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Abstract: Fourth-generation storage rings (4GSRs) that exploit the multi-bend achromat lattice
concept may be able to surpass the brightness and coherence that are attained using the present
third-generation storage rings. This paper presents the characteristics of photon beams and an
analysis of their coherence properties in Korea-4GSR to represent 4GSRs.
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1. Introduction

The synchrotron radiation (SR) from storage rings has a wide range of applications,
including surface science [1], magnetic materials [2], materials chemistry [3], environmental
sciences [4], protein crystallography [5], bio-microscopy [6], and chemical dynamics [7].
The SR from storage rings has many notable characteristics including high brilliance and
flux, wavelength tunability, beam size tunability, (partially) coherent radiation, polarization,
and time structure. In addition, the SR is very stable in energy, intensity, position, and size.
The brightness of SR from storage rings has been increased by more than seven orders
of magnitude from first-generation to third-generation storage rings (3GSRs; Figure 1).
To increase brightness, operation electron beam current has been increased to 400 mA or
higher, and the undulator has been successfully operated to realize a dramatic increase in
brightness. At the same time, efforts have been made to increase brightness by reducing
electron-beam emittance.
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The natural emittance in an electron storage ring is given by

ε0 = Cqγ2
〈

H/
∣∣ρ3
∣∣〉

jx〈1/ρ2〉 , (1)

where Cq ∼= 3.832× 10−13 m, γ is the relativistic factor for a particle, H ∼= 1/ρ2 (where ρ is
the unit-cell bending angle) and jx is the horizontal damping partition number [8–10]. The
natural emittance scales with 1/ρ3, so the multi-bend achromat lattice concept [11] enables
an emittance reduction by one to two orders of magnitude compared with 3GSRs.

The Heisenberg uncertainty principle (∆x∆px ≥ }/2) sets a lower limit for the emit-
tance of radiation. In storage rings, the altered relation for SR is given by

∆x∆x’ ≥ λ/4 (2)

where ∆x, ∆x′ and λ are the position, divergence and wavelength of SR, respectively. If
both the horizontal and vertical emittance of the beam are less than λ/(4π), then the
emitted radiation is fully coherent and the source is diffraction-limited. Here, coherence
describes all properties of the correlation between physical quantities of a single wave,
or between several waves or wave packets. In a storage ring, coherence is an important
parameter in some experiments, such as photon correlation spectroscopy, X-ray holography,
and imaging.

Storage rings that exploit the multi-bend achromat (MBA) lattice concept are emerging
as part of a worldwide push to move beyond the brightness and coherence reached by
present 3GSRs. The first MBA machine was MAX-IV, which began user operations in 2017.
SIRIUS [12] and ESRF-EBS [13] are also currently in operation, and several new projects
worldwide are exploiting these new concepts, either targeting new light sources such as
HEPS, or replacing existing sources; upgrades of APS [14], ALS-U [15], SLS and PETRA-IV
are already in progress, and those of DIAMOND, ELETTRA, SOLEIL and others are in a
planning phase. The upgraded lattice designs for these facilities have reduced the beam
emittance to a few hundred picometers, or even ≤100 pm. Therefore, 4GSRs can produce
coherent beams up to 1 keV X-ray and higher-coherent-fraction X-ray beams > 1 keV. In this
paper, we address this new era of SR, introduce the parameter of Korea-4GSR to represent
4GSR, and describe the coherent characteristics of SR from 4GSRs.

2. Worldwide 4GSRs

The MAX-IV 3-GeV electron storage ring was the first new generation light source that
used an MBA lattice [11] to reduce emittance, and hence increase brightness and transverse
coherence. Brilliance and coherent fraction are the major performance parameters for 4GSR.
Brilliance is defined as the ratio of the photon spectral flux to the phase space volume
formed by convolution of the electron and photon beam:

Brilliance =
f lux

4π2ΣxΣx′ΣyΣy′
(3)

where the convoluted size is
Σx =

√
σ2

x,e + σ2
ph , (4)

and the divergence is

Σx′ =
√

σ2
x′ ,e + σ

′2
ph (5)

where σx,e is electron-beam size, σph is photon-beam size from a single electron, σx′ ,e is
electron-beam divergence, and σ

′
ph is photon-beam divergence from a single electron. The
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coherent fraction is represented as the ratio of the photon wavelength to the volume, which
is a convolution of the electron and the photon beam in phase space:

F =
λ2/(4π)2

ΣxΣx′ΣyΣy′
(6)

where λ is the photon wavelength.
Therefore, the brilliance and coherent fraction are maximized by decreasing the

electron-beam emittances until the diffraction limit is reached. Typically, an electron
emittance of ~10 pm can reach the diffraction limit at ~1 Å (12.4 keV).

Emittance distributions of various storage rings including 4GSRs, tend to decrease
as ring circumference increases (Figure 2). The distribution of 3GSR natural emittances
indicates that they decrease in inverse proportion to the cube of circumference. By imple-
menting the MBA lattice concept and compact technology, the Korean 4GSR (red asterisk)
obtains 100 times the emittance reduction (or even more) of 3GSRs. When an on-axis
injection scheme, reverse bends and cutting-edge technology are taken into considera-
tion, emittance is reduced by another 3~4 times. Ultra-low emittance rings such as HEPS
(<60 pm), Korea-4GSR (58 pm), APS-U (42 pm) and PETRA IV (20 pm) provide high
brightness and coherence up to high photon energies.
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Figure 2. Emittance according to the circumference of 3GSRs and 4GSRs. Vertical axis: natural
emittance normalized by the square of energy. Facilities indicated in blue are 4GSRs that use the
multi-bend lattice concept.

4GSR projects worldwide (Table 1) choose energies ranging from 2 to 6 GeV. All
have emittances <300 pm; the lowest is 20 pm, which is obtained by PETRA IV, as a
consequence of its huge (2300 m) circumference. The recent trend of 4GSR design is to
consider reverse bends. However, not all machines realize beta function optimization for
phase-space matching between electron and photon beams. To facilitate beam injection,
several machines have a large horizontal beta function at the injection point.
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Table 1. Present ongoing 4GSR projects [16].

Project Energy
(GeV)

Emittance
(pm)

Ener. Spr.
(10−4)

Beta x/y (m)
@ Source Point Reverse Bends ID Source

Point Move

ALS-U 2.0 108 9.8 2.0/2.8 yes No
ELETTRA 2 2.4 212 9.3 5.7/1.6 yes No

SLS-II 2.7 157 12.0 2.5/1.3 yes <70 mm
SOLEIL-U 2.75 81 9.0 1.3/1.3 yes <100 mm

SIRIUS 3 250 8.5 1.5/1.5 no n/a
Diamond-II 3.5 136 9.0 6.0/2.5 yes No

APS-U 6 42 13.5 4.9/1.9 yes No
ESRF-EBS 6 135 9.3 6.9/2.6 no No

HEPS 6 <60 (35) 10 2.6/2.3 yes n/a
PETRA-IV 6 20 11.2 4.0/2.0 TBD yes

3. PLS-II and Korea-4GSR

This analysis uses parameters (Table 2) of PLS-II [17] to represent 3GSRs, and of
Korea-4GSR [18] to represent 4GSRs, to estimate the improvement in coherence in 4GSRs
and compare the characteristics of photon beams of 3GSRs to those of 4GSRs. The machine
characteristics of PLS-II and Korea-4GSR will be introduced in this section and the results
of the investigation of the coherence and characteristics of photon beams will be described
in the next section.

Table 2. Major parameters of the Korea-4GSR storage ring.

Parameter PLS-II Korea-4GSR Unit

Beam energy 3 4 GeV
Beam current 400 400 mA

Lattice structure DBA Hybrid 7BA
Superperiods 12 28

Natural hor. emittance 5.8 0.058 nm rad
Betatron tune 15.28/9.18 67.44/23.17
RF frequency 500 500 MHz

rms energy spread 0.1 0.1 %
rms bunch length 20 13 ps

The PLS-II lattice has a gradient dipole double-bend achromat structure with 12 super-
periods. Each of the 12 super-periods contains two gradient dipole magnets equipped with
a FODO cell, which is a lattice period composed of a focusing (F) and a defocusing (D)
quadrupole with a drift space (O) arrangement. The critical photon energy from bending
magnets is 8.97 keV. The lattice provides a 6.88 m and a 3.69 m straight section per cell for
installation of insertion devices. To reduce the beam emittance, a horizontal dispersion of
0.25 m is considered in the long straight section, in which RF cavities are installed. The
lattice functions (Figure 3) for the PLS-II illustrate how a compact lattice can be realized to
accommodate twenty insertion devices along the 280 m circumference.
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Figure 3. Super-period in a designed lattice for the 3.0 GeV ring of PLS-II and its lattice function.

The Korea-4GSR lattice has a hybrid seven-bend achromat (H7BA) type with a 58 pm
horizontal emittance. The ring with an 800 m circumference is composed of 28 symmetric
cells. As a result of experience with the PLS-II, the length of the straight section in the
Korea 4GSR is set to 6.5 m to accommodate two SCRF modules. The Korea-4GSR lattice has
a 2-T high field central dipole to create radiation that has a critical energy of 21 keV. The
Korea-4GSR uses ESRF-EBS and APS-U lattices. The dispersion was deliberately magnified
between the first and second dipoles and between the sixth and seventh dipoles to make
a dispersion bump. Chromatic sextupoles were located in this bump region to control
the chromaticity with smaller strength. The betatron phase advances between the two
dispersion bumps were adjusted to be ∆ϕx~3π in the horizontal plane and ∆ϕy~π in
the vertical plane. Consequently, nonchromatic effects generated by the sextupoles are
canceled out naturally. Five-step longitudinal gradient bends and reverse dipoles were
introduced to further reduce natural emittance. Each super-period in the designed lattice
for the Korea-4GSR is composed of a total of 28 cells (Figure 4).
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The Korea-4GSR project has officially been started. The conceptual design project
for Korea-4GSR is complete, and the overall project will be completed in 2027. It will
have extremely low emittance (Figure 2) and a conventional off-axis injection scheme is
being considered. Korea-4GSR has 1/100 the emittance of PLS-II as a result of using the
multi-bend lattice concept (Table 2).

4. Characteristics of Photon Beams

The quality of SR can be evaluated by many variables, of which flux, brilliance, and
transverse coherence are important. To compare three important characteristics of PLS-II
and Korea-4GSR, three representative insertion devices, which have already been operated
in PLS-II, are considered with two different bending magnets to evaluate photon beam
characteristics (Table 3).

Table 3. Major parameters of three representative insertion device in PLS-II.

Parameter Wiggler EPU In-Vac. Undulator

Total length (m) 2.0 3.6 1.3
Peak field (T) 1.81 0.89 0.97

Peroid of ID (cm) 10 11.4 2

The total flux of a synchrotron light source is defined as the total number of photons
emitted per unit of time at a given spectral bandwidth. Therefore, the total flux is indepen-
dent of beam emittance and strongly depends on the current and energy of the electron
beam. Compared to the PLS-II, the flux curve for Korea-4GSR is shifted to the right due to
an electron beam energy increase (Figure 5a).
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Figure 5. Comparison of (a) photon beam flux and (b) brilliance of Korea-4GSR with PLS-II for different radiation sources.
For each color, the solid line indicates PLS-II, and the dotted line indicates Korea-4GSR. Bending magnet (black), wiggler
(blue), out-vacuum undulator (pink) and in-vacuum undulator (red).

The brilliance is defined as the total number of photons emitted per unit of time,
and per unit of area in the transverse direction at a given spectral bandwidth. In the
case of bending magnets, the horizontal aperture was set to 5 mrad for PLS-II and Korea-
4GSR. At 10 keV, Korea-4GSR is 100 times higher than PLS-II, because the emittance of the
Korea-4GSR is reduced (Figure 5b).

The photon-density distributions in phase space were obtained (Figure 6) for the
bending magnet, wiggler, and out-vacuum undulator and in-vacuum undulator in PLS-
II and Korea-4GSR. The increased density of distribution (i.e., improvement) of Korea-
4GSR was particularly extreme in beam size and divergence in the horizontal plane. This
improvement is a result of the smaller electron emittance and zero dispersion in straight
sections in Korea-4GSR than in PLS-II. The wiggler radiation assumes a toroid shape in the
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phase-space photon beam density of Korea-4GSR, because wiggling motion is dominated
by electron beam emittance reduction (Figure 6b). This specific shape in phase space should
be included in the beamline design. In addition, the vertical photon-density distribution of
the soft X-ray region of both PLS-II and Korea-4GSR represents a diffraction-limit pattern
close to the SR pattern emitted from single electron (Figure 6o,p).
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To evaluate the coherence fraction along a wide spectrum range, an out-vacuum un-
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Figure 6. Phase space photon beam distribution from four different types of light source. Horizontal
phase space @ 10-keV photon beam from (a) wiggler in PLS-II, (b) wiggler in Korea-4GSR. Vertical
phase space @ 10-keV photon beam from (c) wiggler in PLS-II, (d) wiggler in Korea-4GSR. Horizontal
phase space @ 10-keV photon beam from (e) bending magnet in PLS-II, (f) bending magnet in Korea-
4GSR. Vertical phase space @ 10-keV photon beam from (g) bending magnet in PLS-II, (h) bending
magnet in Korea-4GSR. Horizontal phase space @ 8-keV photon beam from (i) in-vacuum undulator
in PLS-II, (j) in-vacuum undulator in Korea-4GSR. Vertical phase space @ 8-keV photon beam from
(k) in-vacuum undulator in PLS-II, (l) in-vacuum undulator in Korea-4GSR. Horizontal phase space
@ 0.2-keV photon beam from (m) out-vacuum undulator in PLS-II, (n) out-vacuum undulator in
Korea-4GSR. Vertical phase space @ 0.2-keV photon beam from (o) out-vacuum undulator in PLS-II,
(p) out-vacuum undulator in Korea-4GSR.

5. Preservation of Coherence

As emittance approaches the diffraction limit, the coherence of SR increases in the
transverse dimension. To quantify the degree of coherence, the fraction of coherence,
defined in Equation (6) was evaluated (Figure 7) to be about 100 times higher, on average,
in Korea-4GSR than in PLS-II.
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To evaluate the coherence fraction along a wide spectrum range, an out-vacuum
undulator and an in-vacuum undulator were considered as SR sources. The out-vacuum
undulator generates SR up to 1~3 keV, and the in-vacuum undulator generates SR > 1 keV
(Figure 8). The coherence fraction beyond 10 keV is at most a few percent coherent. To
satisfy high coherency at 10 keV, electron emittance <10 pm should be realized. However,
currently, the storage ring yields a partially coherent beam at 10 keV.
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Figure 8. Comparison of the transverse coherent fraction of Korea-4GSR among undulator, bending
magnet (2T central dipole), and wiggler.

Coherence also depends on the SR source, as well as on the lattice function at the
source point. The undulator is the strongest coherent SR source due to the small electron-
beam path variation in the SR region. A comparison of coherence among the undulator,
bending magnet, and wiggler at the given parameter of the storage ring demonstrates that
an undulator must be used for experiments that require high coherence (Figure 8).
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The improvements in photon beam coherence caused by a reduction in electron beam
emittance will be amplified by matching the phase-space distributions of the electron beam
and photon beam. Proper matching of the phase space distribution of the electron beam to
the photon beam requires tuning of the betatron function. The optimal betatron function
that provides maximum coherence and brilliance is [19–21].

β
opt
x,y ∼ L/π (7)

where L is the undulator length. To investigate the optimal conditions of each SR source
for Korea-4GSR, the coherences and brilliances of each SR source were quantified as a
function of the betatron function. At optimal conditions along the betatron function, the
coherence of the undulator is increased to 30% by reducing the betatron function to 1 m
(Figure 9). Coherence in the wiggler source does not depend on the betatron function,
because coherence is dominantly determined by large electron-beam path variation rather
than by phase-matching in the wiggler source. The coherence of the photon beam from a
bending magnet is strongly dependent on the betatron function, and less dependent on
the undulator.
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(a) undulator, (b) wiggler, and (c) bending magnet. (d) Horizontal coherent fraction of the bending
magnet as a function of the horizontal acceptance.

The effect of error of focusing by the mirror was quantified to identify the tolerance
range of such errors. The errors of the focusing mirror are caused by vibration of the mirror
(slop error) and error of the mirror surface (roughness). These errors are a direct cause
of deterioration in the coherence of the beam. For example, given a focusing mirror that
is at a distance p from the SR source, then, if the mirror receives the full beam, the beam
spread is approximately 2pσvib due to the vibration σvib, or 2pσtilt due to the tilt error of
the mirror σtilt. In addition, the coherence characteristics of the photon beam decline and
can be defined as [22]

FcΣx√
Σ2

x + ∆σ2
x

or
FcΣy√

Σ2
y + ∆σ2

y

, (8)
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where Fc is the coherent fraction when the mirror is error-free, x is horizontal direction,
y is vertical direction, and σ represents an error due to the vibration or tilt of the mirror.
Equation (8) allows for a comparison of the error effects on coherent flux in PLS-II and
Korea-4GSR (Figure 10). For the same error, the deterioration of coherent flux is severe in
the horizontal plane in PLS-II, and in the vertical plane in Korea-4GSR. Therefore, these
results indicate the need for a thorough study of the effect of error on beam coherence
during the design of a Korea-4GSR beamline.
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6. Conclusions

Fourth-generation storage rings are being developed. They are expected to increase
the coherence of the SR beam by reducing beam emittance to a few hundred picometers,
or even <100 pm. In this paper, we described a quantitative estimation of the coherence
of photon beams by using machine parameters from PLS-II as an example of a 3GSR, and
Korea-4GSR as an example of a 4GSR. An undulator should be used as the SR source
with the optimized betatron function to increase the coherence of the photon beam. With
optimized conditions, Korea-4GSR will provide coherence beams with a 30% coherent
fraction at 10-keV photon-beam energy, which is 100 times higher, on average, than that of
PLS-II. The need for a thorough study of error effect on coherence beam when designing the
Korea-4GSR beamline was also suggested, because errors in optic elements in Korea-4GSR
degrade coherent flux.
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