodynamic motion planning via learning reachability estimators
from RL policies. IEEE Robot. Autom. Lett. 2019, 4, 4298–4305. [CrossRef]

25. Pérez-Higueras, N.; Caballero, F.; Merino, L. Teaching robot navigation behaviors to optimal RRT planners. Int. J. Soc. Robot.
2018, 10, 235–249. [CrossRef]

26. Karaman, S.; Frazzoli, E. Incremental sampling-based algorithms for optimal motion planning. Robot. Sci. Syst. VI 2010, 104,
5326–5332.

http://doi.org/10.1007/s10846-017-0641-3
http://doi.org/10.1109/ACCESS.2020.2968471
http://doi.org/10.1109/LRA.2019.2931199
http://doi.org/10.1007/s12369-017-0448-1

	Introduction
	Background
	Problem Definition
	RRT and RRT*

	Method
	Framework of Fast-RRT
	Improved RRT
	Fast Sampling
	Random Steering

	Fast-Optimal
	Path Fusion
	Path Fine-Tuning

	Simulation and Result
	Find Initial Path
	Narrow Passages Scene
	Find Near-Optimal Path

	Conclusions
	References

